Standard Profile Catalogue Interactive April 2015.Cdr

Total Page:16

File Type:pdf, Size:1020Kb

Standard Profile Catalogue Interactive April 2015.Cdr Standard Profile Catalogue April 2015= = = Introduction Synopsis This Hulamin Extrusions Standard Profile Catalogue lists the range of standard dies available at the time of going to press. Range The range of extrusions available is constantly changing and enquiries for shapes not listed can be made through any of our sales offices. Please also refer to our website, www.hulaminextrusions.co.za for the latest version of this catalogue. Shape All dimensions are expressed in millimeters (mm). Fully dimensioned die drawings are available from any one of our sales offices which can provide complete details of any section required. Mass All profile masses are expressed in kilograms per metre (kg/m). = = Hulamin Extrusions Hulamin Extrusions has a proud record of extrusion supply Hulamin Extrusion's customer base covers all the major both locally and throughout the world. Our commitment is to market segments in the Southern African market, extending build a reputation with our customers for quality and service. into the demanding engineering markets within the United Kingdom, Europe and North America. Company Profile In Southern Africa Hulamin Extrusions are the leaders in The aluminium extrusion business of Hulamin Extrusions was developing extrusions for a diverse range of markets which founded 40 years ago by Alcan. design products and solutions using the benefits of extruded aluminium. Today Hulett Extrusions have production plants in Olifantsfontein, Pietermaritzburg and a sales office in Cape Quality from Start to Finish Town. Our expertise and reputation emanates from our diverse shareholder background which includes Hulamin Extrusions operates a quality management system approved to ISO 9001:2008 and dimensional tolerances to EN « Alcan - the founding company. 755. This system allows quality management from an initial « Huletts Corporation - who acquired the majority contract review through to product shipment. Laboratory shareholding from Alcan in 1974. facilities are also available to assist with quality assurance « Tongaat Hulett - Huletts Corporation merged with the and any necessary metallurgical testing. Tongaat Group in 1981 and the name was changed to Hulett Aluminium in 1982. Alcan subsequently sold its remaining Hulamin Extrusions also boast the prestigious ISO 26% shareholding and Hulett Aluminium became a wholly 14001:2004 Environmental Management Systems owned subsidiary of Tongaat Hulett in 1986. accreditation, proudly looking after our environment and « Hydro Aluminium Extrusions - one of the world's leading promoting the recycling of aluminium and other process extruders became a shareholder in the extrusion division waste. during the period 1997 to 2008. « Hulamin Extrusions - in June 2007 Hulamin listed on the Johannesburg Stock Exchange and subsequently Hulett- Hydro Extrusions changed its name to Hulamin Extrusions. « In 2008 Hulamin acquired the Hydro Aluminium shareholding to become the sole shareholder of Hulamin Extrusions. = = Contents How to order 5 The Properties of Aluminium 6 Alloys 7 Technical Grade 11 Manufacturing Limits 11 Dimensions 12 Lengths 12 General 12 Forms of Corrosion 13 Corrosion Resistance in Different Environments 14 Surface Treatment 14 Angles Type 1 15 Type 2 16 Type 3 16 Type 4 17 Type 5 19 Type 6 20 Type 13 20 Channels Type 1 21 Type 2 24 Type 3 24 Type 4 25 Type 5 25 Type 7 25 Type 11 26 Extruded Rods 27 Extruded Tubes 28 Flat Bars Type 1 31 Type 2 33 Type 3 34 Square Bars 35 Hexagonal Bars 35 Rectangular Hollows 36 Rectangular Oval Hollows 38 Square Hollows 39 I - Sections 41 Tees Type 1 42 Type 2 43 Z - Sections 43 Engineering Data for Structural Shapes 44 Angle Type 1 44 Type 2 47 Type 3 48 Type 4 49 Type 5 53 Type 6 54 Channel Type 1 55 Type 2 59 Type 3 60 = Type 4 & 5 61 I - Sections 62 Tees Type 1 63 Type 2 64 Index 65 = Hulamin Extrusions Standard Profile Catalogue April 2015 4 How to order Essential information required for entry of enquiries or orders Complete specifications: « alloy/condition « drawing number/die number « part number where applicable « lengths « special tolerances « finishing requirements - painting and anodising (type, colour and micron thickness of anodising) whilst the exact finishing and anodising perimeters are shown, the price for painting/anodising might be based on a minimum finishing perimeter « fabrication related specification details to ensure material conforms to detailed requirements Additional information: « End use: Brief detail on end use of material « Delivery requirements: State specific delivery requirements Packing Unless otherwise specified on the order, normal Hulamin Extrusions packing methods will be used. Shipping tolerances Extruded products will, within practical limits, be supplied in the number of pieces ordered. Unless otherwise stated, orders for production by Hulamin Extrusions will be subject to a mass or piece quantity tolerance of ± 10%. If over-shipment is not permissible the order shall be endorsed “Do not over-ship mass” (or “Pieces” as is applicable) in which case an under-shipment of 10% may be supplied. Supply of an exact number of pieces or other shipping tolerances closer than those stated will be subject to enquiry, and may incur a price premium. Other requirements Orders should be clearly detailed with any special requirements. Minimum acceptable quantities per item The process is such that a minimum length of extrusion emerges from the extrusion cycle. This results in certain minimum quantities being readily produced. All enquiries will be handled by our sales offices who will advise on minimum quantities. A price premium is applied to smaller orders. Masses The masses shown for sections in this catalogue are for guidance and may vary slightly according to the alloy and the dimensional accuracy achieved when produced and within the permissible tolerances. = = 5 April 2015 Hulamin Extrusions Standard Profile Catalogue The Properties of Aluminium Aluminium has a unique and unbeatable combination of pro- Corrosion resistance perties that make it a versatile, highly usable and an attractive A thin layer of oxide is formed when exposed to air. This pro- construction material. vides very good protection against corrosion even in corrosive environments. This layer can be further strengthened by sur- Mass face treatments such as anodising or powder coating. 3 Aluminium is a light metal with a density of 2,700 kg/m , one 3 third that of steel. (8,400 kg/m ) Conductivity The thermal and electrical conductivities are excellent, even Strength when compared with copper. Furthermore, an aluminium Aluminium is strong with a tensile strength between 70 and conductor has only half the weight of an equivalent copper 700 MPa, depending on the alloy and manufacturing process. conductor. Extrusions of the right alloy and design can be as strong as structural steel. Thermal Conductivity Aluminium thermal conductivity is half that of the equivalent Elasticity sized copper element (8 900 kg/m3), but has a density (2 700 The Young's modulus for aluminium (E=69 000 MPa) is a third kg/m3) of less than a third of that of the copper element. The that of steel. This means that the moment of inertia has to equivalent aluminium element therefore comes at less than be three times as great for an aluminium extrusion to achieve half the price and is much easier to handle because of the the same deflection as a steel profile. light weight. Formability Linear expansion Aluminium has good formability in both hot and cold Aluminium has a relatively high coefficient of linear expan- condition, a characteristic that is used in full in the extrusion sion compared to other metals. This should be taken into process. Aluminium can also be cast, drawn and rolled. account at the design stage to compensate for differences in expansion. Machining Aluminium is very easy to machine. Ordinary fabrication Non-toxic equipment (saws and drills) and machining equipment (lathes Aluminium is non-toxic and is therefore highly suitable for and milling machines) can be used. the preparation and storage of food. Joining Reflectivity Aluminium can be joined using all the normal methods avail- Aluminium is a good reflector of both light and heat. able such as welding, brazing, adhesive bonding and riveting. Aluminium’s physical properties compared to other common construction materials. Aluminium 6063 Copper Steel 371 Plastic Strength / Breaking strength (MPa) 225 250 400 50 Ductility / Expansion (%) 10 to 24 25 20 25 Elasticity E, Young’s modulus (MPa) 69 000 125 000 210 000 3 000 3 Density (kg/m ) 2 700 8 900 7 800 1 400 o Melting point ( C) 600 to 655 1 080 1 500 80 6 Working temperature range (x 10 / m) -250 to 150 -200 to 300 -50 to 500 -50 to 80 Electrical conductivity m/Ohm-mm2 35 55 7 - Heat conductivity (W/mK) 200 400 76 0,15 o Coefficient of linear expansion x 10-6/ C 23 17 12 60 to 100 Non-magnetic Yes Yes No Yes Weldable Yes Yes Yes Yes = = Hulamin Extrusions Standard Profile Catalogue April 2015 6 Alloys Technical Information Alloy Nomenclature Alloy Series Main alloying constituent Important: 1xxx Aluminium, 99.0% minimum and greater The four-digit system of alloy nomenclature used by 2xxx Copper Hulamin Extrusions, in common with the Aluminium 3xxx Manganese Federation, uses a block number to indicate the main 4xxx Silicon alloying constituents. 5xxx Magnesium 6xxx Magnesium and Silicon 7xxx Zinc, Magnesium and/or Copper Alloy Designations Alloy EN Equivalent Previous German Equivalent 1070A Al 99,7 Al 99,7 6005A Al SiMg (A) AlMgSi 0,7 6061 Al
Recommended publications
  • The Processing and Characterisation of Recycled Ndfeb Based Magnets
    The Processing and Characterisation of Recycled NdFeB based Magnets By Salahadin Muhammed Ali Adrwish A thesis submitted to the University of Birmingham for the degree of Doctor of Philosphy Supervisors Prof. I.R. Harris Dr. A.J. Williams School of Metallurgy and materials University of Birmingham B15 2TT University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. CONTENTS Acknowledgement List of abbreviations Synopsis Chapter One 1.0 Aims of the Project 1 Chapter Two 2.0 Commercial use of NdFeB magnets 5 2.1 Development of NdFeB-type magnets 5 2. 2 Global NdFeB market 6 2.3 Major NdFeB producers 8 2.4 Applications 12 2.5 Factors affecting NdFeB supply and demand 14 2.5.1 IT sector 14 2.5.2 Global price of Dy and Nd 16 2.5.3 Environmental considerations 18 Chapter Three 3.0 Detailed aspects of NdFeB-type magnets recycling 22 3.1 Introduction 22 3.2 Introduction 22 3.3 Processing of recycled NdFeB over the years 25 3.3.1 Recycling of NdFeB magnets 26 3.3.2 Recycling of machine (internal) waste (sludge) 27
    [Show full text]
  • Isothermes Kurzzeitermüdungsverhalten Der
    i N Osama Khalil u2Mg1,5 C l A ISOTHERMES KURZZEITERMÜDUNGS- VERHALTEN DER HOCHWARMFESTEN ALUMINIUM-KNETLEGIERUNG 2618A verhalten von (AlCu2Mg1,5Ni) SCHRIFTENREIHE DES INSTITUTS FÜR ANGEWANDTE MATERIALIEN BAND 34 Isothermes Kurzzeitermüdungs O. KHALIL Osama Khalil Isothermes Kurzzeitermüdungsverhalten der hochwarm- festen Aluminium-Knetlegierung 2618A (AlCu2Mg1,5Ni) Schriftenreihe des Instituts für Angewandte Materialien Band 34 Karlsruher Institut für Technologie (KIT) Institut für Angewandte Materialien (IAM) Eine Übersicht über alle bisher in dieser Schriftenreihe erschienenen Bände finden Sie am Ende des Buches. Isothermes Kurzzeitermüdungs- verhalten der hochwarmfesten Aluminium-Knetlegierung 2618A (AlCu2Mg1,5Ni) von Osama Khalil Dissertation, Karlsruher Institut für Technologie (KIT) Fakultät für Maschinenbau Tag der mündlichen Prüfung: 15. Januar 2014 Impressum Karlsruher Institut für Technologie (KIT) KIT Scientific Publishing Straße am Forum 2 D-76131 Karlsruhe KIT Scientific Publishing is a registered trademark of Karlsruhe Institute of Technology. Reprint using the book cover is not allowed. www.ksp.kit.edu This document – excluding the cover – is licensed under the Creative Commons Attribution-Share Alike 3.0 DE License (CC BY-SA 3.0 DE): http://creativecommons.org/licenses/by-sa/3.0/de/ The cover page is licensed under the Creative Commons Attribution-No Derivatives 3.0 DE License (CC BY-ND 3.0 DE): http://creativecommons.org/licenses/by-nd/3.0/de/ Print on Demand 2014 ISSN 2192-9963 ISBN 978-3-7315-0208-1 DOI 10.5445/KSP/1000040485 Isothermes Kurzzeitermüdungsverhalten der hochwarmfesten Aluminium-Knetlegierung 2618A (AlCu2Mg1,5Ni) Zur Erlangung des akademischen Grades Doktor der Ingenieurwissenschaften an der Fakultät für Maschinenbau des Karlsruher Institut für Technologie (KIT) genehmigte Dissertation von Dipl.-Ing.
    [Show full text]
  • Aluminium Level 2 2019 CES Edupack
    Level 2 Age-hardening wrought Al-alloys The 2000 and 7000 series age -hardening aluminum alloys are the backbone of the aerospace industry. The 6000 series has lower strength but is more easily extruded: it is used for marine and ground transport systems. THE MATERIAL The high -strength aluminum alloys rely on age -hardening: a sequence of heat treatment steps that causes the precipitation of a nano-scale dispersion of intermetallics that impede dislocation motion and impart strength. This can be as high as 700 MPa giving them a strength-to-weight ratio exceeding even that of the strongest steels. This record describes for the series of wrought Al alloys that rely on age-hardening requiring a solution heat treatment followed by quenching and ageing. This is recorded by adding TX to the series number, where X is a number between 0 and 8 that records the state of heat treatment. They are listed below using the IADS designations (see Technical notes for details).2000 series: Al with 2 to 6% Cu -- the oldest and most widely used aerospace series.6000 series: Al with up to 1.2% Mg and 1.3% Si -- medium strength extrusions and forgings.7000 series: Al with up to 8% Zn and 3% Mg -- the Hercules of aluminum alloys, used for high strength aircraft structures, forgings and sheet. Certain special alloys also contain silver. So this record, like that for the non-age hardening alloys, is broad, encompassing all of these. COMPOSITION 2000 series: Al + 2 to 6% Cu + Fe, Mn, Zn and sometimes Zr 6000 series: Al + up to 1.2%Mg + 0.25% Zn + Si, Fe a nd Mn 7000 series: Al + 4 to 9 % Zn + 1 to 3% Mg + Si, Fe, Cu and occasionally Zr and Ag GENERAL PROPERTIES Density 2500 - 2900 kg/m^3 Price *1.
    [Show full text]
  • Case File Copy
    NTS 31493 NASA CR-121221 CASE FILE COPY CHARACTERIZATION OF THE MECHANICAL AND PHYSICAL PROPERTIES OF TD-NiCr (Ni-20Cr-2ThO2) ALLOY SHEET by L. J. Fritz, W. P. Koster, and R. E. Taylor* METCUT RESEARCH ASSOCIATES INC. *THERMOPHYSICAL PROPERTIES RESEARCH CENTER prepared for NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NASA Lewis Research Center Contract NAS3-15558 1 Report No. 2. Government Accession No. 3. Recipient's Catalog No. NASA CR- 12 1221 4. Title and Subtitle 5. Report Date Characterization of the Mechanical and Physical Properties of TD-NiCr (Ni-20Cr-2ThO2 ) Alloy 6. Performing Organization Code Sheet 7. Authof(s) 8. Performing Organization Report No. L. J. Fritz- W. P. Koster, and R. E. Taylor 10. Work Unit No. 9. Performing Organization Name and Address Metcut Research Associates Inc. 11. Contract or Grant No. 3980 Rosslyn Drive NAS3-15558 Cincinnati, OH 45209 13. Type of Report and Period Covered 12. Sponsoring Agency Name and Address National Aeronautics and Space Administration 14. Sponsoring Agency Code Washington, D.C. 20546 15. Supplementary Notes Project Manager, John D. Whittenberger, Materials and Structures Division, NASA Lewis Research Center, Cleveland, OH 16. Abstract Sheets of TD-NiCr processed using techniques developed to produce uniform material were tested to supply mechanical and physical property data. Two heats each of 0. 025 and 0. 051 cm thick sheet were tested. Mechanical properties evaluated included tensile, modulus of elasticity, Poisson's Ratio, compression, creep-rupture, creep strength, bearing strength, shear strength, sharp notch and fatigue strength. Test temperatures covered the range from ambient to 1589K. Physical properties were also studied as a function of temperature.
    [Show full text]
  • Establishing a Correlation Between Interfacial Microstructures and Corro- Sion Initiation Sites in Al/Cu Joints by SEM-EDS and AFM-SKPFM
    This may be the author’s version of a work that was submitted/accepted for publication in the following source: Sarvghad Moghaddam, Madjid, Parvizi, R., Davoodi, Ali, Haddad- Sabzevar, Mohsen, & Imani, Amin (2014) Establishing a correlation between interfacial microstructures and corro- sion initiation sites in Al/Cu joints by SEM-EDS and AFM-SKPFM. Corrosion Science, 79, pp. 148-158. This file was downloaded from: https://eprints.qut.edu.au/95930/ c Consult author(s) regarding copyright matters This work is covered by copyright. Unless the document is being made available under a Creative Commons Licence, you must assume that re-use is limited to personal use and that permission from the copyright owner must be obtained for all other uses. If the docu- ment is available under a Creative Commons License (or other specified license) then refer to the Licence for details of permitted re-use. It is a condition of access that users recog- nise and abide by the legal requirements associated with these rights. If you believe that this work infringes copyright please provide details by email to [email protected] License: Creative Commons: Attribution-Noncommercial-No Derivative Works 2.5 Notice: Please note that this document may not be the Version of Record (i.e. published version) of the work. Author manuscript versions (as Sub- mitted for peer review or as Accepted for publication after peer review) can be identified by an absence of publisher branding and/or typeset appear- ance. If there is any doubt, please refer to the published source. https://doi.org/10.1016/j.corsci.2013.10.039 Accepted Manuscript Establishing a Correlation between Interfacial Microstructures and Corrosion Initiation Sites in Al/Cu Joints by SEM-EDS and AFM-SKPFM M.
    [Show full text]
  • 191002 Knowledge: K1.02 [2.7/2.9] Qid: P6 (B1806)
    NRC Generic Fundamentals Examination Question Bank--PWR May 2020 TOPIC: 191002 KNOWLEDGE: K1.02 [2.7/2.9] QID: P6 (B1806) Density input is normally used in steam flow instruments to convert __________ into __________. A. mass flow rate; volumetric flow rate B. volumetric flow rate; mass flow rate C. mass flow rate; differential pressure D. differential pressure; volumetric flow rate ANSWER: B. TOPIC: 191002 KNOWLEDGE: K1.02 [2.7/2.9] QID: P305 (B2906) If the steam pressure input to a density-compensated steam flow instrument fails high, the associated flow rate indication will... A. decrease, because the density input has decreased. B. increase, because the density input has decreased. C. decrease, because the density input has increased. D. increase, because the density input has increased. ANSWER: D. -1- Sensors and Detectors NRC Generic Fundamentals Examination Question Bank--PWR May 2020 TOPIC: 191002 KNOWLEDGE: K1.02 [2.7/2.9] QID: P406 (B1606) The density compensating input to a steam flow instrument is used to convert volumetric flow rate into… A. velocity flow rate. B. gallons per minute. C. mass flow rate. D. differential flow rate. ANSWER: C. -2- Sensors and Detectors NRC Generic Fundamentals Examination Question Bank--PWR May 2020 TOPIC: 191002 KNOWLEDGE: K1.02 [2.7/2.9] QID: P1212 If the steam pressure input to a density-compensated steam flow instrument fails low, the indicated flow rate will... A. increase, because the density input has increased. B. decrease, because the density input has increased. C. increase, because the density input has decreased. D. decrease, because the density input has decreased.
    [Show full text]
  • Machining of Aluminum and Aluminum Alloys / 763
    ASM Handbook, Volume 16: Machining Copyright © 1989 ASM International® ASM Handbook Committee, p 761-804 All rights reserved. DOI: 10.1361/asmhba0002184 www.asminternational.org MachJning of Aluminum and AlumJnum Alloys ALUMINUM ALLOYS can be ma- -r.. _ . lul Tools with small rake angles can normally chined rapidly and economically. Because be used with little danger of burring the part ," ,' ,,'7.,','_ ' , '~: £,~ " ~ ! f / "' " of their complex metallurgical structure, or of developing buildup on the cutting their machining characteristics are superior ,, A edges of tools. Alloys having silicon as the to those of pure aluminum. major alloying element require tools with The microconstituents present in alumi- larger rake angles, and they are more eco- num alloys have important effects on ma- nomically machined at lower speeds and chining characteristics. Nonabrasive con- feeds. stituents have a beneficial effect, and ,o IIR Wrought Alloys. Most wrought alumi- insoluble abrasive constituents exert a det- num alloys have excellent machining char- rimental effect on tool life and surface qual- acteristics; several are well suited to multi- ity. Constituents that are insoluble but soft B pie-operation machining. A thorough and nonabrasive are beneficial because they e,,{' , understanding of tool designs and machin- assist in chip breakage; such constituents s,~ ,.t ing practices is essential for full utilization are purposely added in formulating high- of the free-machining qualities of aluminum strength free-cutting alloys for processing in alloys. high-speed automatic bar and chucking ma- Strain-hardenable alloys (including chines. " ~ ~p /"~ commercially pure aluminum) contain no In general, the softer ailoys~and, to a alloying elements that would render them lesser extent, some of the harder al- c • o c hardenable by solution heat treatment and ,p loys--are likely to form a built-up edge on precipitation, but they can be strengthened the cutting lip of the tool.
    [Show full text]
  • Aluminium Alloys Chemical Composition Pdf
    Aluminium alloys chemical composition pdf Continue Alloy in which aluminum is the predominant lye frame of aluminum welded aluminium alloy, manufactured in 1990. Aluminum alloys (or aluminium alloys; see spelling differences) are alloys in which aluminium (Al) is the predominant metal. Typical alloy elements are copper, magnesium, manganese, silicon, tin and zinc. There are two main classifications, namely casting alloys and forged alloys, both further subdivided into heat-treatable and heat-free categories. Approximately 85% of aluminium is used for forged products, e.g. laminated plates, foils and extrusions. Aluminum cast alloys produce cost-effective products due to their low melting point, although they generally have lower tensile strength than forged alloys. The most important cast aluminium alloy system is Al–Si, where high silicon levels (4.0–13%) contributes to giving good casting features. Aluminum alloys are widely used in engineering structures and components where a low weight or corrosion resistance is required. [1] Alloys composed mostly of aluminium have been very important in aerospace production since the introduction of metal leather aircraft. Aluminum-magnesium alloys are both lighter than other aluminium alloys and much less flammable than other alloys containing a very high percentage of magnesium. [2] Aluminum alloy surfaces will develop a white layer, protective of aluminum oxide, if not protected by proper anodization and/or dyeing procedures. In a wet environment, galvanic corrosion can occur when an aluminum alloy is placed in electrical contact with other metals with a more positive corrosion potential than aluminum, and an electrolyte is present that allows the exchange of ions.
    [Show full text]
  • Corrosion Behaviour of Aluminum Alloys Weldments: a Literature Survey
    6 III March 2018 http://doi.org/10.22214/ijraset.2018.3464 International Journal for Research in Applied Science & Engineering Technology (IJRASET) ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 6.887 Volume 6 Issue III, March 2018- Available at www.ijraset.com Corrosion Behaviour of Aluminum Alloys Weldments: A Literature Survey Vilas Hans1, Prabdeep Singh Bajwa2 1, 2 Department of Mechanical Engineering, LRIET, Solan, Himachal Pradesh, India Abstract: Aluminum alloys of 5xxx series and their welded joints show good resistance to corrosion in sea water. Metallic corrosion takes place in marine environments. In the ship manufacturing industries, welding is used to join the different aluminum parts of the ship structure, these weldments are generally remaining dip in saline water of sea or remain in salt foggy atmosphere, which gets eroded early when comes in contact with salt-water solution. A literature survey has been carried out to understanding of welding and corrosion of aluminum alloys. Keywords: 5xxx Aluminum alloys; marine corrosion; welding. I. INTRODUCTION Metallic corrosion takes place in wet environments when the chemical or electrochemical reaction between a metal and the surrounding environment results in the oxidation of the metal. For corrosion to occur, electrons are produced by the anodic oxidation of the metal must be consumed in a cathodic reaction. These two processes can take place on different parts of a metal structure providing that there is a conducting path for the electrons between the two, and a continuous electrolyte path for ion transport. Aluminium is highly reactive, with a negative standard electrode potential of - 1660mV, and is therefore unstable in the presence of water.
    [Show full text]
  • Aluminum Alloy Weldability: Identification of Weld Solidification Cracking Mechanisms Through Novel Experimental Technique and Model Development
    Dipl.-Ing. Nicolas Coniglio Aluminum Alloy Weldability: Identifi cation of Weld Solidifi cation Cracking Mechanisms through Novel Experimental Technique and Model Development BAM-Dissertationsreihe • Band 40 Berlin 2008 Die vorliegende Arbeit entstand an der BAM Bundesanstalt für Materialforschung und -prüfung. Impressum Aluminum Alloy Weldability: Identifi cation of Weld Solidifi cation Cracking Mechanisms through Novel Experimental Technique and Model Development 2008 Herausgeber: BAM Bundesanstalt für Materialforschung und -prüfung Unter den Eichen 87 12205 Berlin Telefon: +49 30 8104-0 Telefax: +49 30 8112029 E-Mail: [email protected] Internet: www.bam.de Copyright © 2008 by BAM Bundesanstalt für Materialforschung und -prüfung Layout: BAM-Arbeitsgruppe Z.64 ISSN 1613-4249 ISBN 978-3-9812354-3-2 Aluminum Alloy Weldability: Identification of Weld Solidification Cracking Mechanisms through Novel Experimental Technique and Model Development Dissertation zur Erlangung des akademischen Grades Doktor-Ingenieur (Dr.-Ing.) genehmigt durch die Fakultät für Maschinenbau der Otto-von-Guericke-Universität Madgeburg am 02.06.08 vorgelegte Dissertation von Dipl.-Ing. Nicolas Coniglio Thesis Committee: Prof. Dr.-Ing. A. Bertram Prof. Dr.-Ing. T. Böllinghaus Prof. C.E. Cross Prof. S. Marya Date of Examination: 23 October 2008 Abstract Abstract The objective of the present thesis is to make advancements in understanding solidification crack formation in aluminum welds, by investigating in particular the aluminum 6060/4043 system. Alloy 6060 is typical of a family of Al-Mg-Si extrusion alloys, which are considered weldable only when using an appropriate filler alloy such as 4043 (Al-5Si). The effect of 4043 filler dilution (i.e. weld metal silicon content) on cracking sensitivity and solidification path of Alloy 6060 welds are investigated.
    [Show full text]
  • Mechanical Milling of Co-Rich Melt-Spun Sm-Co Alloys
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Mechanical & Materials Engineering, Engineering Mechanics Dissertations & Theses Department of Spring 5-2010 MECHANICAL MILLING OF CO-RICH MELT-SPUN SM-CO ALLOYS Farhad Reza Golkar-Fard University of Nebraska - Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/engmechdiss Part of the Engineering Mechanics Commons, and the Mechanical Engineering Commons Golkar-Fard, Farhad Reza, "MECHANICAL MILLING OF CO-RICH MELT-SPUN SM-CO ALLOYS" (2010). Engineering Mechanics Dissertations & Theses. 6. https://digitalcommons.unl.edu/engmechdiss/6 This Article is brought to you for free and open access by the Mechanical & Materials Engineering, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Engineering Mechanics Dissertations & Theses by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. MECHANICAL MILLING OF CO-RICH MELT-SPUN SM-CO ALLOYS by FARHAD REZA GOLKAR-FARD A THESIS Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Master Science Major: Engineering Mechanics Under the Supervision of Professor Jeffrey E. Shield Lincoln, Nebraska May, 2010 MECHANICAL MILLING OF CO-RICH MELT-SPUN SM-CO ALLOYS Farhad Reza Golkar-Fard, M.S UNIVERSITY OF NEBRASKA, 2010 Advisor: Jeffrey E. Shield Rare-earth, high-energy permanent magnets are currently the best performing permanent magnets used today. The discovery of single domain magnetism in 1950’s ultimately led to the development of nanocomposite magnets which had superior magnetic properties. Previous work has shown that mechanical milling (MM) effectively generates nanoscale structures in Sm-Co-based alloys.
    [Show full text]
  • International Alloy Designations and Chemical Composition Limits for Wrought Aluminum and Wrought Aluminum Alloys
    International Alloy Designations and Chemical Composition Limits for Wrought Aluminum and Wrought Aluminum Alloys 1525 Wilson Boulevard, Arlington, VA 22209 www.aluminum.org With Support for On-line Access From: Aluminum Extruders Council Australian Aluminium Council Ltd. European Aluminium Association Japan Aluminium Association Alro S.A, R omania Revised: January 2015 Supersedes: February 2009 © Copyright 2015, The Aluminum Association, Inc. Unauthorized reproduction and sale by photocopy or any other method is illegal . Use of the Information The Aluminum Association has used its best efforts in compiling the information contained in this publication. Although the Association believes that its compilation procedures are reliable, it does not warrant, either expressly or impliedly, the accuracy or completeness of this information. The Aluminum Association assumes no responsibility or liability for the use of the information herein. All Aluminum Association published standards, data, specifications and other material are reviewed at least every five years and revised, reaffirmed or withdrawn. Users are advised to contact The Aluminum Association to ascertain whether the information in this publication has been superseded in the interim between publication and proposed use. CONTENTS Page FOREWORD ........................................................................................................... i SIGNATORIES TO THE DECLARATION OF ACCORD ..................................... ii-iii REGISTERED DESIGNATIONS AND CHEMICAL COMPOSITION
    [Show full text]