Unranking Combinations Lexicographically: an Efficient New Strategy Compared with Others Cyann Donnot, Antoine Genitrini, Yassine Herida

Total Page:16

File Type:pdf, Size:1020Kb

Unranking Combinations Lexicographically: an Efficient New Strategy Compared with Others Cyann Donnot, Antoine Genitrini, Yassine Herida Unranking Combinations Lexicographically: an efficient new strategy compared with others Cyann Donnot, Antoine Genitrini, Yassine Herida To cite this version: Cyann Donnot, Antoine Genitrini, Yassine Herida. Unranking Combinations Lexicographically: an efficient new strategy compared with others. 2020. hal-02462764 HAL Id: hal-02462764 https://hal.sorbonne-universite.fr/hal-02462764 Preprint submitted on 31 Jan 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Unranking Combinations Lexicographically: an efficient new strategy compared with others Cyann Donnot1, Antoine Genitrini2, and Yassine Herida1 1 Full-time master student at Sorbonne University 2 Sorbonne University, LIP6. [email protected] Abstract. We propose a comparative study of four algorithms dedi- cated to the lexicographic unranking of combinations. The three first ones are algorithms from the literature. We give some key ideas how to analyze them in average and describe their strengths and weaknesses. We then introduce a new algorithm based on a new strategy inside the classical factorial numeral system (or factoradics). We conclude the pa- per with an experimental study, in particular when n = 10000; k = 5000, our algorithm is 36 (resp. 53) times as fast as our C++ implementation of Matlab’s (resp. Sagemath’s) algorithm. keywords. Unranking Algorithm; Combination; Lexicographic Order; Complexity Analysis. One of the most fundamental combinatorial object is called combination. It consists of a selection of items from a collection. In many enumerating problems it appears either as the main combinatorial structure, or as a core fundamental block because of its simplicity and counting characteristics. In the 60s while resolving some optimization problem about scheduling Lehmer rediscover an important property linking natural numbers and a mixed radius numeral system based on combinations. This relationship gives him the possi- bility to exhibit some greedy approach for a ranking algorithm that transforms (bijectively) a combination into an integer. This numeral system is now com- monly called combinatorial numbers system or combinadics. It is often used for the reverse of Lehmer’s problem: generating the u-th combination (for a given order about the combinations). This approach is substituted to the exhaustive generation once the latter is not possible anymore due to the combinatorial ex- plosion of the number of objects when their sizes increase. In the context of combination, the explosion appears really quickly. This generation strategy of a single element is classically called an unranking method. It is today often used as a basic brick in scheduling problems [18] but also e.g. in software testing [14]. In order to unrank elements one must first define an order over the elements. The one that is usually used is the lexicographic one that can been seen as a generalization of the alphabetical order. The lexicographic order is humanly easy to handle with, and thus has been extensively studied. But, as Ruskey [17, p. 59] mentions, the lexicographic generation is usually not the most efficient, thus a particular care must be taken while unranking in this order. The classical approach for the construction of combinatorial structures pre- senting a recursive decomposition schema consists in taking advantage of this 2 Cyann Donnot, Antoine Genitrini, and Yassine Herida decomposition in order to build a bigger object from a smaller one. The method has been extensively detailed in the famous book of Nijenhuis and Wilf [15]. They did not directly study the example of combinations, but the case of integer compositions is proposed and is not so far from our problem. The method has been then applied generically on decomposable objects in the sense of analytic combinatorics, first in the context of recursive generation [10], and then in the context of unranking approaches [12]. Aside such generic approaches there are several ad hoc algorithms but to the best of our knowledge no practical experiments does exist to determine which one should be used. We thus will start with te recall of three classical algorithms, supported by a revisited average complexity analysis. Then we will describe our new strategy and finally we will com- pare them in some experiments. In Fig. 1 we represent the time effi- Fig. 1: Time (in ms) for unranking a com- ciency of some improved versions of bination, with n = 10000 and k = 0::n 3 of these algorithms, our being de- picted in green. The figure will be described later. But as a foretaste, when n = 10000; k = n=2, our algorithm is experimentally 36 (resp. 53) times as fast as our C++ implementation of Matlab’s (resp. Sagemath’s) actual algorithm. Along the paper, we represent combinations as follows. Definition 1. Let n and k be two integers with 0 ≤ k ≤ n. We represent a com- bination of k elements among n denoted by f0; 1; : : : ; n−1g as a tuple containing k distinct elements increasingly sorted from left to right. For example, let n and k be respectively 5 and 3. The tuples (0; 1; 2) and (0; 2; 4) are combinations of k among n, but (0; 2; 1) and (0; 1; 2; 3) are not. There is another representation by using a 2-letters alphabet, but we do not deal with it through this paper. However we could rewrite the paper in this context also. There are several orders for comparing combinations. In the following we restrict our attention to orders comparing combinations of the same length, i.e. the same number of elements. Definition 2. Let A = (a0; a1; : : : ; ak−1) and B = (b0; b1; : : : ; bk−1) be two dis- tinct combinations. – In the lexicographic order, we say that A is smaller than B if and only if both combination have the same prefix (eventually empty) such that (a0; : : : ; ap−1) = (b0; : : : ; bp−1) and ap < bp. – In the co-lexicographic order, we say that A is smaller than B if and only if the tuple (ak−1; : : : ; a0) is smaller than (bk−1; : : : ; b0) for the lexicographic order. – An order being given such that A is smaller than B, then, for the reverse order, B is smaller that A. Unranking Combinations Lexicographically: an efficient new strategy 3 Definition 3. Let n; k define combinations and A be a combination. For a given n order, the rank u of A belongs to f0; 1;::: k − 1g and is such that A is the u-th smallest element. With these definitions, we can enter the core of the paper organized as follows. Section 1 describes a recursive algorithms solving the lexicographic combination unranking problem. Despite its simplicity due to the approach, the fact it is re- cursive is problematic to handle very big combinations. Then Section 2 describes two classical algorithms based on combinadics. It seems that it is the first time both are compared and the reason why one is better is explained. In Section 3 we enter the context of factoradics, and then describe our new unranking algo- rithm in this numeral system. Finally in Section 4 we compare all algorithms experimentally and give some possibility for really improve the time complexity of all approaches. 1 Unranking through recursion We deal with a combinatorial structure: combinations, that is very well under- stood from a combinatorial sense. Thus while trying to develop an unranking algorithm the first idea consists in developing a recursive algorithm based on the classical recursive generation presented in [15]. Let us directly introduce such an algorithm. Algorithm 1 Recursive Unranking 1: function Rec_Generation(n; k; u) 2: if k = 0 then 1: function Unranking_Rec(n; k; u) 3: return () 2: L := Rec_Generation(n; k; u) 3: return (n − 1 − L[k − 1 − i] for i 4: if n = k then from 0 to k − 1) 5: return (i for i from 0 to k − 1) 6: b := binomial(n − 1; k − 1) 7: if u < b then binomial(n; k) computes the value of n; k 8: R := Rec_Generation append(A; a): appends element a in A; (n − 1; k − 1; u) For i ≥ 0, L[i] is the element of index i in L. 9: append(R; n − 1) In line 3 and 5, the outputs are tuples built 10: return R by comprehension. The simple one in line 5 is 11: else (0; 1; : : : ; k − 1). 12: return Rec_Generation (n − 1; k; u − b) Proposition 1. The function Rec_Generation(n; k; ·) computes the combi- nations for n; k in the reverse co-lexicographic order. Corollary 1. The function Unranking_Rec(n; k; ·) computes the combina- tions for n; k in the lexicographic order. The proposition is proved by induction and the corollary is a direct observation given in [11, p. 47]. 4 Cyann Donnot, Antoine Genitrini, and Yassine Herida In order to analyze the algorithm in details, we are interested in the average number of calls to the function binomial, when u describes the whole range of n integers from 0 to k −1. Ruskey justifies such a measure by supposing the table of all binomial coefficients precomputed, thus each call is equivalent. Later, in Section 4 we will discuss this measure. Let us introduce the sequence un;k computing the cumulative number of calls for the whole range for u. Lemma 1. Let un;k be the cumulative number of calls to binomial while un- n ranking all possible u from 0 to k − 1.
Recommended publications
  • Generalizing Zeckendorf's Theorem to F-Decompositions
    GENERALIZING ZECKENDORF’S THEOREM TO f-DECOMPOSITIONS PHILIPPE DEMONTIGNY, THAO DO, ARCHIT KULKARNI, STEVEN J. MILLER, DAVID MOON, AND UMANG VARMA ABSTRACT. A beautiful theorem of Zeckendorf states that every positive integer can be uniquely decomposed as a sum of non-consecutive Fibonacci numbers fFng, where F1 = 1, F2 = 2 and Fn+1 = Fn + Fn−1. For general recurrences fGng with non-negative coefficients, there is a notion of a legal decomposition which again leads to a unique representation, and the number of sum- mands in the representations of uniformly randomly chosen m 2 [Gn;Gn+1) converges to a normal distribution as n ! 1. We consider the converse question: given a notion of legal decomposition, is it possible to con- struct a sequence fang such that every positive integer can be decomposed as a sum of terms from the sequence? We encode a notion of legal decomposition as a function f : N0 ! N0 and say that if an is in an “f-decomposition”, then the decomposition cannot contain the f(n) terms immediately before an in the sequence; special choices of f yield many well known decompositions (including base-b, Zeckendorf and factorial). We prove that for any f : N0 ! N0, there exists a sequence 1 fangn=0 such that every positive integer has a unique f-decomposition using fang. Further, if f is periodic, then the unique increasing sequence fang that corresponds to f satisfies a linear recurrence relation. Previous research only handled recurrence relations with no negative coefficients. We find a function f that yields a sequence that cannot be described by such a recurrence relation.
    [Show full text]
  • A Robust Software Watermarking for Copyright Protection
    computers & security 28 (2009) 395–409 available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/cose A robust software watermarking for copyright protection Ibrahim Kamela,*, Qutaiba Albluwib aDepartment of Computer Engineering Sharjah University, P.O. Box 27272, United Arab Emirates bSchool of Computing, Queens University, Canada article info abstract Article history: This paper advocates protecting software copyright through hiding watermarks in various Received 18 August 2008 data structures used by the code, e.g., Bþ-trees, R-trees, linked lists, etc. Prior proposals Received in revised form hide the watermarks in dummy data structures, e.g., linked lists and graphs that are 13 January 2009 created, solely for this reason, during the execution of the hosting software. This makes Accepted 30 January 2009 them vulnerable to subtractive attacks, because the attacker can remove the dummy data structures without altering the functionality or the semantic of the software program. We Keywords: argue that hiding watermarks in one or more data structures that are used by the program Information security would make the watermark more robust because disturbing the watermark would affect R-trees the semantic and the functionality of the underlying software. The challenge is that the Watermarking insertion of the watermark should have a minimal effect on the operations and perfor- Multimedia indexes mance of the data structure. Spatial data structures This paper proposes a novel method for watermarking R-tree data structure and its variants. Copyright protection The proposed watermarking technique does not change the values of the stored data objects. It takes advantage of the redundancy in the order of entries inside the R-tree nodes.
    [Show full text]
  • THÈSE DOCTEUR DE L'université DU LUXEMBOURG EN INFORMATIQUE ET DOCTEUR DE L'université LILLE1 EN INFORMATIQUE Malika Mehd
    PhD-FSTC-2011-17 Faculté des Sciences, de la Technologie et de Faculté des Sciences et Technologies de Lille la Communication THÈSE Soutenue le 20/10/2011 à Luxembourg En vue de l’obtention du grade académique de DOCTEUR DE L’UNIVERSITÉ DU LUXEMBOURG EN INFORMATIQUE ET DOCTEUR DE L’UNIVERSITÉ LILLE1 EN INFORMATIQUE par Malika Mehdi née le 10 septembre 1981 à Bejaia PARALLEL HYBRID OPTIMIZATION METHODS FOR PERMUTATION BASED PROBLEMS Jury de thèse Prof. Dr. Pascal Bouvry, directeur de thèse Professeur, Université du Luxembourg Prof. Dr. El-Ghazali Talbi, directeur de thèse Professeur, Université Lille1 Prof. Dr. Nouredine Melab, co-directeur de thèse Professeur, Université Lille1 Prof. Dr. Raymond Bisdorff, président Professeur, Université du Luxembourg Prof. Dr. Enrique Alba, membre Professeur, Université de Malaga Dr. Didier El-Baz, membre HDR, LAAS-CNRS, Toulouse Abstract Solving efficiently large benchmarks of NP-hard permutation-based problems re- quires the development of hybrid methods combining different classes of optimiza- tion methods. Indeed, it is now acknowledged that such methods perform better than traditional optimization methods when used separately. The key challenge is how to find connections between the divergent search strategies used in each class of methods in order to build efficient hybridization strategies. Genetic algorithms (GAs) are very popular population-based metaheuristics based on stochastic evo- lutionary operators. The hybridization of GAs with tree-based exact methods such as Branch-and-Bound is a promising research trend. B&B algorithms are based on an implicit enumeration of the solution space represented as a tree. Our hybridization approach consists in providing a common solution and search space coding and associated search operators enabling an efficient cooperation between the two methods.
    [Show full text]
  • Version 13.0 Release Notes
    Release Notes The tool of thought for expert programming Version 13.0 Dyalog is a trademark of Dyalog Limited Copyright 1982-2011 by Dyalog Limited. All rights reserved. Version 13.0 First Edition April 2011 No part of this publication may be reproduced in any form by any means without the prior written permission of Dyalog Limited. Dyalog Limited makes no representations or warranties with respect to the contents hereof and specifically disclaims any implied warranties of merchantability or fitness for any particular purpose. Dyalog Limited reserves the right to revise this publication without notification. TRADEMARKS: SQAPL is copyright of Insight Systems ApS. UNIX is a registered trademark of The Open Group. Windows, Windows Vista, Visual Basic and Excel are trademarks of Microsoft Corporation. All other trademarks and copyrights are acknowledged. iii Contents C H A P T E R 1 Introduction .................................................................................... 1 Summary........................................................................................................................... 1 System Requirements ....................................................................................................... 2 Microsoft Windows .................................................................................................... 2 Microsoft .Net Interface .............................................................................................. 2 Unix and Linux ..........................................................................................................
    [Show full text]
  • Math Book from Wikipedia
    Math book From Wikipedia PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Mon, 25 Jul 2011 10:39:12 UTC Contents Articles 0.999... 1 1 (number) 20 Portal:Mathematics 24 Signed zero 29 Integer 32 Real number 36 References Article Sources and Contributors 44 Image Sources, Licenses and Contributors 46 Article Licenses License 48 0.999... 1 0.999... In mathematics, the repeating decimal 0.999... (which may also be written as 0.9, , 0.(9), or as 0. followed by any number of 9s in the repeating decimal) denotes a real number that can be shown to be the number one. In other words, the symbols 0.999... and 1 represent the same number. Proofs of this equality have been formulated with varying degrees of mathematical rigour, taking into account preferred development of the real numbers, background assumptions, historical context, and target audience. That certain real numbers can be represented by more than one digit string is not limited to the decimal system. The same phenomenon occurs in all integer bases, and mathematicians have also quantified the ways of writing 1 in non-integer bases. Nor is this phenomenon unique to 1: every nonzero, terminating decimal has a twin with trailing 9s, such as 8.32 and 8.31999... The terminating decimal is simpler and is almost always the preferred representation, contributing to a misconception that it is the only representation. The non-terminating form is more convenient for understanding the decimal expansions of certain fractions and, in base three, for the structure of the ternary Cantor set, a simple fractal.
    [Show full text]
  • The Statistic Pinv for Number System∗
    Applied Mathematics E-Notes, 20(2020), 230-235 c ISSN 1607-2510 Available free at mirror sites of http://www.math.nthu.edu.tw/ amen/ The Statistic Pinv For Number System Fanomezantsoa Patrick Rabarisony, Hery Randriamaroz Received 19 April 2019 Abstract The number of inversions is a statistic on permutation groups measuring the degree to which the entries of a permutation are out of order. We provide a generalization of that statistic by introducing the statistic number of pseudoinversions on the colored permutation groups. The main motivation for studying that statistic is the possibility to use it to define a number system and a numeral system on the colored permutation groups. By means of the statistic number of i-pseudoinversions, we construct our number system, and a bijection between the set of positive integers and the colored permutation groups. 1 Introduction A statistic over a group is a function from that group to the set of nonnegative integers. One of the most studied statistics is the number of inversions, defined by inv := # (i, j) [n]2 i < j, (i) > (j) , 2 j on the symmetric group Sn over [n]. A well-known result is the equidistribution of inv with the statistic major index proved by Foata [3]. Besides, the Lehmer code is based on that statistic. It is a particular way to encode each permutation of n numbers, and an instance of a scheme for numbering permutations. Remark that Vajnovszki provided several permutation codes directly related to the Lehmer code [5]. In this article, we give a generalization of the statistic inv on the colored permutation group in order to create a more general code.
    [Show full text]
  • Zot-Binary: a New Numbering System with an Application on Big-Integer Multiplication
    Journal of Theoretical and Applied Information Technology 10th February 2013. Vol. 48 No.1 © 2005 - 2013 JATIT & LLS. All rights reserved. ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195 ZOT-BINARY: A NEW NUMBERING SYSTEM WITH AN APPLICATION ON BIG-INTEGER MULTIPLICATION 1SHAHRAM JAHANI, 2AZMAN SAMSUDIN 1,2 School of Computer Sciences, Universiti Sains Malaysia,Pulau Penang, Malaysia E-mail: [email protected], [email protected] ABSTRACT In this paper we present a new numbering system with an efficient application on Big-Integer multiplication. The paper starts with an introduction to a new redundant positional numbering system known as “Big-Digit Numbering System” (BDNS). With BDNS, a new non-redundant positional numbering system known as ZOT-Binary is proposed. ZOT-Binary has a low Hamming weight with an average of 23.8% nonzero symbols, and therefore is highly suitable for Big-Integer calculation, especially for Big- Integer multiplication. To harvest such benefit from the ZOT-Binary representation, a new Big-Integer multiplication algorithm, ZOT-CM, which is based on the Classical multiplication algorithm, is proposed. Our result shows that when compared with the Classical multiplication algorithm, ZOT-CM is about 12 times faster for multiplying 128 bits numbers and at least 16 times faster for multiplying numbers that are bigger than 32,000 bits long. Our result also shows that ZOT-CM is about 20 to 3 times faster than Karatsuba multiplication algorithm, for multiplying numbers that are ranging from 128 bits to 32,000 bits long. From the findings, it is clear that ZOT-CM is a valuable addition to Big-Integer multiplication algorithm, and it is also believed that ZOT-Binary representation can benefit many other Big-Integer calculations.
    [Show full text]
  • Floating Point
    Contents Articles Floating point 1 Positional notation 22 References Article Sources and Contributors 32 Image Sources, Licenses and Contributors 33 Article Licenses License 34 Floating point 1 Floating point In computing, floating point describes a method of representing an approximation of a real number in a way that can support a wide range of values. The numbers are, in general, represented approximately to a fixed number of significant digits (the significand) and scaled using an exponent. The base for the scaling is normally 2, 10 or 16. The typical number that can be represented exactly is of the form: Significant digits × baseexponent The idea of floating-point representation over intrinsically integer fixed-point numbers, which consist purely of significand, is that An early electromechanical programmable computer, expanding it with the exponent component achieves greater range. the Z3, included floating-point arithmetic (replica on display at Deutsches Museum in Munich). For instance, to represent large values, e.g. distances between galaxies, there is no need to keep all 39 decimal places down to femtometre-resolution (employed in particle physics). Assuming that the best resolution is in light years, only the 9 most significant decimal digits matter, whereas the remaining 30 digits carry pure noise, and thus can be safely dropped. This represents a savings of 100 bits of computer data storage. Instead of these 100 bits, much fewer are used to represent the scale (the exponent), e.g. 8 bits or 2 A diagram showing a representation of a decimal decimal digits. Given that one number can encode both astronomic floating-point number using a mantissa and an and subatomic distances with the same nine digits of accuracy, but exponent.
    [Show full text]
  • Non-Power Positional Number Representation Systems, Bijective Numeration, and the Mesoamerican Discovery of Zero
    Non-Power Positional Number Representation Systems, Bijective Numeration, and the Mesoamerican Discovery of Zero Berenice Rojo-Garibaldia, Costanza Rangonib, Diego L. Gonz´alezb;c, and Julyan H. E. Cartwrightd;e a Posgrado en Ciencias del Mar y Limnolog´ıa, Universidad Nacional Aut´onomade M´exico, Av. Universidad 3000, Col. Copilco, Del. Coyoac´an,Cd.Mx. 04510, M´exico b Istituto per la Microelettronica e i Microsistemi, Area della Ricerca CNR di Bologna, 40129 Bologna, Italy c Dipartimento di Scienze Statistiche \Paolo Fortunati", Universit`adi Bologna, 40126 Bologna, Italy d Instituto Andaluz de Ciencias de la Tierra, CSIC{Universidad de Granada, 18100 Armilla, Granada, Spain e Instituto Carlos I de F´ısicaTe´oricay Computacional, Universidad de Granada, 18071 Granada, Spain Keywords: Zero | Maya | Pre-Columbian Mesoamerica | Number rep- resentation systems | Bijective numeration Abstract Pre-Columbian Mesoamerica was a fertile crescent for the development of number systems. A form of vigesimal system seems to have been present from the first Olmec civilization onwards, to which succeeding peoples made contributions. We discuss the Maya use of the representational redundancy present in their Long Count calendar, a non-power positional number representation system with multipliers 1, 20, 18× 20, :::, 18× arXiv:2005.10207v2 [math.HO] 23 Mar 2021 20n. We demonstrate that the Mesoamericans did not need to invent positional notation and discover zero at the same time because they were not afraid of using a number system in which the same number can be written in different ways. A Long Count number system with digits from 0 to 20 is seen later to pass to one using digits 0 to 19, which leads us to propose that even earlier there may have been an initial zeroless bijective numeration system whose digits ran from 1 to 20.
    [Show full text]
  • Parallel Branch-And-Bound Revisited for Solving Permutation Combinatorial Optimization Problems on Multi-Core Processors and Coprocessors Rudi Leroy
    Parallel Branch-and-Bound revisited for solving permutation combinatorial optimization problems on multi-core processors and coprocessors Rudi Leroy To cite this version: Rudi Leroy. Parallel Branch-and-Bound revisited for solving permutation combinatorial optimization problems on multi-core processors and coprocessors. Distributed, Parallel, and Cluster Computing [cs.DC]. Université Lille 1, 2015. English. tel-01248563 HAL Id: tel-01248563 https://hal.inria.fr/tel-01248563 Submitted on 27 Dec 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Ecole Doctorale Sciences Pour l’Ingénieur Université Lille 1 Nord-de-France Centre de Recherche en Informatique, Signal et Automatique de Lille (UMR CNRS 9189) Centre de Recherche INRIA Lille Nord Europe Maison de la Simulation Thèse présentée pour obtenir le grade de docteur Discipline : Informatique Parallel Branch-and-Bound revisited for solving permutation combinatorial optimization problems on multi-core processors and coprocessors. Défendue par : Rudi Leroy Novembre 2012 - Novembre 2015 Devant le jury
    [Show full text]
  • Numbers 1 to 100
    Numbers 1 to 100 PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Tue, 30 Nov 2010 02:36:24 UTC Contents Articles −1 (number) 1 0 (number) 3 1 (number) 12 2 (number) 17 3 (number) 23 4 (number) 32 5 (number) 42 6 (number) 50 7 (number) 58 8 (number) 73 9 (number) 77 10 (number) 82 11 (number) 88 12 (number) 94 13 (number) 102 14 (number) 107 15 (number) 111 16 (number) 114 17 (number) 118 18 (number) 124 19 (number) 127 20 (number) 132 21 (number) 136 22 (number) 140 23 (number) 144 24 (number) 148 25 (number) 152 26 (number) 155 27 (number) 158 28 (number) 162 29 (number) 165 30 (number) 168 31 (number) 172 32 (number) 175 33 (number) 179 34 (number) 182 35 (number) 185 36 (number) 188 37 (number) 191 38 (number) 193 39 (number) 196 40 (number) 199 41 (number) 204 42 (number) 207 43 (number) 214 44 (number) 217 45 (number) 220 46 (number) 222 47 (number) 225 48 (number) 229 49 (number) 232 50 (number) 235 51 (number) 238 52 (number) 241 53 (number) 243 54 (number) 246 55 (number) 248 56 (number) 251 57 (number) 255 58 (number) 258 59 (number) 260 60 (number) 263 61 (number) 267 62 (number) 270 63 (number) 272 64 (number) 274 66 (number) 277 67 (number) 280 68 (number) 282 69 (number) 284 70 (number) 286 71 (number) 289 72 (number) 292 73 (number) 296 74 (number) 298 75 (number) 301 77 (number) 302 78 (number) 305 79 (number) 307 80 (number) 309 81 (number) 311 82 (number) 313 83 (number) 315 84 (number) 318 85 (number) 320 86 (number) 323 87 (number) 326 88 (number)
    [Show full text]
  • PARALLEL HYBRID OPTIMIZATION METHODS for PERMUTATION BASED PROBLEMS Malika Mehdi
    PARALLEL HYBRID OPTIMIZATION METHODS FOR PERMUTATION BASED PROBLEMS Malika Mehdi To cite this version: Malika Mehdi. PARALLEL HYBRID OPTIMIZATION METHODS FOR PERMUTATION BASED PROBLEMS. Distributed, Parallel, and Cluster Computing [cs.DC]. Université des Sciences et Tech- nologie de Lille - Lille I, 2011. English. tel-00841962 HAL Id: tel-00841962 https://tel.archives-ouvertes.fr/tel-00841962 Submitted on 5 Jul 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. PhD-FSTC-2011-17 Faculté des Sciences, de la Technologie et de Faculté des Sciences et Technologies de Lille la Communication THÈSE Soutenue le 20/10/2011 à Luxembourg En vue de l’obtention du grade académique de DOCTEUR DE L’UNIVERSITÉ DU LUXEMBOURG EN INFORMATIQUE ET DOCTEUR DE L’UNIVERSITÉ LILLE1 EN INFORMATIQUE par Malika Mehdi née le 10 septembre 1981 à Bejaia PARALLEL HYBRID OPTIMIZATION METHODS FOR PERMUTATION BASED PROBLEMS Jury de thèse Prof . Dr. Pascal Bouvry, directeur de thèse Professeur, Université du Luxembourg Prof. Dr. El-Ghazali Talbi, directeur de thèse Professeur, Université Lille1 Prof. Dr. Raymond Bisdorff, président Professeur, Université du Luxembourg Prof. Dr. Nouredine Melab, président suppléant Professeur, Université Lille1 Prof.
    [Show full text]