Hindawi Publishing Corporation ISRN Applied Mathematics Volume 2014, Article ID 498135, 8 pages http://dx.doi.org/10.1155/2014/498135

Research Article Generalizing Krawtchouk Polynomials Using Hadamard Matrices

Peter S. Chami,1 Bernd Sing,1 and Norris Sookoo2

1 Department of Computer Science, Mathematics and Physics, Faculty of Science and Technology, The University of the West Indies, Cave Hill, St. Michael, Barbados 2 The University of Trinidad and Tobago, O’Meara Campus, Arima, Trinidad and Tobago

Correspondence should be addressed to Norris Sookoo; [email protected]

Received 15 November 2013; Accepted 22 December 2013; Published 4 March 2014

Academic Editors: F. Ding and X. Liu

Copyright Β© 2014 Peter S. Chami et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We investigate polynomials, called m-polynomials, whose generator polynomial has coefficients that can be arranged in a square ; in particular, the case where this matrix is a is considered. Orthogonality relations and recurrence relations are established, and coefficients for the expansion of any polynomial in terms of m-polynomials are obtained. We conclude this paper by an implementation of m-polynomials and some of the results obtained for them in Mathematica.

1. Introduction where 𝑛 is a natural number and π‘₯ ∈ {0,1,...,𝑛}.The generator polynomial is Matrices have been the subject of much study, and large bodies of results have been obtained about them. We study 𝑛 (1+𝑧)π‘›βˆ’π‘₯(1βˆ’π‘§)π‘₯ = βˆ‘πΎ (π‘₯) π‘§π‘˜. the interplay between the theory of matrices and the theory π‘˜ (2) of orthogonal polynomials. For Krawtchouk polynomials, π‘˜=0 introduced in [1], interesting results have been obtained in The generalized Krawtchouk polynomial 𝐾𝑝(𝑠) is obtained by [2–4]; also see the review article [5]andcompare[6]for generalizing the above generator polynomial as follows: generalized Krawtchouk polynomials. More recently, condi- 𝑠 tions for the existence of integral zeros of binary Krawtchouk π‘žβˆ’1 π‘žβˆ’1 𝑖 𝑝 polynomials have been obtained in [7], while properties for ∏(βˆ‘πœ’(πœ”π‘–πœ”π‘™)𝑧𝑖) = βˆ‘ 𝐾𝑝 (𝑠) 𝑧 , (3) generalized Krawtchouk polynomials can be found in [8]. 𝑙=0 𝑖=0 π‘βˆˆπ‘‰(𝑛,π‘ž) Other generalizations of binary Krawtchouk polynomials have also been considered; for example, some properties of where βˆ‘π‘ π‘– =βˆ‘π‘π‘– =𝑛, π‘ž is a prime power, the 𝑧𝑖 are binary Krawtchouk polynomials have been generalised to π‘ž- indeterminate, the field 𝐺𝐹(π‘ž) with π‘ž elements is {0, πœ”1, Krawtchouk polynomials in [9]. Orthogonality relations for πœ”2,...,πœ”π‘žβˆ’1},andπœ’ is a character. quantum and π‘ž-Krawtchouk polynomials have been derived The above information about Krawtchouk polynomials in [10], and it has been shown that affine π‘ž-Krawtchouk poly- and generalized Krawtchouk polynomials was taken from [6]. nomials are dual to quantum π‘ž-Krawtchouk polynomials. In If we replace the πœ’(πœ”π‘–πœ”π‘™) by arbitrary scalars in the this paper, we define and study generalizations of Krawtchouk lastequation,weobtainthegeneratorpolynomialofπ‘š- polynomials, namely, π‘š-polynomials. polynomials 𝑀𝐺(𝑝, 𝑠);seeDefinition 2 below. These π‘š- The Krawtchouk polynomial πΎπ‘˜(π‘₯) is given by polynomialsarethesubjectofstudyinthispaper. In Section 2, we present relevant notations and defini- π‘˜ π‘₯ π‘›βˆ’π‘₯ tions. In Section 3, we introduce the generator polynomial. 𝐾 (π‘₯) = βˆ‘(βˆ’1)𝑗 ( )( ) , π‘˜ 𝑗 π‘˜βˆ’π‘— (1) The associated matrix of coefficients 𝐺 can be any square 𝑗=0 matrix, and so the question that immediately arises is how 2 ISRN Applied Mathematics the properties of the π‘š-polynomials are related to the respect to 𝐺 having parameter 𝑝 is denoted by 𝑀𝐺(𝑝; 𝑠) or properties of 𝐺.Wewillestablishthat,if𝐺 is a generalized 𝑀𝐺(𝑝0,𝑝1,...,π‘π‘žβˆ’1;𝑠0,𝑠1,...,π‘ π‘žβˆ’1) and given by Hadamard matrix, then the associated π‘š-polynomials satisfy π‘žβˆ’1 π‘žβˆ’1 orthogonality conditions. In Section 4,weestablishrecur- 𝑠! π‘Ÿ 𝑀𝐺 (𝑝; 𝑠)= βˆ‘ βˆβˆπ‘” π‘Ž,𝑏 rence relations for π‘š-polynomials.Afterwards,weobtain π‘Žπ‘ π‘Ÿ ∏ π‘Ÿ ! coefficients for the expansion of a polynomial in terms of π‘š- 𝑖,𝑗 𝑖,𝑗 𝑖,𝑗 π‘Ž=0 𝑏=0 (5) polynomials in Section 5.Finally,inSection 6,weimplement π‘Ÿ π‘žβˆ’1 π‘žβˆ’1 𝑔 π‘Ž,𝑏 the results obtained here in Mathematica, so the reader may =𝑠!βˆ‘βˆβˆ π‘Žπ‘ , π‘š 𝐺 π‘Ÿ ! easily derive and explore -polynomials for any matrix . π‘Ÿπ‘–,𝑗 π‘Ž=0 𝑏=0 π‘Ž,𝑏

where the summation is taken over all sets of nonnegative π‘Ÿ 𝑖,𝑗=0,1,...,π‘žβˆ’1 2. Definitions and Notations integers 𝑖,𝑗 (with )satisfying

In this paper, N0 denotes {0,1,2,3,...}.Weusetheconven- π‘žβˆ’1 π‘ž tion that if π‘βˆˆN0,then𝑝 has components (𝑝0,𝑝1,...,π‘π‘žβˆ’1). βˆ‘π‘Ÿπ‘–,𝑗 =𝑠𝑖, 𝑖=0,1,...,π‘žβˆ’1, π‘ž 𝑗=0 So, if π‘Ÿ(𝑖) ∈ N then π‘Ÿ(𝑖) denotes (π‘Ÿπ‘–,0,π‘Ÿπ‘–,1,...,π‘Ÿπ‘–,π‘žβˆ’1).Wewill 0 (6) also use the π‘ž elementary unit vectors 𝑒0 = (1, 0, 0, . . . , 0), π‘žβˆ’1 𝑒 =(0,1,0,...,0),...,𝑒 =(0,0,...,0,1) 1 π‘žβˆ’1 . βˆ‘π‘Ÿπ‘–,𝑗 =𝑝𝑗, 𝑗=0,1,...,π‘žβˆ’1. 1 We use the β„“ -norm (the β€œtaxicab-metric”) to measure the 𝑖=0 π‘ž π‘žβˆ’1 length |𝑝| of π‘βˆˆN0,thatis,|𝑝| = βˆ‘π‘–=0 𝑝𝑖. We define the set of weak compositions of 𝑛 into π‘ž numbers by 𝑉(𝑛, π‘ž) = 3. The Generator Polynomial and {𝑝 ∈ Nπ‘ž :|𝑝|=𝑛} 𝑉(𝑛, π‘ž) 0 ;inotherwords, is the subset Orthogonality Relations of π‘ž-dimensional nonnegative vectors of length 𝑛.Wenote 𝑛+π‘žβˆ’1 π‘ž that the set 𝑉(𝑛, π‘ž) has cardinality ( π‘žβˆ’1 ).Forπ‘βˆˆN0,we The values of the π‘š-polynomial with respect to a matrix 𝐺 π‘žβˆ’1 can be derived from a generator polynomial. use the multi-index notation 𝑝! = βˆπ‘–=0 𝑝𝑖!.Similarly,fora 𝑧=(𝑧,𝑧 ,...,𝑧 )∈Cπ‘ž π‘βˆˆNπ‘ž variable 0 1 π‘žβˆ’1 and 0,wewrite Theorem 3 𝑠=(𝑠,𝑠 ,...,𝑠 )∈ π‘žβˆ’1 𝑝 (generator polynomial). Let 0 1 π‘žβˆ’1 𝑧𝑝 =∏ 𝑧 𝑖 00 =1 𝑗=0 𝑗 (where the convention is used). We note 𝑉(𝑛, π‘ž) and let 𝐺=(𝑔𝑖𝑗 ) be a π‘žΓ—π‘žmatrix. Then, that the multinomial theorem reads 𝑠 π‘žβˆ’1 π‘žβˆ’1 𝑖 𝑝 ∏(βˆ‘π‘”π‘–π‘— 𝑧𝑗) = βˆ‘ 𝑀𝐺 (𝑝; 𝑠)𝑧 , (7) 𝑛 𝑖=1 𝑗=0 π‘βˆˆπ‘‰(𝑛,π‘ž) π‘žβˆ’1 𝑛 (βˆ‘π‘§ ) = βˆ‘ ( )⋅𝑧𝑝 𝑖 𝑝 𝑝=(𝑝,𝑝 ,...,𝑝 ) 𝑖=0 π‘βˆˆπ‘‰(𝑛,π‘ž) where 0 1 π‘žβˆ’1 . (4)

𝑛! 𝑝 π‘π‘žβˆ’1 Proof. This is an application of the multinomial theorem 0 π‘ž = βˆ‘ ⋅𝑧0 β‹…β‹…β‹…π‘§π‘žβˆ’1 . 𝑝 !⋅⋅⋅𝑝 ! (recall that for π‘Ÿ(𝑖) ∈ N0,wehaveπ‘Ÿ(𝑖) =(π‘Ÿπ‘–,0,π‘Ÿπ‘–,1,...,π‘Ÿπ‘–,π‘žβˆ’1)): π‘βˆˆπ‘‰(𝑛,π‘ž) 0 π‘žβˆ’1 𝑠 π‘žβˆ’1 π‘žβˆ’1 𝑖 π‘žβˆ’1 π‘žβˆ’1 { 𝑠 ! π‘Ÿ } 𝑖 [ 𝑖,𝑗 ] ∏(βˆ‘π‘”π‘–π‘— 𝑧𝑗) = ∏ { βˆ‘ ∏(𝑔𝑖𝑗 𝑧𝑗) } 𝑖=0 𝑗=0 𝑖=0 π‘Ÿ(𝑖)! 𝑗=0 In the following, 𝐺 denotes an arbitrary π‘žΓ—π‘žmatrix. We {π‘Ÿ(𝑖)βˆˆπ‘‰(𝑠𝑖,π‘ž) [ ]} use the following convention to refer to the entries of a π‘žΓ—π‘ž π‘žβˆ’1 π‘žβˆ’1 𝑖 𝑗 𝑠! π‘Ÿ matrix [11]. The entry in the th row and th column is called = βˆ‘ (βˆβˆπ‘” π‘Ž,𝑏 ) the (π‘–βˆ’1,π‘—βˆ’1)entry,where𝑖,𝑗 = 1,2,...,π‘ž.Thus,the(𝑖, 𝑗) ∏ π‘Ÿ ! π‘Žπ‘ π‘Ÿ βˆˆπ‘‰ 𝑠 ,π‘ž , 𝑖,𝑗 𝑖,𝑗 π‘Ž=1 𝑏=0 𝐺 𝑔 𝑖,𝑗=0,1,...,π‘žβˆ’1 (𝑖) ( 𝑖 ) entry of is denoted by 𝑖𝑗 ,where .Given 𝑖=0,1,...,π‘žβˆ’1 (8) amatrix𝐺, the matrix that remains when the first row and thefirstcolumnof𝐺 are removed is called the core of 𝐺. π‘žβˆ’1 π‘Ÿ0,π‘˜+π‘Ÿ1,π‘˜+β‹…β‹…β‹…+π‘Ÿπ‘žβˆ’1,π‘˜ The next definition is well known. Γ— βˆπ‘§π‘˜ π‘˜=0 π‘ž π‘žΓ—π‘ž Definition 1. For an integer greater than one, a matrix 𝑝 𝑇 = βˆ‘ 𝑀𝐺 (𝑝; 𝑠)𝑧 , 𝐻 is called a generalized Hadamard matrix if 𝐻𝐻 =π‘žπΌπ‘ž, π‘βˆˆπ‘‰ 𝑛,π‘ž 𝑇 ( ) where 𝐻 is the complex conjugate transpose of 𝐻 and πΌπ‘ž is the π‘žΓ—π‘ž. where π‘π‘˜ =π‘Ÿ0,π‘˜ +π‘Ÿ1,π‘˜ +β‹…β‹…β‹…+π‘Ÿπ‘žβˆ’1,π‘˜. We now define the π‘š-polynomial with respect to a matrix 𝐺. As an immediate consequence, we can recover the entries 𝑔𝑖𝑗 of the matrix 𝐺 as the π‘š-polynomials of minimum order. Definition 2. Let 𝑠=(𝑠0,𝑠1,,...,π‘ π‘žβˆ’1) and 𝑝=(𝑝0,𝑝1,..., Corollary 4. 𝑀𝐺(𝑒 ;𝑒 )=𝑔 π‘π‘žβˆ’1) be elements of 𝑉(𝑛,. π‘ž) The π‘š-polynomial in 𝑠 with We have β„“ π‘˜ π‘˜β„“. ISRN Applied Mathematics 3

Proof. For 𝑠=π‘’π‘˜, the left-hand side of (7)becomes On the other hand, the multinomial theorem yields 𝑔 𝑧 +𝑔 𝑧 +β‹…β‹…β‹…+𝑔 𝑧 , π‘˜,0 0 π‘˜,1 1 π‘˜,π‘žβˆ’1 π‘žβˆ’1 (9) 𝑠𝑖 𝑠 𝑛! π‘žβˆ’1 π‘žβˆ’1 π‘žβˆ’1 𝑖 π‘βˆˆπ‘‰(1,π‘ž) 𝑒 ,...,𝑒 𝐽𝑛 = βˆ‘ ∏(βˆ‘π‘” 𝑧 ) (βˆ‘π‘” 𝑦 ) and since and thus runs through 0 π‘žβˆ’1 in 𝑠! 𝑖𝑗 𝑗 π‘–π‘˜ π‘˜ this case, the rest follows by comparing coefficients of 𝑧𝑗. π‘ βˆˆπ‘‰(𝑛,π‘ž) 𝑖=0 𝑗=0 π‘˜=0

Remark 5. Theorem 3 canalsobeusedforsummationresults 𝑛! π‘š 𝑉(𝑛, π‘ž) 𝑧=(1,...,1) = βˆ‘ [ βˆ‘ 𝑀𝐺 (𝑝; 𝑠)𝑧𝑝] of -polynomials over :using ,weobtain 𝑠! (16) 𝑠 π‘žβˆ’1 π‘žβˆ’1 𝑖 π‘ βˆˆπ‘‰(𝑛,π‘ž) [π‘βˆˆπ‘‰(𝑛,π‘ž) ] βˆ‘ 𝑀𝐺 (𝑝; 𝑠)= ∏(βˆ‘π‘”π‘–π‘— ) , (10) π‘βˆˆπ‘‰(𝑛,π‘ž) 𝑖=0 𝑗=0 Γ— [ βˆ‘ 𝑀𝐺 (𝑑; 𝑠)𝑦𝑑] . that is, the product of the 𝑠𝑖th power of the 𝑖th column sum [π‘‘βˆˆπ‘‰(𝑛,π‘ž) ] of 𝐺. 𝑝 𝑑 As an immediate result of this remark, we can establish Equating coefficients of 𝑧 𝑦 in the two above expressions 𝑛 the following corollary. for 𝐽 , we obtain the desired result. Corollary 6. βˆ‘π‘žβˆ’1 𝑔 =0 0β‰€π‘–β‰€π‘žβˆ’1 If 𝑗=0 𝑖𝑗 for one If 𝐺 is a generalized Hadamard matrix and also satisfies (i.e., one of the row-sums of the matrix 𝐺 is zero), then certain additional conditions, then it is possible to establish βˆ‘π‘βˆˆπ‘‰(𝑛,π‘ž) 𝑀𝐺(𝑝; 𝑠). =0 that the corresponding π‘š-polynomials satisfy additional orthogonality conditions. We use the following three results For a generalized Hadamard matrix 𝐺,themultinomial in proving this. theorem yields the following orthogonality relation for the 𝑇 corresponding π‘š-polynomials. Lemma 8. If 𝐺 is symmetric, that is, 𝐺=𝐺 ,then𝑀𝐺(𝑠; 𝑝)= (𝑝!/𝑠!)𝑀𝐺(𝑝; 𝑠). Theorem 7 (orthogonality relation). If 𝐺 is a generalized Hadamard matrix, then the π‘š-polynomials 𝑀𝐺(𝑝, 𝑠),with π‘žβˆ’1 Proof. By Definition,wehave(where 2 βˆ‘π‘—=0 β„Žπ‘–,𝑗 =𝑝𝑖 and 𝑝, 𝑠 ∈ 𝑉(𝑛,, π‘ž) satisfy the orthogonality relations π‘žβˆ’1 βˆ‘ β„Žπ‘–,𝑗 =𝑠𝑗) 1 π‘žπ‘› 𝑖=0 βˆ‘ 𝑀𝐺 (𝑝; 𝑠) 𝑀𝐺 (𝑑; 𝑠) = 𝛿𝑝,𝑑, 𝑠! 𝑝! (11) π‘žβˆ’1 π‘žβˆ’1 β„Žπ‘Ž,𝑏 π‘ βˆˆπ‘‰(𝑛,π‘ž) 𝑔 𝑀𝐺 (𝑠; 𝑝) =𝑝! βˆ‘βˆβˆ π‘Žπ‘ β„Žπ‘Ž,𝑏! where β„Žπ‘–,𝑗 π‘Ž=0 𝑏=0

𝑠=(𝑠0,𝑠1,...,π‘ π‘žβˆ’1),𝑝=(𝑝0,𝑝1,...,π‘π‘žβˆ’1), β„Ž 𝑝! π‘žβˆ’1 π‘žβˆ’1 𝑔 π‘Ž,𝑏 = 𝑠!βˆ‘βˆβˆ π‘π‘Ž 𝑑=(𝑑,𝑑 ,...,𝑑 ), 𝑠! β„Ž ! 0 1 π‘žβˆ’1 β„Ž π‘Ž=0 𝑏=0 π‘Ž,𝑏 (12) 𝑖,𝑗 (17) π‘žβˆ’1 π‘žβˆ’1 π‘žβˆ’1 π‘Ÿ 1, 𝑖𝑓𝑖 𝑝 =𝑑𝑖 βˆ€π‘–, 𝑝! 𝑔 𝑏,π‘Ž 𝛿𝑝,𝑑 = βˆπ›Ώπ‘ ,𝑑 ={ π‘π‘Ž 𝑖 𝑖 0, π‘œπ‘‘β„Žπ‘’π‘Ÿπ‘€π‘–π‘ π‘’, = 𝑠!βˆ‘βˆβˆ 𝑖=0 𝑠! π‘Ÿ ! π‘Ÿπ‘–,𝑗 𝑏=0 π‘Ž=0 𝑏,π‘Ž denotes Kronecker’s delta. 𝑝! π‘ž = 𝑀𝐺 (𝑝; 𝑠), Proof. Let 𝑧=(𝑧0,𝑧1,...,π‘§π‘žβˆ’1), 𝑦=(𝑦0,𝑦1,...,π‘¦π‘žβˆ’1)∈C , 𝑠! and define π‘žβˆ’1 π‘žβˆ’1 π‘žβˆ’1 π‘žβˆ’1 π‘žβˆ’1 π‘žβˆ’1 π‘žβˆ’1 where we define π‘Ÿπ‘–,𝑗 =β„Žπ‘—,𝑖 (and thus βˆ‘π‘—=0 π‘Ÿπ‘–,𝑗 =𝑠𝑖 and 𝐽=βˆ‘ (βˆ‘π‘” 𝑧 )(βˆ‘π‘” 𝑦 )=βˆ‘ βˆ‘ βˆ‘π‘” 𝑔 𝑧 𝑦 . π‘žβˆ’1 𝑖𝑗 𝑗 π‘–π‘˜ π‘˜ 𝑖𝑗 π‘–π‘˜ 𝑗 π‘˜ βˆ‘π‘–=0 π‘Ÿπ‘–,𝑗 =𝑝𝑗), and since 𝐺 is symmetric (i.e., π‘”π‘Žπ‘ =π‘”π‘π‘Ž). 𝑖=0 𝑗=0 π‘˜=0 𝑖=0 𝑗=0 π‘˜=0 (13) The following results can be obtained in a similar manner Then, on the one hand, we have to Lemma 8. π‘žβˆ’1 Lemma 9. If 𝐺 has a symmetric core, 𝑔0,𝑗 =1for 𝑗= 𝐽=π‘žβˆ‘π‘§π‘—π‘¦π‘— (14) 0,...,π‘žβˆ’1and 𝑔𝑖,0 =βˆ’1for 𝑖=1,...,π‘žβˆ’1,then𝑀𝐺(𝑠; 𝑝)= 𝑗=0 𝑠 +𝑝 (βˆ’1) 0 0 (𝑝!/𝑠!)𝑀𝐺(𝑝; 𝑠). since 𝐺 is a generalized Hadamard matrix. Consequently, Such symmetry relations yield additional orthogonality { 𝑛! 𝑠 𝑠 𝑠 } 𝐽𝑛 =π‘žπ‘› βˆ‘ (𝑧 𝑦 ) 0 (𝑧 𝑦 ) 1 β‹…β‹…β‹…(𝑧 𝑦 ) π‘žβˆ’1 . relations. { 𝑠! 0 0 1 1 π‘žβˆ’1 π‘žβˆ’1 } π‘ βˆˆπ‘‰(𝑛,π‘ž) { } Theorem 10 (additional orthogonality relation). Let 𝐺 be a (15) generalized Hadamard matrix. 4 ISRN Applied Mathematics

(i) If in addition 𝐺 is symmetric, then Proof. Using (7)twice,weobtain(if𝑠𝑖 >0) βˆ‘ 𝑀𝐺 (𝑝; 𝑠)𝑧𝑝 𝑛 βˆ‘ 𝑀𝐺 (𝑝; 𝑠) 𝑀𝐺 (𝑠;) 𝑑 =π‘žπ›Ώ . π‘βˆˆπ‘‰(𝑛,π‘ž) 𝑝,𝑑 (18) π‘ βˆˆπ‘‰ 𝑛,π‘ž ( ) 𝑠 π‘žβˆ’1 π‘žβˆ’1 𝑖

= ∏(βˆ‘π‘”π‘–π‘— 𝑧𝑗) 𝑖=1 𝑗=0

𝑠 𝑠 (ii) If in addition 𝐺 has a symmetric core, 𝑔0,𝑗 =1for 𝑗= π‘žβˆ’1 π‘žβˆ’1 0 π‘žβˆ’1 π‘–βˆ’1 0,...,π‘žβˆ’1and 𝑔𝑖,0 =βˆ’1for 𝑖=1,...,π‘žβˆ’1,then =(βˆ‘π‘”π‘–π‘— 𝑧𝑗)(βˆ‘π‘”0𝑗𝑧𝑗) β‹…β‹…β‹…(βˆ‘π‘”π‘–βˆ’1,𝑗𝑧𝑗) , 𝑗=0 𝑗=0 𝑗=0

𝑠0 𝑑0 𝑛 𝑠 βˆ’1 𝑠 𝑠 βˆ‘ (βˆ’1) 𝑀𝐺 (𝑝; 𝑠) 𝑀𝐺 (𝑠;) 𝑑 = (βˆ’1) π‘ž 𝛿 . π‘žβˆ’1 𝑖 π‘žβˆ’1 𝑖+1 π‘žβˆ’1 π‘žβˆ’1 𝑝,𝑑 (19) π‘ βˆˆπ‘‰ 𝑛,π‘ž ( ) (βˆ‘π‘”π‘–π‘— 𝑧𝑗) (βˆ‘π‘”π‘–+1,𝑗𝑧𝑗) β‹…β‹…β‹…(βˆ‘π‘”π‘žβˆ’1,𝑗𝑧𝑗) 𝑗=0 𝑗=0 𝑗=0

π‘žβˆ’1 =(βˆ‘π‘” 𝑧 ) βˆ‘ 𝑀𝐺 (𝑝;Μƒ 𝑠 βˆ’π‘’ )𝑧𝑝̃. Proof. This follows immediately from Theorem 7 and Lem- 𝑖𝑗 𝑗 𝑖 𝑗=0 mas 8 and 9. π‘βˆˆπ‘‰Μƒ (π‘›βˆ’1,π‘ž) (22) Remark 11. It turns out that a slight modification of the above π‘š-polynomials has already been considered in [12, 13]. For Multiplying the right-hand side out and equating coefficients 𝑧𝑝 amatrix𝐺 and 𝑝, 𝑠 ∈ 𝑉(𝑛,,[ π‘ž) 13, Equation (2.3)] defines of establish the claim. polynomials 𝐿𝑝,𝑠(𝐺) by 𝐿𝑝,𝑠(𝐺) = (1/𝑠!)𝑀𝐺(𝑝; 𝑠) in our Theorem 13 (recurrence relations II). Let 𝑝, 𝑠 ∈ 𝑉(𝑛, π‘ž) with notation. For these polynomials, the following multiplication 𝑝 >0 π‘˜βˆˆ{0,...,π‘žβˆ’1} property is proved (see [13, Theorem 3.2]): π‘˜ for one .Then, π‘žβˆ’1 𝑠 𝑀𝐺 (𝑝; 𝑠)= βˆ‘ 𝑖 𝑔 𝑀𝐺 (𝑝 βˆ’π‘’ ;π‘ βˆ’π‘’), 𝑝 π‘–π‘˜ π‘˜ 𝑖 (23) 𝐿𝑝,𝑑 (𝐺1𝐺2)= βˆ‘ 𝑠!𝐿𝑝,𝑠 (𝐺1)𝐿𝑠,𝑑 (𝐺2), 𝑖=0, π‘˜ (20) 𝑠 >0 π‘ βˆˆπ‘‰(𝑛,π‘ž) 𝑖 where the sum on the right is taken over all 𝑖 such that the 𝑖th 𝑇 component 𝑠𝑖 of π‘ βˆˆπ‘‰(𝑛,π‘ž)is positive. for π‘žΓ—π‘žmatrices 𝐺1,𝐺2.With𝐺1 =𝐺, 𝐺2 = 𝐺 and thus 𝑇 𝐺1𝐺2 =𝐺𝐺 =π‘žπΌπ‘ž, Theorem 7 becomes a special case of this Proof. We note that we have 𝐿 (𝐺𝑇)=𝐿 (𝐺) 𝑠 βˆ’1 equation by noting that 𝑠,𝑑 𝑑,𝑠 (see [13,Equation 𝑠 π‘žβˆ’1 𝑖 𝑛 π‘žβˆ’1 𝑖 { (4.5)]) and 𝐿𝑝,𝑑(π‘žπΌπ‘ž)=(π‘ž/𝑝!)𝛿𝑝,𝑑 (using the notation of πœ• {𝑠 𝑔 (βˆ‘π‘” 𝑧 ) , 𝑠 >0, (βˆ‘π‘” 𝑧 ) = 𝑖 π‘–π‘˜ 𝑖𝑗 𝑗 if 𝑖 Definition, 2 the polynomial on the left can only be nonzero 𝑖𝑗 𝑗 { 𝑗=0 πœ•π‘§π‘˜ 𝑗=0 { if π‘Ÿπ‘–,𝑗 =0whenever 𝑖 =𝑗̸ and 𝑝𝑖 =π‘Ÿπ‘–,𝑖 =𝑑𝑖 otherwise). {0, if 𝑠𝑖 =0. (24) 4. Recurrence Relations and Summation of Thus, on the one hand, the derivative of the left-hand side of Certain Polynomials (7)withrespecttoπ‘§π‘˜ is

𝑠 We use Theorem 3 to derive a recurrence relation for π‘š- π‘žβˆ’1 π‘žβˆ’1 π‘ π‘šβˆ’1 π‘žβˆ’1 π‘žβˆ’1 𝑖 polynomials in 𝑠 having parameter 𝑝 where both 𝑠, 𝑝 ∈ [ ] βˆ‘ [π‘ π‘šπ‘”π‘šπ‘˜ (βˆ‘π‘”π‘šβ„“π‘§β„“) ∏(βˆ‘π‘”π‘–π‘— 𝑧𝑗) ] . (25) 𝑉(𝑛, π‘ž) by a sum of π‘š-polynomials where both 𝑠, 𝑝 ∈ 𝑉(𝑛 βˆ’ π‘š=0, β„“=0 𝑖=0, 𝑗=0 𝑠 >0 [ 𝑖 =π‘šΜΈ ] 1, π‘ž). π‘š Using (7), this is equal to Theorem 12 (recurrence relations I). Let 𝑝, 𝑠 ∈ 𝑉(𝑛, π‘ž) with 𝑠𝑖 >0for one π‘–βˆˆ{0,...,π‘žβˆ’1}.Then, π‘žβˆ’1 βˆ‘ [𝑠 𝑔 βˆ‘ 𝑀𝐺 (𝑝;Μƒ 𝑠 βˆ’π‘’ )𝑧𝑝̃] . π‘š π‘šπ‘˜ π‘š (26) π‘š=0, Μƒ π‘žβˆ’1 [ π‘βˆˆπ‘‰(π‘›βˆ’1,π‘ž) ] π‘ π‘š>0 𝑀𝐺 (𝑝; 𝑠)= βˆ‘ 𝑔 𝑀𝐺 (𝑝 βˆ’π‘’ ;π‘ βˆ’π‘’), π‘–π‘˜ π‘˜ 𝑖 (21) π‘˜=0, On the other hand, the derivative of the right-hand side of (7) 𝑝 >0 π‘˜ with respect to π‘§π‘˜ is π‘βˆ’π‘’ βˆ‘ 𝑝 𝑀𝐺 (𝑝; 𝑠)𝑧 π‘˜ . π‘˜ π‘˜ π‘˜ where the sum on the right is taken over all such that the th π‘βˆˆπ‘‰(𝑛,π‘ž), (27) component π‘π‘˜ of π‘βˆˆπ‘‰(𝑛,π‘ž)is positive. π‘π‘˜>0 ISRN Applied Mathematics 5

Equating the last two expressions and interchanging the order Corollary 15. Let 𝑝, 𝑠 ∈ 𝑉(𝑛, π‘ž) with 𝑠𝑖 β‰₯π‘šπ‘– β‰₯0for all π‘–βˆˆ of summation yield {0,...,π‘žβˆ’1}.Then,

π‘žβˆ’1 π‘š 𝑀𝐺 (𝑝; 𝑠)= βˆ‘ [∏ ( 𝑖 )] π‘žβˆ’1 π‘Ÿ [ 𝑝̃] (𝑖) π‘Ÿ(𝑖)βˆˆπ‘‰(π‘šπ‘–,π‘ž),s.t. 𝑖=0 βˆ‘ [ βˆ‘ π‘ π‘šπ‘”π‘šπ‘˜π‘€πΊ (𝑝;Μƒ π‘ π‘š βˆ’π‘’ )𝑧 ] π‘βˆ’βˆ‘π‘žβˆ’1 π‘Ÿβˆˆπ‘‰(π‘›βˆ’|π‘š|,π‘ž) π‘βˆˆπ‘‰(π‘›βˆ’1,π‘ž)Μƒ π‘š=0, 𝑖=0 [π‘ π‘š>0 ] (28) π‘žβˆ’1 π‘žβˆ’1 π‘žβˆ’1 π‘βˆ’π‘’ π‘Ÿ = βˆ‘ 𝑝 𝑀𝐺 (𝑝; 𝑠)𝑧 π‘˜ ; [ 𝑖𝑗 ] π‘˜ Γ— βˆβˆπ‘”π‘–π‘— 𝑀𝐺 (𝑝 βˆ’ βˆ‘π‘Ÿ(𝑖);π‘ βˆ’π‘š), π‘βˆˆπ‘‰(𝑛,π‘ž), 𝑖=0 𝑗=0 𝑖=0 𝑝 >0 [ ] π‘˜ (32) π‘žβˆ’1 by comparing coefficients, we must have 𝑝=π‘βˆ’π‘’Μƒ π‘˜,and where the sum on the right is taken over all the vectors π‘Ÿ βˆˆπ‘‰(π‘š,π‘ž) π‘βˆ’βˆ‘π‘žβˆ’1 π‘Ÿ ∈ 𝑉(𝑛 βˆ’ |π‘š|, π‘ž) therefore (noting that π‘π‘˜ >0) (𝑖) 𝑖 such that 𝑖=0 .

Proof. This follows from repeatedly applying Proposition 14, π‘žβˆ’1 𝑠 π‘š 𝑠 π‘š 𝑠 𝑀𝐺 (𝑝; 𝑠)= βˆ‘ π‘š 𝑔 𝑀𝐺 (𝑝 βˆ’π‘’ ;π‘ βˆ’π‘’ ). by subtracting 0 from 0, 1 from 1,andsoon. 𝑝 π‘šπ‘˜ π‘˜ π‘š (29) π‘š=0, π‘˜ We note that taking π‘š=𝑠in the previous corollary yields π‘ π‘š>0 the statement of Definition 2 (since, by definition, 𝑀𝐺(0; 0) = 1). Combining the recurrence relation in Theorem 12 with Theorem 7 yields the following summation formula for π‘š- We note that (21)and(23)canberewrittenas polynomials.

π‘Ÿ π‘Ÿ π‘Ÿ Proposition 16 (summation formula). Let 𝐺 be a generalized 𝑀𝐺 (𝑝; 𝑠)= βˆ‘ 𝑔 0 𝑔 1 ⋅⋅⋅𝑔 π‘žβˆ’1 𝑖0 𝑖1 𝑖,π‘žβˆ’1 Hadamard matrix and 𝑝, 𝑠 ∈ 𝑉(𝑛,. π‘ž) Then, for any pair of π‘Ÿβˆˆπ‘‰(1,π‘ž),s.t. π‘βˆ’π‘Ÿβˆˆπ‘‰(π‘›βˆ’1,π‘ž) fixed, arbitrary elements 𝑖,π‘—βˆˆ{0,...,π‘žβˆ’1},onehas 1 π‘žπ‘› ×𝑀𝐺(π‘βˆ’π‘Ÿ;π‘ βˆ’π‘’π‘–), βˆ‘ 𝑀𝐺 (𝑝 +𝑒 ;𝑠+𝑒) 𝑀𝐺 (𝑝; 𝑠) =𝑔 . 𝑠! 𝑗 𝑖 𝑖𝑗 𝑝! (33) π‘Ÿ π‘Ÿ π‘Ÿ π‘ βˆˆπ‘‰(𝑛,π‘ž) 𝑠 0 𝑠 1 ⋅⋅⋅𝑠 π‘žβˆ’1 0 1 π‘žβˆ’1 π‘Ÿ π‘Ÿ π‘Ÿ 𝑀𝐺 (𝑝; 𝑠)= βˆ‘ 𝑔 0 𝑔 1 ⋅⋅⋅𝑔 π‘žβˆ’1 𝑝 0π‘˜ 1π‘˜ π‘žβˆ’1,π‘˜ π‘Ÿβˆˆπ‘‰(1,π‘ž),s.t. π‘˜ 5. Expansion of a Polynomial π‘ βˆ’π‘Ÿβˆˆπ‘‰(π‘›βˆ’1,π‘ž) The coefficients for the expansion of a polynomial in terms ×𝑀𝐺(π‘βˆ’π‘’ ;π‘ βˆ’π‘Ÿ), π‘˜ of Krawtchouk polynomials have been obtained (cf. [6]). (30) We obtain a similar result for π‘š-polynomials defined in terms of a generalized Hadamard matrix, using orthogonality respectively. properties. In particular, Theorem 12 canbeeasilyiteratedtoobtain Theorem 17 (polynomial expansion). Let 𝐺 be a generalized the following statements. Hadamard matrix, and let π‘₯=(π‘₯0,π‘₯1,...,π‘₯π‘žβˆ’1) be a variable element of 𝑉(𝑛,. π‘ž) Proposition 14. Let 𝑝, 𝑠 ∈ 𝑉(𝑛, π‘ž) with 𝑠𝑖 β‰₯π‘šβ‰₯0for one π‘–βˆˆ{0,...,π‘žβˆ’1}.Then, (i) If 𝐺 is symmetric and the expansion of a polynomial 𝛾(π‘₯) in terms of π‘š-polynomials defined with respect to 𝐺 𝛼 ∈ C π‘š π‘Ÿ π‘Ÿ π‘Ÿ is (with coefficients 𝑠 ) 𝑀𝐺 (𝑝; 𝑠)= βˆ‘ ( )𝑔0 𝑔 1 ⋅⋅⋅𝑔 π‘žβˆ’1 π‘Ÿ 𝑖0 𝑖1 𝑖,π‘žβˆ’1 π‘Ÿβˆˆπ‘‰(π‘š,π‘ž),s.t. 𝛾 (π‘₯) = βˆ‘ 𝛼𝑠 ⋅𝑀𝐺(π‘₯;) 𝑠 , π‘βˆ’π‘Ÿβˆˆπ‘‰(π‘›βˆ’π‘š,π‘ž) (31) π‘ βˆˆπ‘‰(𝑛,π‘ž) (34)

×𝑀𝐺(π‘βˆ’π‘Ÿ;π‘ βˆ’π‘šπ‘’π‘–), then, for all β„“βˆˆπ‘‰(𝑛,π‘ž), 𝛼 =π‘žβˆ’π‘› βˆ‘ 𝛾 (𝑖) β‹… 𝑀𝐺 (β„“, 𝑖). π‘Ÿβˆˆπ‘‰(π‘š,π‘ž) β„“ (35) where the sum on the right is taken over all such π‘–βˆˆπ‘‰(𝑛,π‘ž) that π‘βˆ’π‘Ÿis in 𝑉(𝑛 βˆ’ .π‘š, π‘ž) Similarly, if the expansion of a polynomial 𝛾(π‘₯) in terms Proof. This follows by repeatedly applying (21)inTheorem 12. π‘š 𝛽𝑠 ∈ C π‘š of -polynomials is (with coefficients ) The multinomial coefficient ( π‘Ÿ ) arisesasthenumberofways 𝑝 canbechangedtoπ‘βˆ’π‘Ÿstep-by-step. 𝛾 (π‘₯) = βˆ‘ 𝛽𝑠 ⋅𝑀𝐺(𝑠; π‘₯) , π‘ βˆˆπ‘‰(𝑛,π‘ž) (36) 6 ISRN Applied Mathematics

then, for all β„“βˆˆπ‘‰(𝑛,π‘ž), {j, 1, q}])Μ‚(s[[i]]), {i, 1, q}]] 𝛽 =π‘žβˆ’π‘› βˆ‘ 𝛾 (𝑖) β‹… 𝑀𝐺 (𝑖, β„“). > mg[p ,s]:= Coefficient[generator[s], β„“ (37) π‘–βˆˆπ‘‰(𝑛,π‘ž) Inner[Power, z, p, Times]]

(ii) If 𝐺 has a symmetric core, 𝑔0,𝑗 =1for 𝑗 = 0,...,π‘žβˆ’1 π‘š and 𝑔𝑖,0 =βˆ’1for 𝑖=1,...,π‘žβˆ’1, then the corresponding The values of the -polynomial can be shown using the coefficients can be calculated for all β„“βˆˆπ‘‰(𝑛,π‘ž)by following command:

β„“ βˆ’π‘› 𝑖 𝛼 = (βˆ’1) 0 π‘ž βˆ‘ (βˆ’1) 0 𝛾 (𝑖) β‹… 𝑀𝐺 (β„“, 𝑖), > TableForm[Table[mg[pall[[i]], β„“ (38) π‘–βˆˆπ‘‰(𝑛,π‘ž) pall[[j]]], {i, Length[pall]}, respectively, {j, Length[pall]}], TableHeadings -> β„“ βˆ’π‘› 𝑖 𝛽 = (βˆ’1) 0 π‘ž βˆ‘ (βˆ’1) 0 𝛾 (𝑖) β‹… 𝑀𝐺 (𝑖, β„“). β„“ (39) π‘–βˆˆπ‘‰(𝑛,π‘ž) {pall, pall}, TableDepth -> 2]

π‘₯=𝑖 𝑀𝐺(β„“, 𝑖) For the above chosen matrix 𝐺 and length 𝑛,theoutput Proof. Let . Multiplying both sides of (34)by 𝑀𝐺(𝑝; 𝑠) 𝑝 𝑠 and summing each side over all elements of 𝑉(𝑛, π‘ž) yield for looks as follows ( denotes the row and the column; e.g., 𝑀𝐺((2, 4); (3, 3))): =3 βˆ‘ 𝛾 (𝑖) 𝑀𝐺 (β„“, 𝑖) = βˆ‘ βˆ‘ 𝛼𝑠 𝑀𝐺 (β„“, 𝑖) 𝑀𝐺 (𝑖, 𝑠) π‘–βˆˆπ‘‰(𝑛,π‘ž) π‘–βˆˆπ‘‰(𝑛,π‘ž) π‘ βˆˆπ‘‰(𝑛,π‘ž) {0, 6}{1, 5}{2, 4}{3, 3}{4, 2}{5, 1}{6, 0} {0, 6} 1βˆ’11βˆ’11βˆ’11 = βˆ‘ 𝛼𝑠 βˆ‘ 𝑀𝐺 (𝑙,) 𝑖 𝑀𝐺 (𝑖, 𝑠) {1, 5} βˆ’64βˆ’202βˆ’46 π‘ βˆˆπ‘‰(𝑛,π‘ž) π‘–βˆˆπ‘‰(𝑛,π‘ž) {2, 4} 15 βˆ’5 βˆ’1 3 βˆ’1 βˆ’5 15 {3, 3} βˆ’20 0 4 0 βˆ’4 0 20 (41) = βˆ‘ 𝛼𝑠 βˆ‘ 𝑀𝐺 (𝑙,) 𝑖 𝑀𝐺 (𝑖, 𝑠) {4, 2} 15 5 βˆ’1 βˆ’3 βˆ’1 5 15 π‘ βˆˆπ‘‰(𝑛,π‘ž) π‘–βˆˆπ‘‰(𝑛,π‘ž) {5, 1} βˆ’6 βˆ’4 βˆ’2 0 2 4 6 {6, 0} 1111111 (⋆) 𝑛 = βˆ‘ 𝛼𝑠 β‹…π‘ž ⋅𝛿ℓ,𝑠 π‘ βˆˆπ‘‰(𝑛,π‘ž) Thus,weareabletoevaluatetheπ‘š-polynomial 𝑀𝐺(𝑝; 𝑠) 𝑛 for any 𝑝, 𝑠 ∈ 𝑉(𝑛, π‘ž) (and thus check orthogonality and =𝛼ℓ π‘ž , recurrence relations). With the help of the Mathematica (40) function Fit, we can express the m-polynomials as univariant (𝑠 βˆ’π‘ ) where step (⋆) uses Theorem 10; the first result in (i) follows. polynomials in 0 1 as follows (we also recall that |(𝑠 ,𝑠 )| = 𝑠 +𝑠 =6 Theotherresultsareprovedsimilarly. 0 1 0 1 here): 1 5 𝑀𝐺 ( 0, 6) ;(𝑠 ,𝑠 )) = (𝑠 βˆ’π‘  )6 βˆ’ (𝑠 βˆ’π‘  )4 6. Mathematica Code 0 1 720 0 1 72 0 1 π‘š Here,wepresentMathematicacodetoobtain -polynomials. 34 2 𝐺 𝑛 + (𝑠 βˆ’π‘  ) βˆ’1, First, we specify the matrix and the length : 45 0 1 > g={{1, 1}, {1, βˆ’1}} 1 𝑀𝐺 ( 1, 5) ;(𝑠 ,𝑠 )) = (𝑠 βˆ’π‘  )5 > n=6 0 1 120 0 1 From this we can calculate π‘ž,theset𝑉(𝑛, π‘ž) and initialize the 1 3 11 βˆ’ (𝑠0 βˆ’π‘ 1) + (𝑠0 βˆ’π‘ 1), variable 𝑧: 3 5 1 7 > q = Union[Dimensions[g]][[1]] 𝑀𝐺 ( 2, 4) ;(𝑠 ,𝑠 )) = (𝑠 βˆ’π‘  )4 βˆ’ (𝑠 βˆ’π‘  )2 +3, 0 1 24 0 1 6 0 1 > pall = Sort[Flatten[Map[Permutations, 1 8 IntegerPartitions[n, {q}, 𝑀𝐺 ( 3, 3) ;(𝑠 ,𝑠 )) = (𝑠 βˆ’π‘  )3 βˆ’ (𝑠 βˆ’π‘  ), 0 1 6 0 1 3 0 1 Range[0, n]]], 1]] 1 > z = Table[f[i], {i, q}] 𝑀𝐺 ( 4, 2) ;(𝑠 ,𝑠 )) = (𝑠 βˆ’π‘  )2 βˆ’3, 0 1 2 0 1 Using Theorem 3,weobtaintheπ‘š-polynomial via its gener- 𝑀𝐺 ( 5, 1) ;(𝑠 ,𝑠 )) = (𝑠 βˆ’π‘  ), ator: 0 1 0 1

> generator[s ]:= Expand[Product[ 𝑀𝐺 ( 6, 0) ;(𝑠0,𝑠1)) = 1. (Sum[g[[i, j]] z[[j]], (42) ISRN Applied Mathematics 7

Similarly, we may express the π‘š-polynomials as univariant giving the list of coefficients 𝛼𝑠,respectively,𝛽𝑠 for π‘ βˆˆπ‘‰(𝑛,π‘ž). polynomials in (𝑝0 βˆ’π‘1) as follows: That is, the expansion in terms of π‘š-polynomials here reads as follows: 77 6 203 4 𝑀𝐺 ((𝑝0,𝑝1);(0, 6))= (𝑝0 βˆ’π‘1) βˆ’ (𝑝0 βˆ’π‘1) 3 3840 192 π‘₯ π‘₯ =βˆ’ 𝑀𝐺 ((π‘₯ ,π‘₯ );(0, 6)) 0 1 64 0 1 1519 2 + (𝑝0 βˆ’π‘1) βˆ’ 20, 39 120 βˆ’ 𝑀𝐺 ((π‘₯ ,π‘₯ );(2, 4)) 64 0 1 7 5 49 3 𝑀𝐺 ((𝑝0,𝑝1);(1, 5))= (𝑝0 βˆ’π‘1) βˆ’ (𝑝0 βˆ’π‘1) 7 640 96 + 𝑀𝐺 ((π‘₯ ,π‘₯ );(4, 2)) 64 0 1 131 (45) + (𝑝0 βˆ’π‘1), 35 30 + 𝑀𝐺 ((π‘₯ ,π‘₯ );(6, 0)), 64 0 1 7 6 7 4 𝑀𝐺 ((𝑝0,𝑝1);(2, 4))=βˆ’ (𝑝0 βˆ’π‘1) + (𝑝0 βˆ’π‘1) 1 3840 64 π‘₯ π‘₯ =βˆ’ 𝑀𝐺 ( 4, 2) ;(π‘₯ ,π‘₯ )) 0 1 2 0 1 199 2 βˆ’ (𝑝0 βˆ’π‘1) +4, 15 120 + 𝑀𝐺 ( 6, 0) ;(π‘₯ ,π‘₯ )) . 2 0 1 7 5 𝑀𝐺 ((𝑝0,𝑝1);(3, 3))=βˆ’ (𝑝0 βˆ’π‘1) 1920 As a check, we have (recall that π‘₯0 +π‘₯1 =6) 19 3 67 1 15 + (𝑝0 βˆ’π‘1) βˆ’ (𝑝0 βˆ’π‘1), βˆ’ 𝑀𝐺 ( 4, 2) ;(π‘₯ ,π‘₯ )) + 𝑀𝐺 ( 6, 0) ;(π‘₯ ,π‘₯ )) 96 30 2 0 1 2 0 1

7 6 25 4 1 1 2 15 𝑀𝐺 ((𝑝0,𝑝1);(4, 2))= (𝑝0 βˆ’π‘1) βˆ’ (𝑝0 βˆ’π‘1) =βˆ’ β‹…( (π‘₯ βˆ’π‘₯ ) βˆ’3)+ β‹…1 (46) 11520 576 2 2 0 1 2

329 2 + (𝑝 βˆ’π‘ ) βˆ’4, =π‘₯0 (6 βˆ’ π‘₯0)= π‘₯0π‘₯1. 360 0 1 1 For a generalized Hadamard matrix with symmetric core, 𝑀𝐺 ((𝑝 ,𝑝 );(5, 1))= (𝑝 βˆ’π‘ )5 𝑔 =1 𝑗 = 0,...,π‘žβˆ’1 𝑔 =βˆ’1 𝑖 = 1,...,π‘žβˆ’1 0 1 384 0 1 0,𝑗 for and 𝑖,0 for ; for example, 17 19 βˆ’ (𝑝 βˆ’π‘ )3 + (𝑝 βˆ’π‘ ), 96 0 1 6 0 1 11 1 1βˆ’βˆš3 1+√3 1 6 23 4 𝐺=(βˆ’1 ). 𝑀𝐺 ((𝑝0,𝑝1);(6, 0))=βˆ’ (𝑝0 βˆ’π‘1) + (𝑝0 βˆ’π‘1) 2 2 (47) 2304 576 1+√3 1βˆ’βˆš3 βˆ’1 101 2 2 βˆ’ (𝑝 βˆ’π‘ )2 + 20. 72 0 1 (43) The above mathematica code using Theorem 17 has to be modified as follows: By Theorem 17, we can express any polynomial 𝛾(π‘₯) = > Table[1/qΜ‚n Total [Table 𝛾(π‘₯0,...,π‘₯π‘žβˆ’1) in terms of π‘š-polynomials. Using Mathemat- Μ‚ ica to find the corresponding coefficients 𝛼𝑠 and 𝛽𝑠 in the [(-1) (pall[[i, 1]] + pall[[j, 1]]) expansion in terms of π‘š-polynomials, for example, for the p[pall[[i]]] Conjugate[mg[pall[[j]], polynomial 𝑝(π‘₯0,π‘₯1)=π‘₯0π‘₯1, is achieved as follows: pall[[i]]]], > { } p[ x0 ,x1 ]:= x0 x1 {i, Length[pall]}]], {j, Length[pall]}] > Μ‚ Table[1/q n Total[Table[p[pall[[i]]] > Table[1/qΜ‚n Total[ Conjugate[mg[pall[[j]], pall[[i]]]], Table[(-1)Μ‚(pall[[i, 1]] + pall[[j, 1]]) { } { } i, Length[pall] ]], j, Length[pall] ] p[pall[[i]]] Conjugate[mg[pall[[i]], > Table[1/qΜ‚n Total[Table[p[pall[[i]]] pall[[j]]]], Conjugate[mg[pall[[i]], pall[[j]]]], {i, Length[pall]}]], {j, Length[pall]}] {i, Length[pall]}]], {j, Length[pall]}] The output of the later two lines is 7. Outlook 3 39 7 35 1 15 {βˆ’ ,0,βˆ’ ,0, ,0, }, {0,0,0,0,βˆ’ ,0, }, Krawtchouk polynomials and their generalisation appear 64 64 64 64 2 2 in many areas of Mathematics, see [5]: harmonic analysis (44) [1, 2, 4], [3], combinatorics and coding theory 8 ISRN Applied Mathematics

[6, 7, 9, 11, 14, 15], probability theory [5], representation [14] V. I. Levenshtein, β€œKrawtchouk polynomials and universal theory (e.g., of quantum groups) [10, 12, 13], difference bounds for codes and designs in Hamming spaces,” IEEE equations [16], and pattern recognition [17](awebsitecalled Transactions on Information Theory,vol.41,no.5,pp.1303–1321, theβ€œKrawtchoukPolynomialsHomePage”byV.Zelenkov 1995. at http://orthpol.narod.ru/eng/index.html collecting material [15] F.J.MacWilliamsandN.J.A.Sloane,Theory of Error-Correcting about M. Krawtchouk and the polynomials that bear his Codes,North-Holland,NewYork,NY,USA,1978. name has, unfortunately, not been updated in a while). How- [16] L. Boelen, G. Filipuk, C. Smet, W. Van Assche, and L. ever, our motivation in this paper was primarily driven by Zhang, β€œThe generalized Krawtchouk polynomials and the generalising the results obtained in [8]β€”and thus shedding fifth Painleve equation,” Journal of Difference Equations and more light on the qualitative structure of (generalisations Applications,vol.19,pp.1437–1451,2013. of) Krawtchouk polynomialsβ€”and not yet with a specific [17] J. Sheeba Rani and D. Devaraj, β€œFace recognition using application in mind. By providing the Mathematica code to Krawtchouk moment,” SadhanΒ― aΒ―,vol.37,no.4,pp.441–460, obtain π‘š-polynomials, we also hope that other researchers 2012. areencouragedtoexplorethemandseeiftheycanbeusedin their research.

Conflict of Interests The authors declare that there is no conflict of interests regarding the publication of this paper.

References

[1] M. Krawtchouk, β€œSur une genΒ΄ eralizationΒ΄ des polynomes d’Hermite,” ComptesRendusdel’AcademieΒ΄ des Sciences,vol.189, pp. 620–622, 1929. [2] G. Szego, Orthogonal Polynomials, vol. 23, Colloquium, New York, NY, USA, 1959. [3] G. K. Eagleson, β€œAcharacterization theorem for positive definite sequences on the Krawtchouk polynomials,” The Australian Journal of Statistics,vol.11,pp.29–38,1969. [4] C. F. Dunkl, β€œA Krawtchouk polynomial addition theorem andwreathproductsofsymmetricgroups,”Indiana University Mathematics Journal,vol.25,no.4,pp.335–358,1976. [5] P. Feinsilver and J. Kocik, β€œKrawtchouk polynomials and Krawtchouk matrices,” in Recent Advances in Applied Probabil- ity, R. Baeza-Yates, J. Glaz, H. Gzyl, J. Husler,Β¨ and J. L. Palacios, Eds., pp. 115–141, Springer, New York, NY, USA, 2005. [6]F.J.MacWilliams,N.J.A.Sloane,andJ.-M.Goethals,β€œThe MacWilliams identities for nonlinear codes,” The Bell System Technical Journal,vol.51,pp.803–819,1972. [7] I. Krasikov and S. Litsyn, β€œOn integral zeros of Krawtchouk polynomials,” JournalofCombinatorialTheoryA,vol.74,no.1, pp.71–99,1996. [8] N. Sookoo, β€œGeneralized Krawtchouk polynomials: new prop- erties,” Archivum Mathematicum,vol.36,no.1,pp.9–16,2000. [9] L. Habsieger, β€œInteger zeros of q-Krawtchouk polynomials in classical combinatorics,” Advances in Applied Mathematics,vol. 27, no. 2-3, pp. 427–437, 2001. [10] M. N. Atakishiyev and V. A. Groza, β€œThe quantum algebra π‘ˆπ‘ž(𝑠𝑒2) and π‘ž-Krawtchouk families of polynomials,” Journal of Physics A,vol.37,no.7,pp.2625–2635,2004. [11] P.Delsarte, β€œAnalgebraic approach to the association schemes of coding theory,” Philips Research Reports,no.10,97pages,1973. [12] J. D. Louck, β€œGroup theory of harmonic oscillators in 𝑛- dimensional space,” Journal of Mathematical Physics,vol.6,pp. 1786–1804, 1965. [13]W.Y.C.ChenandJ.D.Louck,β€œThecombinatoricsofaclass of representation functions,” Advances in Mathematics,vol.140, no. 2, pp. 207–236, 1998. Advances in Advances in Journal of Journal of Operations Research Decision Sciences Applied Mathematics Algebra Probability and Statistics Hindawi Publishing Corporation Hindawi Publishing Corporation Hindawi Publishing Corporation Hindawi Publishing Corporation Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 http://www.hindawi.com Volume 2014 http://www.hindawi.com Volume 2014 http://www.hindawi.com Volume 2014 http://www.hindawi.com Volume 2014

The Scientific International Journal of World Journal Differential Equations Hindawi Publishing Corporation Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 http://www.hindawi.com Volume 2014

Submit your manuscripts at http://www.hindawi.com

International Journal of Advances in Combinatorics Mathematical Physics Hindawi Publishing Corporation Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 http://www.hindawi.com Volume 2014

Journal of Journal of Mathematical Problems Abstract and Discrete Dynamics in Complex Analysis Mathematics in Engineering Applied Analysis Nature and Society Hindawi Publishing Corporation Hindawi Publishing Corporation Hindawi Publishing Corporation Hindawi Publishing Corporation Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 http://www.hindawi.com Volume 2014 http://www.hindawi.com Volume 2014 http://www.hindawi.com Volume 2014 http://www.hindawi.com Volume 2014

International Journal of Journal of Mathematics and Mathematical Discrete Mathematics Sciences

Journal of International Journal of Journal of Function Spaces Stochastic Analysis Optimization Hindawi Publishing Corporation Hindawi Publishing Corporation Volume 2014 Hindawi Publishing Corporation Hindawi Publishing Corporation Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 http://www.hindawi.com http://www.hindawi.com Volume 2014 http://www.hindawi.com Volume 2014 http://www.hindawi.com Volume 2014