Culturable Bacteria in the Hedera Helix Phylloplane
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Culturable Bacteria in the Hedera Helix Phylloplane Vincent Stevens1* , Sofie Thijs1 and Jaco Vangronsveld1,2*
Stevens et al. BMC Microbiology (2021) 21:66 https://doi.org/10.1186/s12866-021-02119-z RESEARCH ARTICLE Open Access Diversity and plant growth-promoting potential of (un)culturable bacteria in the Hedera helix phylloplane Vincent Stevens1* , Sofie Thijs1 and Jaco Vangronsveld1,2* Abstract Background: A diverse community of microbes naturally exists on the phylloplane, the surface of leaves. It is one of the most prevalent microbial habitats on earth and bacteria are the most abundant members, living in communities that are highly dynamic. Today, one of the key challenges for microbiologists is to develop strategies to culture the vast diversity of microorganisms that have been detected in metagenomic surveys. Results: We isolated bacteria from the phylloplane of Hedera helix (common ivy), a widespread evergreen, using five growth media: Luria–Bertani (LB), LB01, yeast extract–mannitol (YMA), yeast extract–flour (YFlour), and YEx. We also included a comparison with the uncultured phylloplane, which we showed to be dominated by Proteobacteria, Actinobacteria, Bacteroidetes, and Firmicutes. Inter-sample (beta) diversity shifted from LB and LB01 containing the highest amount of resources to YEx, YMA, and YFlour which are more selective. All growth media equally favoured Actinobacteria and Gammaproteobacteria, whereas Bacteroidetes could only be found on LB01, YEx, and YMA. LB and LB01 favoured Firmicutes and YFlour was most selective for Betaproteobacteria. At the genus level, LB favoured the growth of Bacillus and Stenotrophomonas, while YFlour was most selective for Burkholderia and Curtobacterium. The in vitro plant growth promotion (PGP) profile of 200 isolates obtained in this study indicates that previously uncultured bacteria from the phylloplane may have potential applications in phytoremediation and other plant-based biotechnologies. -
Polar Actinomycetes and Their Secondary Metabolites
Journal of Natural Sciences Research www.iiste.org ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online) Vol.8, No.10, 2018 Polar Actinomycetes and Their Secondary Metabolites Potjanicha Nopnakorn 1* Pichamon Nopnakorn 2 1.Key Laboratory of Combinatorial Biosynthesis and Drug Discovery , School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China 2.Department of Applied Biological Chemistry, Faculty of Agriculture, Shizuoka University, Shizuoka 422-8529, Japan Abstract In the past decades, extreme environments have become a popular hot spot for scientists and researchers to find novel microorganisms and natural products with biological potential. Actinomycetes are Gram-positive bacteria. It is one of the most important microorganisms that produce various useful secondary metabolites. The novel species of actinomycetes from 2006–2018 were enormously discovered (2,085 species). Among those novel actinomycetes, 64 novel species were isolated from the Arctic, subarctic, and Antarctic regions (an approximate 3 % of novel actinomycetes since 2006). Over 60 % of polar actinomycetes were isolated from soil, followed by sea sediment, and rock. Ten species of actinomycetes were reported to have the ability to produce potential natural products. Most of compounds show antimicrobial activity. Keywords: polar regions, Arctic, subarctic, Antarctic, actinomycetes, natural product 1. Polar Regions The polar regions of the Earth include the regions surrounding geographical poles; the North and the South Poles. The polar regions are covered by ice and snow; floating pack ice (sea ice) in the North Pole and the Antarctic ice sheet in the South Pole. 1.1 Arctic The Arctic is the region surrounding the North Pole, which includes the Arctic Ocean, adjacent seas, parts of Alaska (United States), Finland, Greenland (Kingdom of Denmark), Iceland, Northern Canada (Canada), Norway, Russia and Sweden. -
Genome-Based Taxonomic Classification of the Phylum
ORIGINAL RESEARCH published: 22 August 2018 doi: 10.3389/fmicb.2018.02007 Genome-Based Taxonomic Classification of the Phylum Actinobacteria Imen Nouioui 1†, Lorena Carro 1†, Marina García-López 2†, Jan P. Meier-Kolthoff 2, Tanja Woyke 3, Nikos C. Kyrpides 3, Rüdiger Pukall 2, Hans-Peter Klenk 1, Michael Goodfellow 1 and Markus Göker 2* 1 School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom, 2 Department Edited by: of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Martin G. Klotz, Germany, 3 Department of Energy, Joint Genome Institute, Walnut Creek, CA, United States Washington State University Tri-Cities, United States The application of phylogenetic taxonomic procedures led to improvements in the Reviewed by: Nicola Segata, classification of bacteria assigned to the phylum Actinobacteria but even so there remains University of Trento, Italy a need to further clarify relationships within a taxon that encompasses organisms of Antonio Ventosa, agricultural, biotechnological, clinical, and ecological importance. Classification of the Universidad de Sevilla, Spain David Moreira, morphologically diverse bacteria belonging to this large phylum based on a limited Centre National de la Recherche number of features has proved to be difficult, not least when taxonomic decisions Scientifique (CNRS), France rested heavily on interpretation of poorly resolved 16S rRNA gene trees. Here, draft *Correspondence: Markus Göker genome sequences -
Proposed Minimal Standards for Describing New Genera and Species of the Suborder Micrococcineae
International Journal of Systematic and Evolutionary Microbiology (2009), 59, 1823–1849 DOI 10.1099/ijs.0.012971-0 Proposed minimal standards for describing new genera and species of the suborder Micrococcineae Peter Schumann,1 Peter Ka¨mpfer,2 Hans-Ju¨rgen Busse 3 and Lyudmila I. Evtushenko4 for the Subcommittee on the Taxonomy of the Suborder Micrococcineae of the International Committee on Systematics of Prokaryotes Correspondence 1DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Inhoffenstraße 7B, P. Schumann 38124 Braunschweig, Germany [email protected] 2Institut fu¨r Angewandte Mikrobiologie, Justus-Liebig-Universita¨t, 35392 Giessen, Germany 3Institut fu¨r Bakteriologie, Mykologie und Hygiene, Veterina¨rmedizinische Universita¨t, A-1210 Wien, Austria 4All-Russian Collection of Microorganisms (VKM), G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, RAS, Pushchino, Moscow Region 142290, Russia The Subcommittee on the Taxonomy of the Suborder Micrococcineae of the International Committee on Systematics of Prokaryotes has agreed on minimal standards for describing new genera and species of the suborder Micrococcineae. The minimal standards are intended to provide bacteriologists involved in the taxonomy of members of the suborder Micrococcineae with a set of essential requirements for the description of new taxa. In addition to sequence data comparisons of 16S rRNA genes or other appropriate conservative genes, phenotypic and genotypic criteria are compiled which are considered essential for the comprehensive characterization of new members of the suborder Micrococcineae. Additional features are recommended for the characterization and differentiation of genera and species with validly published names. INTRODUCTION Aureobacterium and Rothia/Stomatococcus) and one pair of homotypic synonyms (Pseudoclavibacter/Zimmer- The suborder Micrococcineae was established by mannella) (Table 1 and http://www.the-icsp.org/taxa/ Stackebrandt et al. -
Evidence for Ecological Flexibility in the Cosmopolitan Genus Curtobacterium
Evidence for Ecological Flexibility in the Cosmopolitan Genus Curtobacterium The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Chase, Alexander B. et al. “Evidence for Ecological Flexibility in the Cosmopolitan Genus Curtobacterium.” Frontiers in Microbiology 7 (2016): n. pag. As Published http://dx.doi.org/10.3389/fmicb.2016.01874 Publisher Frontiers Research Foundation Version Final published version Citable link http://hdl.handle.net/1721.1/106999 Terms of Use Creative Commons Attribution 4.0 International License Detailed Terms http://creativecommons.org/licenses/by/4.0/ ORIGINAL RESEARCH published: 22 November 2016 doi: 10.3389/fmicb.2016.01874 Evidence for Ecological Flexibility in the Cosmopolitan Genus Curtobacterium Alexander B. Chase 1*, Philip Arevalo 2, Martin F. Polz 2, Renaud Berlemont 3 and Jennifer B. H. Martiny 1 1 Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA, USA, 2 Parsons Laboratory for Environmental Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA, 3 Department of Biological Sciences, California State University Long Beach, Long Beach, CA, USA Assigning ecological roles to bacterial taxa remains imperative to understanding how microbial communities will respond to changing environmental conditions. Here we analyze the genus Curtobacterium, as it was found to be the most abundant taxon in a leaf litter community in southern California. Traditional characterization of this taxon predominantly associates it as the causal pathogen in the agricultural crops of dry beans. Therefore, we sought to investigate whether the abundance of this genus was because of its role as a plant pathogen or another ecological role. -
Konstantin Von Gunten
BIOGEOCHEMISTRY OF MEROMICTIC PIT LAKES AND PERMEABLE REACTIVE BARRIERS AT THE CLUFF LAKE URANIUM MINE by Konstantin Von Gunten A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Earth and Atmospheric Sciences University of Alberta © Konstantin Von Gunten, 2019 ABSTRACT Mining generates not only vast amounts of waste rock and tailings but is also responsible for far- reaching contamination of soil, groundwater, and surface water, which often requires remediation. This thesis focused on the biogeochemistry of two types of remediation technologies applied at the decommissioned Cluff Lake uranium (U) mine in Northern Saskatchewan. The first remediation technique is pit lakes from open-pit mining operations. Pits created by mining are left to flood with surface and groundwater to prevent excessive oxidation of exposed rocks and release of contaminants. At Cluff Lake, two such pits exist, the older D-pit and the younger DJX-pit, which are geochemically different. The pits are contaminated with U, arsenic (As), and nickel (Ni) and were previously described as meromictic. It was found that in the D-pit, meromixis stability, pH conditions, and contaminant distribution were controlled by Fe cycling. In the DJX-pit, two chemoclines were characterized, both being linked to sharp U and Ni concentration gradients. Meromixis was stabilized by calcium (Ca) carbonate dissolution and precipitation. It was found that aluminum oxyhydroxide colloids might play an important role in contaminant removal. The role of colloids in contaminant sequestration and their accumulation in sediments was further investigated. The most common colloidal particles found in the pits consisted of Ca-O, Fe-O, and Ca-S-O. -
Nocardia Seriolae~GCF 002093935
Bifidobacterium_pseudolongum~GCF_002282915.1@NZ_CP022544=Bacteria-Actinobacteria-Actinobacteria-Bifidobacteriales-Bifidobacteriaceae-Bifidobacterium-Bifidobacterium_pseudolongum Bifidobacterium_animalis~GCF_000817045.1@NZ_CP010433=Bacteria-Actinobacteria-Actinobacteria-Bifidobacteriales-Bifidobacteriaceae-Bifidobacterium-Bifidobacterium_animalis Bifidobacterium_sp.|AGR2158~GCF_000424225.1@NZ_AUJM01000017=Bacteria-Actinobacteria-Actinobacteria-Bifidobacteriales-Bifidobacteriaceae-Bifidobacterium-Bifidobacterium_sp. 0,999 Bifidobacterium_angulatum|DSM20098+JCM7096~GCF_000156635.1@NZ_GG663535=Bacteria-Actinobacteria-Actinobacteria-Bifidobacteriales-Bifidobacteriaceae-Bifidobacterium-Bifidobacterium_angulatum Bifidobacterium_longum_subsp._longum|GT15~GCF_000772485.1@NZ_CP006741=Bacteria-Actinobacteria-Actinobacteria-Bifidobacteriales-Bifidobacteriaceae-Bifidobacterium-Bifidobacterium_longum-Bifidobacterium_longum_subsp._longum Bifidobacterium_bifidum|BGN4~GCF_000265095.1@NC_017999=Bacteria-Actinobacteria-Actinobacteria-Bifidobacteriales-Bifidobacteriaceae-Bifidobacterium-Bifidobacterium_bifidum Gardnerella_vaginalis|JCP7276~GCF_000414685.1@NZ_KE348520=Bacteria-Actinobacteria-Actinobacteria-Bifidobacteriales-Bifidobacteriaceae-Gardnerella-Gardnerella_vaginalis Gardnerella_vaginalis|JCP8481A~GCF_000414465.1@NZ_KE346810=Bacteria-Actinobacteria-Actinobacteria-Bifidobacteriales-Bifidobacteriaceae-Gardnerella-Gardnerella_vaginalis Gardnerella_vaginalis~GCF_001563665.1@NZ_KQ961877=Bacteria-Actinobacteria-Actinobacteria-Bifidobacteriales-Bifidobacteriaceae-Gardnerella-Gardnerella_vaginalis