Genomic Aberrations Associated with the Pathophysiological Mechanisms of Neurodevelopmental Disorders

Total Page:16

File Type:pdf, Size:1020Kb

Genomic Aberrations Associated with the Pathophysiological Mechanisms of Neurodevelopmental Disorders cells Review Genomic Aberrations Associated with the Pathophysiological Mechanisms of Neurodevelopmental Disorders Toshiyuki Yamamoto Institute of Medical Genetics, Tokyo Women’s Medical University, Tokyo 162-8666, Japan; [email protected] Abstract: Genomic studies are increasingly revealing that neurodevelopmental disorders are caused by underlying genomic alterations. Chromosomal microarray testing has been used to reliably detect minute changes in genomic copy numbers. The genes located in the aberrated regions identified in patients with neurodevelopmental disorders may be associated with the phenotypic features. In such cases, haploinsufficiency is considered to be the mechanism, when the deletion of a gene is related to neurodevelopmental delay. The loss-of-function mutation in such genes may be evaluated using next-generation sequencing. On the other hand, the patients with increased copy numbers of the genes may exhibit different clinical symptoms compared to those with loss-of-function mutation in the genes. In such cases, the additional copies of the genes are considered to have a dominant negative effect, inducing cell stress. In other cases, not the copy number changes, but mutations of the genes are responsible for causing the clinical symptoms. This can be explained by the dominant negative effects of the gene mutations. Currently, the diagnostic yield of genomic alterations using comprehensive analysis is less than 50%, indicating the existence of more subtle alterations or genomic changes in the untranslated regions. Copy-neutral inversions and insertions may be related. Hence, better analytical algorithms specialized for the detection of such alterations are required for Citation: Yamamoto, T. Genomic higher diagnostic yields. Aberrations Associated with the Pathophysiological Mechanisms of Keywords: nonallelic homologous recombination (NAHR); contiguous gene deletion syndrome; Neurodevelopmental Disorders. Cells 2021, 10, 2317. https://doi.org/ classical microdeletion syndrome; genome disease; diagnostic yield; exome sequencing 10.3390/cells10092317 Academic Editors: Koh-ichi Nagata and Orly Reiner 1. Introduction Neurodevelopmental disorders are defined as a concept that includes a wide range Received: 26 July 2021 of symptoms such as intellectual disability, developmental retardation, communication Accepted: 3 September 2021 disorders, autism spectrum disorders, attention deficit hyperactivity disorder, learning Published: 4 September 2021 disabilities, and motor disorders such as tics [1,2]. Cerebral palsy, epilepsy, and psychiatric disorders are also understood as peripheral diseases with the same origin. In other words, Publisher’s Note: MDPI stays neutral it is easy to think of the pathophysiology of many of these symptoms if we consider with regard to jurisdictional claims in that some disorder of the synaptic function of the central nervous system causes various published maps and institutional affil- combinations of symptoms as clinical symptoms [3]. iations. Since the completion of the Human Genome Project in 2003 (Gibbs), comprehensive genome analysis technology using the primary sequence information of the human genome has advanced, and comprehensive genome copy number analysis using microarrays and comprehensive genome analysis using next-generation sequencers have become possible. Copyright: © 2021 by the author. Genomic medicine using these analysis techniques has revealed the causes of neurode- Licensee MDPI, Basel, Switzerland. velopmental disorders in children one after another [4,5]. Although the diagnostic yields This article is an open access article in the chromosome G banding method was approximately 4%, which was the only com- distributed under the terms and prehensive analysis method before the Human Genome Project, now, the diagnostic rate conditions of the Creative Commons has increased to about 30–40% [6]. Because the genomic research of neurodevelopmental Attribution (CC BY) license (https:// disorders is still ongoing, the involvement of the genomic alteration in neurodevelopmental creativecommons.org/licenses/by/ disorders is not yet fully understood. 4.0/). Cells 2021, 10, 2317. https://doi.org/10.3390/cells10092317 https://www.mdpi.com/journal/cells Cells 2021, 10, 2317 2 of 11 Here, the genetic factors of neurodevelopmental disorders and the current state of diagnosis by genomic medicine are outlined. 2. Chromosomal Deletions Genomic copy number variations often contribute to neurodevelopmental disorders, indicating that many genes important for neurogenesis are copy-number-dependent. In general, 22q11.2 microdeletion (MIM #192430) is the most frequently observed genomic alteration, occurring in one in three-thousand live births [7]. The 22q11.2 microdeletion is caused by nonallelic homologous recombination (NAHR) facilitated by the low-copy repeats (LCRs) present at both ends of the deletions (Figure1). Similar to the 22q11.2 microdeletion, several other microdeletions are mediated by the LCRs (Table1). Due to Cells 2021, 10, 2317 2 of 11 these characteristics of the genome, microdeletion syndromes resulting from the adjacent LCRs are sometimes called “genome diseases”. Furthermore, the microdeletion syndromes, identified before the Human Genome Project, are characterized by prominent phenotypic featuresnostic rate and has are increased relatively to easy about to 30–40% diagnose [6]. [ 8Because]. Therefore, the genomic these areresearch called of “classical neurode- microdeletionvelopmental disorders syndromes”. is still ongoing, the involvement of the genomic alteration in neu- rodevelopmentalFor instance, patientsdisorders with is not 22q11.2 yet fully microdeletion understood. syndrome often present with tetral- ogy ofHere, Fallot, the as genetic a congenital factors heart of neurodevelopmental disease (Table1). Additionally, disorders patientsand the withcurrent Williams- state of Beurendiagnosis syndrome by genomic (MIM medicine #194050) are and outlined. Smith-Magenis syndrome (MIM #182290) also present with congenital heart diseases associated with supraclavicular stenosis and ven- tricular2. Chromosomal septal defect, Deletions respectively. In addition to congenital heart diseases, patients with theseGenomic syndromes copy exhibit number distinctive variations features, often cont whichribute provide to neurodevelopmental important clues for disorders, clinical diagnosis.indicating Furthermore,that many genes the variableimportant phenotypes for neurogenesis in these are disease copy-number-dependent. groups are caused by In thegeneral, deletion 22q11.2 of multiple microdeletion adjacent (MIM genes, #192430) leading is to the the most term frequently “continuous observed gene deletiongenomic syndrome”.alteration, occurring in one in three-thousand live births [7]. The 22q11.2 microdeletion is caused“Classical by nonallelic microdeletion homologous syndromes” recombination or “genome (NAHR) diseases” facilitated are often by the associated low-copy with re- variouspeats (LCRs) levels present of neurodevelopmental at both ends of the abnormalities, deletions (Figure because 1). Similar the deleted to the region 22q11.2 contains micro- genesdeletion, related several to neurodevelopment, other microdeletions which are m areediated copy-number-dependent. by the LCRs (Table 1). Furthermore, Due to these acharacteristics condition where of the heterozygous genome, microdeletion deletions or syndromes loss of homologous resulting from alleles the occur adjacent and LCRs the remainingare sometimes functional called copy “genome of the genediseases”. is incapable Furthermore, of producing the microdeletion a sufficient gene syndromes, product requiredidentified for before maintaining the Human the normal Genome function Project, is are referred characterized to as haploinsufficiency. by prominent phenotypic Haploin- sufficiencyfeatures and of genesare relatively related easy to neurodevelopment to diagnose [8]. Therefore, is an essential these mechanismare called “classical in classical mi- microdeletion syndromes. crodeletion syndromes”. Figure 1. Schematic representation of the mechanism of nonallelic homologous recombination. Figure 1. Schematic representation of the mechanism of nonallelic homologous recombination. De- Deletions and duplications of the regions of interest (grey rectangles) can be caused by nonallelic letions and duplications of the regions of interest (grey rectangles) can be caused by nonallelic ho- homologousmologous recombination recombination triggered triggered by by the the presence presence of of low-copy low-copy repeats repeats (LCRs). (LCRs). Table 1. Classical microdeletion syndromes and reciprocal duplications. Chromosomal Deletions Duplications Regions Microdeletion Microduplication Main Clinical Features Main Clinical Features Syndromes Syndromes 22q11.2 deletion Tetralogy of Fallot, language delay, 22q11.2 duplication 22q11.2 ADHD syndrome distinctive facial features syndrome Williams- Supraventricular stenosis, Speech delay and 7q11.23 duplication 7q11.23 Beuren syn- intellectual disability, distinctive autism spectrum syndrome drome facial features behaviors Intellectual disability, Prader-Willi Developmental delay, hypotonia, 15q11 15q11 duplication autism spectrum syndrome obesity behaviors Cells 2021, 10, 2317 3 of 11 Table 1. Classical microdeletion syndromes and reciprocal duplications. Chromosomal Deletions Duplications Regions Microdeletion Microduplication Main Clinical Features Main Clinical Features Syndromes Syndromes
Recommended publications
  • The University of Chicago Genetic Services Laboratories
    The University of Chicago Genetic Services Laboratories 5841 S. Maryland Ave., Rm. G701, MC 0077, Chicago, Illinois 60637 Toll Free: (888) UC GENES (888) 824 3637 Local: (773) 834 0555 FAX: (773) 702 9130 [email protected] dnatesting.uchicago.edu. CLIA #: 14D0917593 CAP #: 18827-49 Next Generation Sequencing Panel for Early Infantile Epileptic Encephalopathy Clinical Features and Molecular Genetics: Early infantile epileptic encephalopathy (EIEE), also known as Ohtahara syndrome, is a severe form of epilepsy characterized by frequent tonic spasms with onset in the first months of life. EEG reveals suppression-burst patterns, characterized by high- voltage bursts alternating with almost flat suppression phases. Seizures are medically intractable with evolution to West syndrome at 3-6 months of age and then Lennox-Gastaut syndrome at 1-3 years of age. EIEE represents approximately 1% of all epilepsies occuring in children less than 15 years of age (1). Patients have severe developmental delay and poor prognosis. The diagnostic workup of EIEEs remains challenging because of frequent difficulties in defining etiologies. Acquired structural abnormalities like hypoxic-ischemic insults and isolated cortical malformations, which represent the most common causes of epileptic encelphalopathy in infancy should be excluded first (2). Our EIEE Panel includes sequence analysis of all 15 genes listed below, and deletion/duplication analysis of the 12 genes listed in bold below. Early Infantile Epileptic Encephalopathy Panel ARHGEF9 KCNQ2 PNKP SLC2A1 ARX MAGI2 SCN1A SPTAN1 CDKL5 PCDH19 SCN2A STXBP1 GRIN2A PLCB1 SLC25A22 Gene / Condition Clinical Features and Molecular Pathology ARHGEF9 The ARHGEF9 gene encodes the protein collybistin, which is a brain-specific protein involved in EIEE8 inhibitory synaptogenesis (3).
    [Show full text]
  • The Mutability and Repair of DNA
    B.Sc (Hons) Microbiology (CBCS Structure) C-7: Molecular Biology Unit 2: Replication of DNA The Mutability and Repair of DNA Dr. Rakesh Kumar Gupta Department of Microbiology Ram Lal Anand College New Delhi - 110021 Reference – Molecular Biology of the Gene (6th Edition) by Watson et. al. Pearson education, Inc Principles of Genetics (8th Edition) by D. Peter Snustad, D. Snustad, Eldon Gardner, and Michael J. Simmons, Wiley publications Replication errors and their repair The Nature of Mutations: • Transitions: A kind of the simplest mutation which is pyrimidine-to-pyrimidine and purine-to- purine substitutions such as T to C and A to G • Transversions: The other kind of mutation which are pyrimidine-to-purine and purine-to- pyrimidine substitutions such as T to A or G and ATransitions to C or T. Transversions 8 types 4 types Synonymous substitution Non synonymous substitution • Point mutations: Mutations that alter a single nucleotide Other kinds of mutations (which cause more drastic changes in DNA): • Insertions • Deletions • Gross rearrangements of Thesechromosome mutations might be caused by insertion by transposon or by aberrant action of cellular recombination processes. Mutation • Substitution, deletion, or insertion of a base pair. • Chromosomal deletion, insertion, or rearrangement. Somatic mutations occur in somatic cells and only affect the individual in which the mutation arises. Germ-line mutations alter gametes and passed to the next generation. Mutations are quantified in two ways: 1. Mutation rate = probability of a particular type of mutation per unit time (or generation). 2. Mutation frequency = number of times a particular mutation occurs in a population of cells or individuals.
    [Show full text]
  • Genetic Causes.Pdf
    1 September 2015 Genetic causes of childhood apraxia of speech: Case‐based introduction to DNA, inheritance, and clinical management Beate Peter, Ph.D., CCC‐SLP Assistant Professor Dpt. of Speech & Hearing Science Arizona State University Adjunct Assistant Professor AG Dpt. of Communication Sciences & Disorders ATAGCT Saint Louis University T TAGCT Affiliate Assistant Professor Dpt. of Speech & Hearing Sciences University of Washington 1 Disclosure Statement Disclosure Statement Dr. Peter is co‐editor of a textbook on speech development and disorders (B. Peter & A. MacLeod, Eds., 2013), for which she may receive royalty payments. If she shares information about her ongoing research study, this may result in referrals of potential research participants. She has no financial interest or related personal interest of bias in any organization whose products or services are described, reviewed, evaluated or compared in the presentation. 2 Agenda Topic Concepts Why we should care about genetics. Case 1: A sporadic case of CAS who is missing a • Cell, nucleus, chromosomes, genes gene. Introduction to the language of genetics • From genes to proteins • CAS can result when a piece of DNA is deleted or duplicated Case 2: A multigenerational family with CAS • How the FOXP2 gene was discovered and why research in genetics of speech and language disorders is challenging • Pathways from genes to proteins to brain/muscle to speech disorder Case 3: One family's quest for answers • Interprofessional teams, genetic counselors, medical geneticists, research institutes • Early signs of CAS, parent education, early intervention • What about genetic testing? Q&A 3 “Genetic Causes of CAS: Case-Based Introduction to DNA, Inheritance and Clinical Management,” Presented by: Beate Peter, PhD, CCC-SLP, September 29, 2015, Sponsored by: CASANA 2 Why should you care about genetics? 4 If you are a parent of a child with childhood apraxia of speech … 5 When she was in preschool, He doesn’t have any friends.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Mutation by Dr. Ty C.M. Hoffman
    Mutation by Dr. Ty C.M. Hoffman Slide 1 Transcription features a one-to-one correspondence between DNA nucleotides in the gene and RNA nucleotides in the RNA transcript. However, the four nucleotide types used in RNA are insufficient to individually specify all twenty biological amino acids during translation. Instead, a sequence of three mRNA nucleotides (collectively called a codon) specifies a single amino acid. Since there are three nucleotide positions within a codon, and each position can be occupied by any of four types of nucleotide, there are sixty-four possible codons. This is more than enough to specify the twenty biological amino acids. Slide 2 The genetic code is universal in that all organisms (with very few exceptions) use the same code for specifying amino acids with mRNA codons. The genetic code is redundant in that more than one codon can specify the same amino acid. This is because there are more types of codons than there are types of amino acids used by organisms. The genetic code is not ambiguous, however, because each codon always specifies the same amino acid. Four of the codons serve special functions. One operates as a start codon (signaling initiation of translation), and three codons operate as stop codons (signaling the termination of translation). Slide 3 Mutation is a random change in the DNA sequence of nucleotides. Mutation can be purely accidental (by a mistake made during DNA replication), or mutation can result from exposure of DNA to a mutagen (something that causes mutation). Mutations can be classified into two major types: • Base-pair substitutions do not change the number of nucleotides in the DNA, because one base pair is substituted for another.
    [Show full text]
  • Bio 102 Practice Problems Genetic Code and Mutation
    Bio 102 Practice Problems Genetic Code and Mutation Multiple choice: Unless otherwise directed, circle the one best answer: 1. Choose the one best answer: Beadle and Tatum mutagenized Neurospora to find strains that required arginine to live. Based on the classification of their mutants, they concluded that: A. one gene corresponds to one protein. B. DNA is the genetic material. C. "inborn errors of metabolism" were responsible for many diseases. D. DNA replication is semi-conservative. E. protein cannot be the genetic material. 2. Choose the one best answer. Which one of the following is NOT part of the definition of a gene? A. A physical unit of heredity B. Encodes a protein C. Segement of a chromosome D. Responsible for an inherited characteristic E. May be linked to other genes 3. A mutation converts an AGA codon to a TGA codon (in DNA). This mutation is a: A. Termination mutation B. Missense mutation C. Frameshift mutation D. Nonsense mutation E. Non-coding mutation 4. Beadle and Tatum performed a series of complex experiments that led to the idea that one gene encodes one enzyme. Which one of the following statements does not describe their experiments? A. They deduced the metabolic pathway for the synthesis of an amino acid. B. Many different auxotrophic mutants of Neurospora were isolated. C. Cells unable to make arginine cannot survive on minimal media. D. Some mutant cells could survive on minimal media if they were provided with citrulline or ornithine. E. Homogentisic acid accumulates and is excreted in the urine of diseased individuals. 5.
    [Show full text]
  • Table of Contents Neurology.Org/Ng  Online ISSN: 2376-7839 Volume 3, Number 3, June 2017
    Table of Contents Neurology.org/ng Online ISSN: 2376-7839 Volume 3, Number 3, June 2017 THE HELIX e151 HSP and deafness: Neurocristopathy caused by e157 Collaboration, workshops, and symposia a novel mosaic SOX10 mutation S.M. Pulst S. Donkervoort, D. Bharucha-Goebel, P. Yun, Y. Hu, P. Mohassel, A. Hoke, W.M. Zein, D. Ezzo, A.M. Atherton, A.C. Modrcin, M. Dasouki, A.R. Foley, and C.G. Bönnemann EDITORIAL e159 ARHGEF9 mutations cause a specific recognizable X-linked intellectual disability e155 Genetic analysis of age at onset variation in syndrome spinocerebellar ataxia type 2 P. Striano and F. Zara K.P. Figueroa, H. Coon, N. Santos, L. Velazquez, Companion article, e148 L.A. Mederos, and S.M. Pulst ARTICLES e158 Previously unrecognized behavioral phenotype in e148 ARHGEF9 disease: Phenotype clarification and Gaucher disease type 3 genotype-phenotype correlation M. Abdelwahab, M. Potegal, E.G. Shapiro, and M.Alber,V.M.Kalscheuer,E.Marco,E.Sherr, I. Nestrasil G. Lesca, M. Till, G. Gradek, A. Wiesener, C. Korenke, S. Mercier, F. Becker, T. Yamamoto, S.W. Scherer, C.R. Marshall, S. Walker, U.R. Dutta, A.B. Dalal, e160 Intramyocellular lipid excess in the mitochondrial V. Suckow, P. Jamali, K. Kahrizi, H. Najmabadi, and disorder MELAS: MRS determination at 7T B.A. Minassian S. Golla, J. Ren, C.R. Malloy, and J.M. Pascual Editorial, e159 e149 Clinicopathologic and molecular spectrum of CLINICAL/SCIENTIFIC NOTES RNASEH1-related mitochondrial disease e147 Camptocormia and shuffling gait due to a novel E. Bugiardini, O.V. Poole, A. Manole, A.M. Pittman, MT-TV mutation: Diagnostic pitfalls A.
    [Show full text]
  • Supplemental Information
    Supplemental information Dissection of the genomic structure of the miR-183/96/182 gene. Previously, we showed that the miR-183/96/182 cluster is an intergenic miRNA cluster, located in a ~60-kb interval between the genes encoding nuclear respiratory factor-1 (Nrf1) and ubiquitin-conjugating enzyme E2H (Ube2h) on mouse chr6qA3.3 (1). To start to uncover the genomic structure of the miR- 183/96/182 gene, we first studied genomic features around miR-183/96/182 in the UCSC genome browser (http://genome.UCSC.edu/), and identified two CpG islands 3.4-6.5 kb 5’ of pre-miR-183, the most 5’ miRNA of the cluster (Fig. 1A; Fig. S1 and Seq. S1). A cDNA clone, AK044220, located at 3.2-4.6 kb 5’ to pre-miR-183, encompasses the second CpG island (Fig. 1A; Fig. S1). We hypothesized that this cDNA clone was derived from 5’ exon(s) of the primary transcript of the miR-183/96/182 gene, as CpG islands are often associated with promoters (2). Supporting this hypothesis, multiple expressed sequences detected by gene-trap clones, including clone D016D06 (3, 4), were co-localized with the cDNA clone AK044220 (Fig. 1A; Fig. S1). Clone D016D06, deposited by the German GeneTrap Consortium (GGTC) (http://tikus.gsf.de) (3, 4), was derived from insertion of a retroviral construct, rFlpROSAβgeo in 129S2 ES cells (Fig. 1A and C). The rFlpROSAβgeo construct carries a promoterless reporter gene, the β−geo cassette - an in-frame fusion of the β-galactosidase and neomycin resistance (Neor) gene (5), with a splicing acceptor (SA) immediately upstream, and a polyA signal downstream of the β−geo cassette (Fig.
    [Show full text]
  • Truncating Mutations in Severe Intellectual Disability
    European Journal of Human Genetics (2014) 22, 289–292 & 2014 Macmillan Publishers Limited All rights reserved 1018-4813/14 www.nature.com/ejhg SHORT REPORT Expanding the phenotype of IQSEC2 mutations: truncating mutations in severe intellectual disability Frederic Tran Mau-Them1, Marjolaine Willems*,1, Beate Albrecht2, Elodie Sanchez1, Jacques Puechberty1, Sabine Endele3, Anouck Schneider4, Nathalie Ruiz Pallares4,5, Chantal Missirian6, Francois Rivier7, Manon Girard4, Muriel Holder8, Sylvie Manouvrier8, Isabelle Touitou5, Genevieve Lefort4, Pierre Sarda1, Anne Moncla7, Severine Drunat9, Dagmar Wieczorek2 and David Genevieve1 Intellectual disability (ID) is frequent in the general population, with 1 in 50 individuals directly affected worldwide. The multiple etiologies include X-linked ID (XLID). Among syndromic XLID, few syndromes present severe ID associated with postnatal microcephaly and midline stereotypic hand movements. We report on three male patients with ID, midline stereotypic hand movements, hypotonia, hyperkinesia, strabismus, as well as seizures (2/3), and non-inherited and postnatal onset microcephaly (2/3). Using array CGH and exome sequencing we characterised two truncating mutations in IQSEC2, namely two de novo intragenic duplication mapped to the Xp11.22 region and a nonsense mutation in exon 7. We propose that truncating mutations in IQSEC2 are responsible for syndromic severe ID in male patients and should be screened in patients without mutations in MECP2, FOXG1, CDKL5 and MEF2C. European Journal of Human Genetics (2014) 22, 289–292; doi:10.1038/ejhg.2013.113; published online 15 May 2013 Keywords: syndromic X-linked intellectual disability; microcephaly; IQSEC2-truncating mutations INTRODUCTION native to the south of France. Pregnancy was uneventful. The boy was born at Intellectual disability (ID) is defined by substantial limitations in 37 ½ weeks of gestation full term by caesarean section due to an abnormal cognitive functioning (intellectual quotient o70) coupled with a deficit presentation.
    [Show full text]
  • Variegate Porphyria: Identification of a Nonsense Mutation in The
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector MUTATION REPORTS Variegate Porphyria: Identification of a Nonsense Mutation in the Protoporphyrinogen Oxidase Gene Jorge Frank, Frank K. Jugert,* Katrin Kalka,† Gu¨nter Goerz,† Hans F. Merk,* and Angela M. Christiano Department of Dermatology, Columbia University, New York, New York, U.S.A.; *Department of Dermatology, University Clinic of the RWTH, Aachen, Germany; †Department of Dermatology, Heinrich Heine University, Du¨sseldorf, Germany The porphyrias are disorders of porphyrin metabolism protoporphyrinogen oxidase gene, resulting in the substi- that result from inherited or acquired aberrations in the tution of glutamic acid by a nonsense codon, designated control of the heme biosynthetic pathway. Variegate E133X. Our investigation establishes that a nonsense porphyria is characterized by a partial reduction in the mutation in the protoporphyrinogen oxidase gene is activity of protoporphyrinogen oxidase. In this study, we the underlying mutation in this family with variegate identified the first nonsense mutation in a family with porphyria. Key words: bullous diseases/genodermatosis/photo- variegate porphyria. The mutation consisted of a previ- sensitivity/porphyrin-heme biosynthetic pathway. J Invest ously unreported G-to-T transversion in exon 5 of the Dermatol 110:449–451, 1998 he porphyrias are disorders of heme metabolism resulting in the PPO gene in the clinically affected patient and one of her sons from the inherited or acquired dysregulation of one of by heteroduplex analysis, automated sequencing, and allele specific the eight enzymes that control the porphyrin-heme oligonucleotide (ASO) hybridization. The mutation consisted of a biosynthetic pathway.
    [Show full text]
  • Excess of Rare Novel Loss-Of-Function Variants in Synaptic Genes in Schizophrenia and Autism Spectrum Disorders
    Molecular Psychiatry (2014) 19, 872–879 & 2014 Macmillan Publishers Limited All rights reserved 1359-4184/14 www.nature.com/mp ORIGINAL ARTICLE Excess of rare novel loss-of-function variants in synaptic genes in schizophrenia and autism spectrum disorders EM Kenny1,3, P Cormican1,3, S Furlong1,3, E Heron1, G Kenny1, C Fahey1, E Kelleher1, S Ennis2, D Tropea1, R Anney1, AP Corvin1, G Donohoe1, L Gallagher1, M Gill1 and DW Morris1 Schizophrenia (SZ) and autism spectrum disorders (ASDs) are complex neurodevelopmental disorders that may share an underlying pathology suggested by shared genetic risk variants. We sequenced the exonic regions of 215 genes in 147 ASD cases, 273 SZ cases and 287 controls, to identify rare risk mutations. Genes were primarily selected for their function in the synapse and were categorized as: (1) Neurexin and Neuroligin Interacting Proteins, (2) Post-synaptic Glutamate Receptor Complexes, (3) Neural Cell Adhesion Molecules, (4) DISC1 and Interactors and (5) Functional and Positional Candidates. Thirty-one novel loss-of-function (LoF) variants that are predicted to severely disrupt protein-coding sequence were detected among 2 861 rare variants. We found an excess of LoF variants in the combined cases compared with controls (P ¼ 0.02). This effect was stronger when analysis was limited to singleton LoF variants (P ¼ 0.0007) and the excess was present in both SZ (P ¼ 0.002) and ASD (P ¼ 0.001). As an individual gene category, Neurexin and Neuroligin Interacting Proteins carried an excess of LoF variants in cases compared with controls (P ¼ 0.05). A de novo nonsense variant in GRIN2B was identified in an ASD case adding to the growing evidence that this is an important risk gene for the disorder.
    [Show full text]
  • Identification of Candidate Genes and Pathways Associated with Obesity
    animals Article Identification of Candidate Genes and Pathways Associated with Obesity-Related Traits in Canines via Gene-Set Enrichment and Pathway-Based GWAS Analysis Sunirmal Sheet y, Srikanth Krishnamoorthy y , Jihye Cha, Soyoung Choi and Bong-Hwan Choi * Animal Genome & Bioinformatics, National Institute of Animal Science, RDA, Wanju 55365, Korea; [email protected] (S.S.); [email protected] (S.K.); [email protected] (J.C.); [email protected] (S.C.) * Correspondence: [email protected]; Tel.: +82-10-8143-5164 These authors contributed equally. y Received: 10 October 2020; Accepted: 6 November 2020; Published: 9 November 2020 Simple Summary: Obesity is a serious health issue and is increasing at an alarming rate in several dog breeds, but there is limited information on the genetic mechanism underlying it. Moreover, there have been very few reports on genetic markers associated with canine obesity. These studies were limited to the use of a single breed in the association study. In this study, we have performed a GWAS and supplemented it with gene-set enrichment and pathway-based analyses to identify causative loci and genes associated with canine obesity in 18 different dog breeds. From the GWAS, the significant markers associated with obesity-related traits including body weight (CACNA1B, C22orf39, U6, MYH14, PTPN2, SEH1L) and blood sugar (PRSS55, GRIK2), were identified. Furthermore, the gene-set enrichment and pathway-based analysis (GESA) highlighted five enriched pathways (Wnt signaling pathway, adherens junction, pathways in cancer, axon guidance, and insulin secretion) and seven GO terms (fat cell differentiation, calcium ion binding, cytoplasm, nucleus, phospholipid transport, central nervous system development, and cell surface) which were found to be shared among all the traits.
    [Show full text]