Downloaded 09/23/21 08:03 PM UTC 2556 MONTHLY WEATHER REVIEW VOLUME 126 Centrated at the Tropopause
OCTOBER 1998 MORGAN AND NIELSEN-GAMMON 2555 Using Tropopause Maps to Diagnose Midlatitude Weather Systems MICHAEL C. MORGAN Department of Atmospheric and Oceanic Sciences, University of WisconsinÐMadison, Madison, Wisconsin JOHN W. N IELSEN-GAMMON Department of Meteorology, Texas A&M University, College Station, Texas (Manuscript received 23 June 1997, in ®nal form 28 November 1997) ABSTRACT The use of potential vorticity (PV) allows the ef®cient description of the dynamics of nearly balanced at- mospheric ¯ow phenomena, but the distribution of PV must be simply represented for ease in interpretation. Representations of PV on isentropic or isobaric surfaces can be cumbersome, as analyses of several surfaces spanning the troposphere must be constructed to fully apprehend the complete PV distribution. Following a brief review of the relationship between PV and nearly balanced ¯ows, it is demonstrated that the tropospheric PV has a simple distribution, and as a consequence, an analysis of potential temperature along the dynamic tropopause (here de®ned as a surface of constant PV) allows for a simple representation of the upper-tropospheric and lower-stratospheric PV. The construction and interpretation of these tropopause maps, which may be termed ``isertelic'' analyses of potential temperature, are described. In addition, techniques to construct dynamical representations of the lower-tropospheric PV and near-surface potential temperature, which complement these isertelic analyses, are also suggested. Case studies are presented to illustrate the utility of these techniques in diagnosing phenomena such as cyclogenesis, tropopause folds, the formation of an upper trough, and the effects of latent heat release on the upper and lower troposphere.
[Show full text]