Single-Crystal X-Ray Diffraction at Extreme Conditions in Mineral Physics and Material Sciences

Total Page:16

File Type:pdf, Size:1020Kb

Single-Crystal X-Ray Diffraction at Extreme Conditions in Mineral Physics and Material Sciences Single-crystal X-ray diffraction at extreme conditions in mineral physics and material sciences DISSERTATION zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) an der Bayreuther Graduiertenschule für Mathematik und Naturwissenschaften (BayNAT) der Universität Bayreuth vorgelegt von Elena Bykova aus Amursk (Russland) Bayreuth, 2015 This doctoral thesis was prepared at the Bavarian Research Institute of Experimental Geochemistry and Geophysics and the Laboratory of Crystallography of the University of Bayreuth from 03/2011 until 12/2014 and was supervised by Prof. Dr. Leonid Dubrovinsky and Prof. Dr. Natalia Dubrovinskaia. This is a full reprint of the dissertation submitted to obtain academic degree of Doctor of Natural Sciences (Dr. rer. nat.) and approved by the Bayreuth Graduate School of Mathematical and Natural Sciences (BayNAT) of the University of Bayreuth. Date of submission: 23.01.2015 Date of defense: 29.05.2015 Acting director: Prof. Dr. Franz Xaver Schmid Doctoral committee: Prof. Dr. Leonid Dubrovinsky (1st reviewer) Prof. Dr. Sander van Smaalen (2nd reviewer) Prof. Dr. Daniel Frost (chairman) Prof. Dr. Jürgen Senker Zusammenfassung Die Einkristallröntgenstrahlbeugung (X-ray diffraction, XRD) ist eine leistungsfähige und zerstörungsfreie Methode zur eindeutigen Identifizierung kristalliner Phasen, zur Bestimmung ihrer Kristallstrukturen (Gitterparameter, Raumgruppe, fraktionelle Koordinaten und Besetzung der Atome), sowie, falls notwendig, ihrer Phasenzusammensetzung. Die vorliegende Arbeit behandelt die Anwendung der Einkristallröntgenstrahlbeugung in der Hochdruck- Hochtemperatur-Forschung (high pressure high temperature, HPHT) unter Verwendung von laserbeheizten Diamantstempelzellen (diamond anvil cells, DACs), wobei hier auch die methodologischen Aspekte und Arbeitsschritte der Einkristallröntgenstrahlbeugungsexperimente beschrieben werden, also Kristall- bzw. Probenauswahl, Befüllung und Montage der DACs, Durchführung der eigentlichen Experimente, Datenverarbeitung und zuletzt Strukturbestimmung und/oder Strukturverfeinerung. Das große Potential und neuen Anwendungsmöglichkeiten der Hochdruckkristallographie für die Material- und Geowissenschaften werden an verschiedenen Beispielen diskutiert, an Übergangsmetallboriden, Metall-dotierten Borphasen, Silikaten und Oxiden. Im Einzelnen wurden dafür die Kristallstrukturen von Co5B16, MnB4, Al-dotiertem β-Bor, 3+ Knorringit und Fe -haltigem Bridgmanit verfeinert und das Hochdruckverhalten von FeB4, Fe2B7, FexB50 und FeOOH untersucht. Des Weiteren wurden detaillierte strukturelle Untersuchungen an einer Reihe von Hochdruck-Eisenoxiden durchgeführt, die es erlaubten, eine jahrzehntelange Kontroverse zu klären. Die vorliegende Arbeit führte auch zur Entdeckung neuer Phasen, einschließlich dem gemischten Eisenoxid Fe5O7 mit einer sehr ungewöhnlichen Stöchiometrie. Ein Schwerpunkt der hier vorgestellten Arbeit liegt in der Bestimmung der Kristallstrukturen von Al-dotierten, rhomboedrischen β-Bor (AlB44.8(5) oder AlB37.8(5)) und von FexB50. Für Erstere wurden die Positionen und Besetzungen der Zwischengitter-Al- und B-Atome bestimmt. Das Modell von Al-dotiertem β-Bor zur Beschreibung der Fehlordnung ist dem Modell des bekannten SiB30.17C0.35 ähnlich. In FexB50 besetzt das Metall die tetraedrische Position, wobei die Besetzung zwischen 50 und 65% variiert. Ein nächster Themenbereich sind die Kristallstrukturen neuer Übergangsmetallboride, nämlich MnB4, FeB4, Co5B16 und Fe2B7. Die Tetraboride werden allgemein aus Säulen von kantenverknüpften MB12-Polyedern aufgebaut, in denen die Metallatome eindimensionale Ketten bilden. Während die Metall-Metall-Abstände im orthorhombischen FeB4 einheitlich sind, 4 führt in MnB4 die Peierlsverzerrung zur Paarbildung der Mn-Atome und dies zu einer Verringerung der Kristallstruktursymmetrie nach monoklin. Wenn das Metall-Bor-Verhältnis größer ist als 1:4, dann enthalten die Boride nicht nur 12-fach koordinierte Metallatome MB12, sondern auch 10- und 9-fach koordinierte Metallatome (CoB9 in Co5B16, FeB10 in Fe2B7). Aufgrund des Bormangels wird die “Metall”-Packung dichter, was sich nun in gemeinsamen Flächen der Koordinationspolyeder wiederspiegelt. Die für diese Arbeit untersuchten Übergangsmetallboride zeigen kurze B–B Bindungen, welche ihre mechanischen Eigenschaften beeinflussen: das FeB4 und Fe2B7 sind entlang bestimmter kristallographischer Richtungen genauso fest und starr wie Diamant. Die Analyse der Hochdruck- Einkristallröntgenstrahlbeugungsdaten lässt vermuten, dass die Ursache dieser Inkompressibilität in der Steifigkeit der orientierten kurzen B–B Bindungen liegt. Diese einzigartige räumliche Anordnung der Atome befördert FeB4 in die Klasse der superharten Materialien mit einer Nanoeindruckshärte von 62(5) GPa. Die Struktur von FexB50 ist aus B12-Ikosaedern aufgebaut und hat große Hohlräume, wodurch sie effektiver schrumpfen kann als die Bor-Polymorphe (α-, - und -Bor), die ebenfalls chemisch gebundene B12-Ikosaeder enthalten. Die hier gemessenen Daten bestätigen die früheren Beobachtungen zur Komprimierung der Bor-Phasen, dass die intra-ikosaedrischen Bindungen steifer sind als die inter-ikosaedrischen Bindungen. Genau strukturelle Untersuchungen am Granat Knorringit, der bei 26 GPa und 1800 °C in einem Multistempelapparat synthetisiert wurde, zeigen, dass die Zusammensetzung als Mg3(Cr1.58Mg0.21Si0.21)Si3O12 beschrieben werden kann und Knorringit dadurch 21 mol-% von Majorit, dem MgSiO3-Endglied der Mischkristallreihe enthält. Die Verteilung von Eisen im Al-freien, Fe3+-haltigem Mg-Perovskit (Bridgmanit) wurde mittels Einkristallröntgenstrahlbeugung kombiniert mit Mößbauer Spektroskopie bestimmt, die 2+ 3+ chemische Zusammensetzung ist (Mg0.946(17)Fe 0.045(4)Fe 0.011(1))Si0.997(16)O3. Aus der Einkristallröntgenstrahlbeugung konnte gezeigt werden, dass Eisen nicht die Si-Position (die sogenannten B-Sites) besetzt. Die Methode der Hochdruck-Einkristallröntgenstrahlbeugung wurde auch herangezogen, um das Verhalten von FeOOH bei Drücken oberhalb von 70 GPa zu untersuchen. Unter Normalbedingungen besitzt diese Verbindung eine Wasserstoffbrückenbindung entlang von 5 Kanälen, die von verzerrten FeO3(OH)3-Oktaedern gebildet werden. Unterhalb 16 GPa schrumpfen diese Kanäle (und als Folge auch die Wasserstoffbrückenbindung) stärker als die einzelnen Fe–O Bindungen in den Oktaedern; oberhalb 16 GPa schrumpfen beide Bindungen einheitlich. Bei etwa 45 GPa reduziert eine Spin-Überkreuzung in Fe3+ das Elementarzellvolumen drastisch (um etwa 11%) und verursacht eine Symmetrisierung der Wasserstoffbrückenbindungen, was aus der Analyse der interatomaren Abstände in den Fe(O…H)3(OH)3-Gruppen abgeleitet wurde. Eine Symmetrisierung der Wasserstoffbrückenbindungen in Verbindung mit der High-Spin zu Low-Spin Überkreuzung in Fe3+ wurde hier zum ersten Mal mittels Hochdruck-Einkristallröntgenstrahlbeugung nachgewiesen. Die Hochdruck-Hochtemperatur-Einkristallröntgenstrahlbeugung wurde eingesetzt, um nach HPHT-Polymorphen von Fe2O3 und Fe3O4 im Megabar-Druckbereich zu suchen und um das Verhalten der Eisenoxide in plattentektonisch abgetauchten Bändererzen (banded iron formations, BIFs) im unteren Erdmantel zu studieren. Es konnte gezeigt werden, dass oberhalb 29 GPa Fe3O4 die Kristallstruktur von CaTi2O4 annimmt, die bis mindestens 70(1) GPa und 2400(100) K stabil bleibt. Dadurch wurde eine 50-jährige Kontroverse über die Struktur des Fe2O3- Polymorphs, das oberhalb von etwa 50 GPa stabil ist, geklärt. Im Speziellen wurde gezeigt, dass diese Phase eine Doppelperovskit-Typ Struktur in trikliner Symmetrie hat. Darüber hinaus erzwingt die Kompression oberhalb 67 GPa eine Umwandlung zu einer anderen Hochdruckphase mit orthorhombischer Zelle (Raumgruppe Aba2). Diese Phase geht bei Temperaturerhöhung bei etwa 67 GPa in ein HPHT-Fe2O3-Polymorph mit CaIrO3-Struktur (Postperovskit, -Fe2O3) über. Bei Druckentlastung zu 41 GPa und weiterer Temperaturerhöhung bis 1800 K wandelt sich diese Phase dann in die Rh2O3-II Struktur um. Die faszinierendste Beobachtung ist, dass bei Bedingungen des unteren Erdmantels das -Fe2O3 Sauerstoff freigibt und sich weiter zu einer neuen Fe5O7-Verbindung zersetzt. Fe2O3 und Fe3O4 bilden bis zu 85 Gewichts-% der BIFs, die aufgrund der Subduktion lithosphärischer Platten bis in den unteren Erdmantel transportiert werden können. Deshalb kann das Fe2O3 der abgetauchten BIFs als Quelle für ein sauerstoffreiches Fluid im tiefen Erdinneren dienen, mit einer erheblicher Menge an Sauerstoff (bis zu acht Mal die Sauerstoffmenge in der heutiger Atmosphäre!), was zu einer deutlichen Heterogenität in der Sauerstofffugazität in unterschiedlichen Teilen des Erdmantels führt. 6 Summary Single crystal X-ray diffraction (XRD) is a powerful non-destructive method which allows unambiguously identify crystalline phases, determine a crystal structure (unit cell parameters, a space group, atomic coordinates and atomic occupancies) and, if required, a phase composition. This thesis deals with applications of single-crystal XRD in high pressure and high temperature (HPHT) research using laser-heated diamond anvil cells (DACs). The thesis describes methodological aspects of our single-crystal XRD experiments which involve crystals selection, DACs preparation, maintaining experiments, data processing, and structure solutions and/or refinements. We demonstrate a great potential and novel opportunities provided by high- pressure crystallography in materials- and geo-sciences on the examples of studies of transition
Recommended publications
  • Chromite Crystal Structure and Chemistry Applied As an Exploration Tool
    Western University Scholarship@Western Electronic Thesis and Dissertation Repository February 2015 Chromite Crystal Structure and Chemistry applied as an Exploration Tool Patrick H.M. Shepherd The University of Western Ontario Supervisor Dr. Roberta L. Flemming The University of Western Ontario Graduate Program in Geology A thesis submitted in partial fulfillment of the equirr ements for the degree in Master of Science © Patrick H.M. Shepherd 2015 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Geology Commons Recommended Citation Shepherd, Patrick H.M., "Chromite Crystal Structure and Chemistry applied as an Exploration Tool" (2015). Electronic Thesis and Dissertation Repository. 2685. https://ir.lib.uwo.ca/etd/2685 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. Western University Scholarship@Western University of Western Ontario - Electronic Thesis and Dissertation Repository Chromite Crystal Structure and Chemistry Applied as an Exploration Tool Patrick H.M. Shepherd Supervisor Roberta Flemming The University of Western Ontario Follow this and additional works at: http://ir.lib.uwo.ca/etd Part of the Geology Commons This Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in University of Western Ontario - Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. Chromite Crystal Structure and Chemistry Applied as an Exploration Tool (Thesis format: Integrated Article) by Patrick H.M.
    [Show full text]
  • UQ Geology Papers 12 Ns 3
    PAPERS Department of Geology • The University of Queensland VOLUME 12 number 3 Editor: S.H. HALL Zeolites in the Main Range Volcanics, Queensland D.J. DRYSDALE P.264-268 Bracewellite and the origin of "Merumite" D.J. DRYSDALE P.269-277 Perlitic texture and other fracture patterns produced by hydration of glassy rocks D.J. DRYSDALE P.278-285 Lithium aluminium silicate minerals and pollucite from Meldon, Devon and San Piero in Campo, Elba D.J. DRYSDALE P.286-293 Polytype 2H molybdenites with high rhenium contents D.J. DRYSDALE P.294-303 Date of publication: December 1991 ZEOLITES IN THE MAIN RANGE VOLCANICS, QUEENSLAND by D.J. Drysdale ABSTRACT. Amygdaloidal zeolites from the Main Range Volcanics, Queensland, in the collections of the Queensland Museum and the Geology Museum, Queensland University, are dominated by chabazite and natrolite. Stilbite and analcite are the only other species represented. Zeolites are present in a number of amygdaloidal horizons at several levels in the pile and there is no evidence for vertical zonation of species. INTRODUCTION Zeolites present in amygdales in basalt lavas that build up thick piles of more or less constant composition are characteristically distributed in depth related zones that are regional in scale and defined by the incoming and outgoing of marker species. This zonation is interpreted as reflecting heat flow in the lava pile during zeolitization and is supposed to be a measure of regional geothermal gradient. High heat flow, as at mid-ocean ridges and spreading centres in continental environments, is the main factor that controls the nature and extent of regional zonation.
    [Show full text]
  • Pauloabibite, Trigonal Nanbo3, Isostructural with Ilmenite, from the Jacupiranga Carbonatite, Cajati, São Paulo, Brazil
    American Mineralogist, Volume 100, pages 442–446, 2015 Pauloabibite, trigonal NaNbO3, isostructural with ilmenite, from the Jacupiranga carbonatite, Cajati, São Paulo, Brazil LUIZ A.D. MENEZES FILHO1,†, DANIEL ATENCIO2,*, MARCELO B. ANDRADE3, ROBERT T. DOWNS4, MÁRIO L.S.C. CHAVES1, ANTÔNIO W. ROMANO1, RICARDO SCHOLZ5 AND ABA I.C. PERSIANO6 1Instituto de Geociências, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, 31270-901, Belo Horizonte, Minas Gerais, Brazil 2Instituto de Geociências, Universidade de São Paulo, Rua do Lago 562, 05508-080, São Paulo, São Paulo, Brazil 3Instituto de Física de São Carlos, Universidade de São Paulo, Caixa Postal 369, 13560-970, São Carlos, São Paulo, Brazil 4Department of Geosciences, University of Arizona, Tucson, Arizona 85721-0077, U.S.A. 5Departamento de Geologia da Escola de Minas da Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, 35400-000, Minas Gerais, Brazil 6Departamento de Física do Instituto de Ciências Exatas da Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, 31279-901, Belo Horizonte, Minas Gerais, Brazil ABSTRACT Pauloabibite (IMA 2012-090), trigonal NaNbO3, occurs in the Jacupiranga carbonatite, in Cajati County, São Paulo State, Brazil, associated with dolomite, calcite, magnetite, phlogopite, pyrite, pyr- rhotite, ancylite-(Ce), tochilinite, fluorapatite, “pyrochlore”, vigezzite, and strontianite. Pauloabibite occurs as encrustations of platy crystals, up to 2 mm in size, partially intergrown with an unidentified Ca-Nb-oxide, embedded in dolomite crystals, which in this zone of the mine can reach centimeter sizes. Cleavage is perfect on {001}. Pauloabibite is transparent and displays a sub-adamantine luster; it is pinkish brown and the streak is white.
    [Show full text]
  • Guyanaite Cr3+O(OH)
    Guyanaite Cr3+O(OH) c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Orthorhombic. Point Group: 2/m2/m2/m. Very rarely as prismatic crystals, to 0.1 mm; in microcrystalline aggregates; commonly in alluvial grains. Physical Properties: Hardness = n.d. D(meas.) = n.d. D(calc.) = 4.53–4.81 Optical Properties: Semitransparent. Color: Reddish brown, golden brown, greenish brown, green, probably variable with particle size and degree of oxidation; gray with greenish tint in reflected light, with strong red to yellowish brown internal reflections. Streak: Yellow-brown, greenish brown. Optical Class: Biaxial. Pleochroism: In browns. α = n.d. β = n.d. γ = n.d. 2V(meas.) = n.d. Cell Data: Space Group: P nnm. a = 4.857–4.862 b = 4.295–4.314 c = 2.951–2.958 Z=2 X-ray Powder Pattern: Merume River, Guyana. 3.224 (vvs), 2.432 (vs), 1.636 (s), 1.719 (ms), 1.609 (ms), 1.516 (ms), 2.524 (m) Chemistry: (1) (2) (3) Ti2O3 0.86 Al2O3 4.0 1.03 Fe2O3 4.4 1.47 Mn2O3 0.98 V2O3 6.78 Cr2O3 71.7 75.76 89.40 + H2O [14.3] [14.96] 10.60 Total [96.3] [100.00] 100.00 (1) Merume River, Guyana; H2O calculated from stoichiometry, original total given as 96.2%; H2O 8.7% determined by the Penfield method on a separate sample, probably low due to oxidation of Cr with loss of H1+. (2) Outokumpu, Finland; by electron microprobe, average of seven analyses; H2O by difference. (3) CrO(OH). Polymorphism & Series: Trimorphous with bracewellite and grimaldiite.
    [Show full text]
  • Qualification of Thermodynamic Data for Geochemical Modeling of Mineral-Water Interactions in D
    DOC.20070619.0007 QA: QA ANL-WIS-GS-000003 REV 01 June 2007 Qualification of Thermodynamic Data for Geochemical Modeling of Mineral–Water Interactions in Dilute Systems Prepared for: U.S. Department of Energy Office of Civilian Radioactive Waste Management Office of Repository Development 1551 Hillshire Drive Las Vegas, Nevada 89134-6321 Prepared by: Sandia National Laboratories OCRWM Lead Laboratory for Repository Systems 1180 Town Center Drive Las Vegas, Nevada 89144 Under Contract Number DE-AC04-94AL85000 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party’s use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. ANL-WIS-GS-000003 REV 01 June 2007 QA: QA Qualification of Thermodynamic Data for Geochemical Modeling of Mineral–Water Interactions in Dilute Systems ANL-WIS-GS-000003 REV 01 June 2007 ANL-WIS-GS-000003 REV 01 June 2007 Page iii Sandia Scientific Analysis/Calculation National Signature Page/Change History Laboratories 1.
    [Show full text]
  • Solid Solutions of Karelianite and Eskolaite (Slyudyanka Complex, Southern Baikal Area): Genesis and a Possible Petrogenetic Indicator
    Russian Geology and Geophysics © 2019, V.S. Sobolev IGM, Siberian Branch of the RAS Vol. 60, No. 11, pp. 1229–1246, 2019 DOI:10.15372/RGG2019114 Geologiya i Geofizika Solid Solutions of Karelianite and Eskolaite (Slyudyanka Complex, Southern Baikal Area): Genesis and a Possible Petrogenetic Indicator L.Z. Reznitskya, , E.V. Sklyarova, L.F. Suvorovab, I.G. Barasha a Institute of the Earth’s Crust, Siberian Branch of the Russian Academy of Sciences, ul. Lermontova 128, Irkutsk, 664033, Russia b A.P. Vinogradov Institute of Geochemistry, Siberian Branch of the Russian Academy of Sciences, ul. Favorskogo 1a, Irkutsk, 664033, Russia Received 6 March 2019; accepted 22 May 2019 Abstract—A continuous solid-solution series between the end-members eskolaite (98 wt.% Cr2O3) and karelianite (93 wt.% V2O3) has been revealed in Cr–V-bearing rocks of the Slyudyanka metamorphic complex. Chromium and vanadium oxides crystallized as karelianite- eskolaite minerals during regional high-temperature prograde (granulite facies) metamorphism and participated in the formation of other Cr–V and Cr–V-bearing phases. Ferrian karelianite (up to 12 wt.% Fe2O3) and three-component solid solutions Esk12–50Kar45–60Hem6–30 occur in metamorphic rocks that have particular protolith compositions (Fe–Kar) and in later metasomatic rocks ((Cr, V, Fe)2O3). Natural eskolaite and karelianite are discussed in terms of paragenesis, and their crystallization conditions are compared with the conditions of their laboratory synthesis. Keywords: eskolaite, karelianite, solid solution, genesis, synthesis INTRODUCTION regolith (Bogatikov et al., 2001; Mokhov et al., 2007, 2017) and has been often reported from meteorites, mainly carbo- Natural Cr and V oxides of eskolaite (Cr2O3) and kareli- naceous chrondrite or other varieties (Ramdohr, 1977; Ki- anite (V2O3) were discovered in the Outokumpu Cu–Co–Zn mu ra and Ikeda, 1992; Prinz et al., 1994; Greshake and deposit in Finland, which has been known since the 1900s as Bischoff, 1996; Barber and Scott, 2006; Ma et al., 2011; Liu a rich source of Cr–V mineralization.
    [Show full text]
  • Merumite a Complex Assemblage of Chromium Minerals from Guyana
    Merumite A Complex Assemblage of Chromium Minerals from Guyana GEOLOGICAL SURVEY PROFESSIONAL PAPER 887 Prepared in cooperation with the Geological Survey of Guyana MERUMITE A COMPLEX ASSEMBLAGE OF CHROMIUM MINERALS FROM GUYANA r 0 1 mm 0.1 mm 0.1 mm 0.1 mm Photomicrographs of four merumite thin sections illustrating the diversity of mineral composition and structure and the fineness of grain size. Plain transmitted light. UPPER LEFT: Green eskolaite and red-brown guyanaite. UPPER RIGHT: Banded structure of green eskolaite and yellow to brown guyanaite. The very bright polygonal area is a cross section of a quartz crystal. LOWER LEFT : Reddish grimaldiite-mcconnellite aggregate filling LOWER RIGHT : Green eskolaite and yellow-brown guyanaite opening in merumite specimen. showing banded structure. Merumite A Complex Assemblage of Chromium Minerals from Guyana By CHARLES MILTON, D. E. APPLEMAN, M. H. APPLEMAN, E. C. T. CHAD, FRANK CUTTITTA, J. I. DINNIN, E. J. DWORNIK, B. L. INGRAM, and H. J. ROSE, JR. GEOLOGICAL SURVEY PROFESSIONAL PAPER 887 Prepared in cooperation with the Geological Survey of Guyana UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON 1976 UNITED STATES DEPARTMENT OF THE INTERIOR THOMAS S. KLEPPE, Secretary GEOLOGICAL SURVEY V. E. McKelvey, Director Library of Congress Cataloging in Publication Data Main entry under title: Merumite a complex assemblage of chromium minerals from Guyana. (Geological Survey professional paper 887) Bibliography: p. Supt. of Docs, no.: I 19.16:887 1. Merumite Guyana. I. Milton, Charles, 1896- II. Series: United States. Geological Survey. Professional paper 887. QE391.M45M47 549'.7 74-16247 For sale by the Superintendent of Documents, U.S.
    [Show full text]
  • Pressure-Induced Phase Transitions in Sesquioxides
    crystals Review Pressure-Induced Phase Transitions in Sesquioxides Francisco Javier Manjón 1,*, Juan Angel Sans 1 , Jordi Ibáñez 2 and André Luis de Jesús Pereira 3 1 Instituto de Diseño para la Fabricación y Producción Automatizada, MALTA-Consolider Team, Universitat Politècnica de València, 46022 Valencia, Spain; [email protected] 2 Institute of Earth Sciences Jaume Almera, MALTA-Consolider Team, Consell Superior d’Investigacions Científiques (CSIC), 08028 Barcelona, Catalonia, Spain; [email protected] 3 Grupo de Pesquisa de Materiais Fotonicos e Energia Renovável—MaFER, Universidade Federal da Grande Dourados, Dourados 79825-970, MS, Brazil; [email protected] * Correspondence: fjmanjon@fis.upv.es; Tel.: +34-699-133-078 Received: 12 November 2019; Accepted: 26 November 2019; Published: 28 November 2019 Abstract: Pressure is an important thermodynamic parameter, allowing the increase of matter density by reducing interatomic distances that result in a change of interatomic interactions. In this context, the long range in which pressure can be changed (over six orders of magnitude with respect to room pressure) may induce structural changes at a much larger extent than those found by changing temperature or chemical composition. In this article, we review the pressure-induced phase transitions of most sesquioxides, i.e., A2O3 compounds. Sesquioxides constitute a big subfamily of ABO3 compounds, due to their large diversity of chemical compositions. They are very important for Earth and Materials Sciences, thanks to their presence in our planet’s crust and mantle, and their wide variety of technological applications. Recent discoveries, hot spots, controversial questions, and future directions of research are highlighted. Keywords: sesquioxides; high pressure; phase transitions 1.
    [Show full text]
  • The First Find of Cr2o3 Eskolaite Associated with Marble-Hosted Ruby in the Southern Urals and the Problem of Al and Cr Sources
    minerals Article The First Find of Cr2O3 Eskolaite Associated with Marble-Hosted Ruby in the Southern Urals and the Problem of Al and Cr Sources Aleksander Kissin 1,2,*, Irina Gottman 1,2, Sergei Sustavov 2, Valery Murzin 1 and Daria Kiseleva 1 1 A.N. Zavaritsky Institute of Geology and Geochemistry, Ural Branch of Russian Academy of Sciences, Vonsovskogo str., 15, 620016 Ekaterinburg, Russia; [email protected] (I.G.); [email protected] (V.M.); [email protected] (D.K.) 2 Department of Mineralogy, Petrology and Geochemistry, Ural State Mining University, Kuybysheva str.,30, 620144 Ekaterinburg, Russia; [email protected] * Correspondence: [email protected] Received: 16 November 2019; Accepted: 22 January 2020; Published: 24 January 2020 Abstract: The results of the study of eskolaite associated with marble-hosted ruby found for the first time in the Kuchinskoe occurrence (Southern Urals) are presented. Here, eskolaite was located on the surface and near-surface regions of ruby crystals. Eskolaite diagnostics was confirmed by powder X-ray diffraction (URS-55). The morphology and chemical composition of eskolaite and associated ruby was studied using a JSM-6390LV scanning electron microscope and a Cameca SX 100 electron probe microanalyzer. The eskolaite crystals were hexagonal and tabular, up to 0.2 mm in size. Ruby mineralization was formed during prograde and retrograde dynamothermal metamorphism. The eskolaite associated with the prograde stage ruby contained Al2O3 (9.1–23.62 wt %), TiO2 (0.52–9.66 wt %), V2O3 (0.53–1.54 wt %), FeO (0.03–0.1 wt %), MgO (0.05–0.24 wt %), and SiO2 (0.1–0.21 wt %).
    [Show full text]
  • Eskolaite Associated with Diamond from the Udachnaya Kimberlite Pipe, Yakutia, Russia
    American Mineralogist, Volume 93, pages 685–690, 2008 Eskolaite associated with diamond from the Udachnaya kimberlite pipe, Yakutia, Russia ALL A M. LOGVINOV A ,1 RICH ar D WI R TH ,2 NIKOL A I V. SOBOLEV,1 YU R I V. SE ry OTKIN ,1 EMILIya S. YEFI M OV A ,1 CH R I S TINE FLO ss ,3 A ND Lawr ENCE A. Tay LO R 4,* 1Institute of Geology and Mineralogy, Russian Academy of Sciences, Novosibirsk 630090, Russia 2GeoForschungs Zentrum Potsdam, Experimental Geochemistry, Telegrafenberg, D-14482 Potsdam, Germany 3Laboratory of Space Sciences, Washington University, St. Louis, Missouri 63130, U.S.A. 4Earth and Planetary Sciences, University of Tennessee, Knoxville, Tennessee 37996, U.S.A. AB S T ra CT The mineral eskolaite (Cr2O3) has been discovered in association with natural diamond from the Udachnaya pipe in Yakutia, where it is intergrown with an octahedral diamond, mostly as an inclusion in the diamond, but also exposed at its surface. A detailed study was performed on fragments extracted from the outer surface of the diamond, using single-crystal X-ray diffraction (XRD), high-resolution electron microscopy (HRTEM), analytical electron microscopy (AEM), including line-scan and elemental-mapping, EMP, and SIMS. These applied techniques confirmed the nature of the eskolaite with 86.8 wt% Cr2O3 and notable impurities of TiO2 (3.99 wt%), Al2O3 (2.00 wt%), Fe2O3 (5.83 wt%), and MgO (1.11 wt%). Trace elements, including V (4900 ppm), Mn (129 ppm), Zr (56 ppm), and Nb (32 ppm) were also detected. The entire range of REE is just at or below the limits of detection.
    [Show full text]
  • Eskolaite Cr2o3 C 2001-2005 Mineral Data Publishing, Version 1 Crystal Data: Hexagonal
    Eskolaite Cr2O3 c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Hexagonal. Point Group: 32/m. As hexagonal prisms, to 12 mm, showing {1120}, {0001}, {1011}, and {2243}; as thick plates. Physical Properties: Hardness = 8 VHN = 3200 D(meas.) = 5.18 D(calc.) = 5.20 Optical Properties: Opaque, translucent in thin edges. Color: Black to dark green; gray in reflected light, with emerald-green internal reflections. Streak: Pale green. Luster: Vitreous. Optical Class: Uniaxial. Pleochroism: Noted; emerald-green to olive-green. Absorption: Strong. R: (400) 24.5, (420) 23.6, (440) 22.7, (460) 22.1, (480) 22.0, (500) 21.8, (520) 21.5, (540) 21.0, (560) 20.5, (580) 20.1, (600) 19.8, (620) 19.7, (640) 19.6, (660) 19.5, (680) 19.5, (700) 19.5 Cell Data: Space Group: R3c. a = 4.973(15) c = 13.57(4) Z = 6 X-ray Powder Pattern: Outokumpu, Finland. 1.6746 (100), 2.665 (97), 3.630 (96), 2.479 (94), 1.8146 (58), 2.174 (48), 1.4331 (47) Chemistry: (1) SiO2 0.20 Al2O3 0.19 Fe2O3 0.55 Cr2O3 94.13 V2O3 4.58 MnO 0.03 MgO 0.03 H2O 0.10 Total 99.81 (1) Outokumpu, Finland; corresponds to (Cr1.90V0.09Fe0.01)Σ=2.00O3. Mineral Group: Hematite group. Occurrence: In chromium-rich tremolite skarns, metaquartzites, and chlorite veins (Outokumpu, Finland); on greywacke pebbles in a glacial boulder clay deposit (Callowhill Upper, Ireland); as pebbles in streams (Merume River, Guyana); a very rare component in chondrite meteorites. Association: Guyanaite, pyrrhotite, pentlandite, chalcopyrite, pyrite, chromian tremolite, uvarovite, chromium tourmaline, calcite, talc, quartz (Outokumpu, Finland); guyanaite, bracewellite, grimaldiite, mcconnellite, chromian gahnite, pyrophyllite, quartz (Merume River, Guyana).
    [Show full text]
  • Tistarite, Ti2o3, a New Refractory Mineral from the Allende Meteorite
    American Mineralogist, Volume 94, pages 841–844, 2009 LETTER Tistarite, Ti2O3, a new refractory mineral from the Allende meteorite CHI MA* AND GEOR G E R. ROSS M AN Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, U.S.A. ABSTRA C T Tistarite, ideally Ti2O3, is a new member of the corundum-hematite group. It is found as one subhe- dral crystal in a cluster of micrometer-sized refractory grains along with khamrabaevite (TiC), rutile, and corundum crystals within a chondrule from the Allende meteorite. The mean chemical composi- tion determined by electron microprobe analysis is (wt%) Ti2O3 94.94, MgO 2.06, Al2O3 1.50, ZrO2 0.44, FeO 0.24, CaO 0.10, Cr2O3 0.06, sum 99.34. The empirical formula calculated on the basis of 3 3+ – O atoms is (Ti 1.90Mg0.07Al0.04Zr0.01)Σ2.02O3. Tistarite is rhombohedral, R3c; a = 5.158 Å, c = 13.611 Å, V = 313.61 Å3, and Z = 6. Its electron back-scatter diffraction pattern matches that of synthetic Ti O – 2 3 with the R3c structure. The strongest calculated X-ray powder diffraction lines from the synthetic Ti2O3 data are [d spacing in Å (I) hkl]: 3.734 (84) (012), 2.707 (88) (104), 2.579 (90) (110), 2.242 (38) (113), 1.867 (33) (024), 1.703 (100) (116), 1.512 (28) (214), 1.489 (46) (300), 1.121 (20) (226), 0.896 (25) (416). The mineral is named after the composition “Ti” and the word “star,” implying that this new refractory mineral is among the first solids formed in the solar system.
    [Show full text]