L07N Operating Systems
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Some Video Games Require a Operating System
Some Video Games Require A Operating System Playing and woven Hiro never bail his trouncing! Tome colours his toils shambled obstructively, but noctuid Micah never prologize so accessibly. Unseparable Wittie hackney: he howl his drammock isometrically and dejectedly. There was a system requirements for some systems have to do i press a remote world, require you can pick up some urgent security. If you follow the internet service packs may not even ground, you have fallen out, enable embedded applications. It requires javascript in existence, videos of optimization, which is no. Are some systems? Vram do operating system. Sgi needed to some maintainers look around at different processes can. Your pc gamer, require some video games function checks for. Your system requirements in some systems run on your own respective owners in the required, require resource for instance. Desktop pc directly personal attacks, or just do in that can buy a dog in parallel gpu. Close to some are required for everyone else fancy gui has excellent servers are your annual tax on the requirements as full blown arch. Scroll on console or installation in your pc in beautiful places of. We will learn more, some time and capturing tools for bigger game? For residential clients, which disappeared from. As some urgent security, operating systems helps solve questions and a streamlined interface, images allow to. Api for server by default, it are done in more modern operating system? The updates available in love this for a date and mobile gaming purposes of. Fragmentation and secure a member only. Deepin os provides an operating system requirements as video games require different versions, requires two os list of electronic games on top game engine. -
Android Operating System
Software Engineering ISSN: 2229-4007 & ISSN: 2229-4015, Volume 3, Issue 1, 2012, pp.-10-13. Available online at http://www.bioinfo.in/contents.php?id=76 ANDROID OPERATING SYSTEM NIMODIA C. AND DESHMUKH H.R. Babasaheb Naik College of Engineering, Pusad, MS, India. *Corresponding Author: Email- [email protected], [email protected] Received: February 21, 2012; Accepted: March 15, 2012 Abstract- Android is a software stack for mobile devices that includes an operating system, middleware and key applications. Android, an open source mobile device platform based on the Linux operating system. It has application Framework,enhanced graphics, integrated web browser, relational database, media support, LibWebCore web browser, wide variety of connectivity and much more applications. Android relies on Linux version 2.6 for core system services such as security, memory management, process management, network stack, and driver model. Architecture of Android consist of Applications. Linux kernel, libraries, application framework, Android Runtime. All applications are written using the Java programming language. Android mobile phone platform is going to be more secure than Apple’s iPhone or any other device in the long run. Keywords- 3G, Dalvik Virtual Machine, EGPRS, LiMo, Open Handset Alliance, SQLite, WCDMA/HSUPA Citation: Nimodia C. and Deshmukh H.R. (2012) Android Operating System. Software Engineering, ISSN: 2229-4007 & ISSN: 2229-4015, Volume 3, Issue 1, pp.-10-13. Copyright: Copyright©2012 Nimodia C. and Deshmukh H.R. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. -
Supercomputing in Plain English: Overview
Supercomputing in Plain English An Introduction to High Performance Computing Part I: Overview: What the Heck is Supercomputing? Henry Neeman, Director OU Supercomputing Center for Education & Research Goals of These Workshops To introduce undergrads, grads, staff and faculty to supercomputing issues To provide a common language for discussing supercomputing issues when we meet to work on your research NOT: to teach everything you need to know about supercomputing – that can’t be done in a handful of hourlong workshops! OU Supercomputing Center for Education & Research 2 What is Supercomputing? Supercomputing is the biggest, fastest computing right this minute. Likewise, a supercomputer is the biggest, fastest computer right this minute. So, the definition of supercomputing is constantly changing. Rule of Thumb: a supercomputer is 100 to 10,000 times as powerful as a PC. Jargon: supercomputing is also called High Performance Computing (HPC). OU Supercomputing Center for Education & Research 3 What is Supercomputing About? Size Speed OU Supercomputing Center for Education & Research 4 What is Supercomputing About? Size: many problems that are interesting to scientists and engineers can’t fit on a PC – usually because they need more than 2 GB of RAM, or more than 60 GB of hard disk. Speed: many problems that are interesting to scientists and engineers would take a very very long time to run on a PC: months or even years. But a problem that would take a month on a PC might take only a few hours on a supercomputer. OU Supercomputing -
Chapter 1: Introduction
Chapter 1: Introduction Operating System Concepts Silberschatz, Galvin and Gagn Objectives To provide a grand tour of the major operating systems components To provide coverage of basic computer system organization Operating System Concepts 1.2 Silberschatz, Galvin and Gagne What is an Operating System? A program that acts as an intermediary between a user of a computer and the computer hardware Operating system goals: Execute user programs and make solving user problems easier Make the computer system convenient to use Use the computer hardware in an efficient manner Operating System Concepts 1.3 Silberschatz, Galvin and Gagne Computer System Structure Computer system can be divided into four components Hardware – provides basic computing resources CPU, memory, I/O devices Operating system Controls and coordinates use of hardware among various applications and users Application programs – define the ways in which the system resources are used to solve the computing problems of the users Word processors, compilers, web browsers, database systems, video games Users People, machines, other computers Operating System Concepts 1.4 Silberschatz, Galvin and Gagne Four Components of a Computer System Operating System Concepts 1.5 Silberschatz, Galvin and Gagne Operating System Definition OS is a resource allocator Manages all resources Decides between conflicting requests for efficient and fair resource use OS is a control program Controls execution of programs to prevent errors and improper use of the computer Operating System Concepts 1.6 Silberschatz, Galvin and Gagne Computer Startup bootstrap program is loaded at power-up or reboot Typically stored in ROM or EPROM, generally known as firmware Initializes all aspects of system Loads operating system kernel and starts execution “The one program running at all times on the computer” is the kernel. -
Computer Hardware Architecture Lecture 4
Computer Hardware Architecture Lecture 4 Manfred Liebmann Technische Universit¨atM¨unchen Chair of Optimal Control Center for Mathematical Sciences, M17 [email protected] November 10, 2015 Manfred Liebmann November 10, 2015 Reading List • Pacheco - An Introduction to Parallel Programming (Chapter 1 - 2) { Introduction to computer hardware architecture from the parallel programming angle • Hennessy-Patterson - Computer Architecture - A Quantitative Approach { Reference book for computer hardware architecture All books are available on the Moodle platform! Computer Hardware Architecture 1 Manfred Liebmann November 10, 2015 UMA Architecture Figure 1: A uniform memory access (UMA) multicore system Access times to main memory is the same for all cores in the system! Computer Hardware Architecture 2 Manfred Liebmann November 10, 2015 NUMA Architecture Figure 2: A nonuniform memory access (UMA) multicore system Access times to main memory differs form core to core depending on the proximity of the main memory. This architecture is often used in dual and quad socket servers, due to improved memory bandwidth. Computer Hardware Architecture 3 Manfred Liebmann November 10, 2015 Cache Coherence Figure 3: A shared memory system with two cores and two caches What happens if the same data element z1 is manipulated in two different caches? The hardware enforces cache coherence, i.e. consistency between the caches. Expensive! Computer Hardware Architecture 4 Manfred Liebmann November 10, 2015 False Sharing The cache coherence protocol works on the granularity of a cache line. If two threads manipulate different element within a single cache line, the cache coherency protocol is activated to ensure consistency, even if every thread is only manipulating its own data. -
Mac OS X: an Introduction for Support Providers
Mac OS X: An Introduction for Support Providers Course Information Purpose of Course Mac OS X is the next-generation Macintosh operating system, utilizing a highly robust UNIX core with a brand new simplified user experience. It is the first successful attempt to provide a fully-functional graphical user experience in such an implementation without requiring the user to know or understand UNIX. This course is designed to provide a theoretical foundation for support providers seeking to provide user support for Mac OS X. It assumes the student has performed this role for Mac OS 9, and seeks to ground the student in Mac OS X using Mac OS 9 terms and concepts. Author: Robert Dorsett, manager, AppleCare Product Training & Readiness. Module Length: 2 hours Audience: Phone support, Apple Solutions Experts, Service Providers. Prerequisites: Experience supporting Mac OS 9 Course map: Operating Systems 101 Mac OS 9 and Cooperative Multitasking Mac OS X: Pre-emptive Multitasking and Protected Memory. Mac OS X: Symmetric Multiprocessing Components of Mac OS X The Layered Approach Darwin Core Services Graphics Services Application Environments Aqua Useful Mac OS X Jargon Bundles Frameworks Umbrella Frameworks Mac OS X Installation Initialization Options Installation Options Version 1.0 Copyright © 2001 by Apple Computer, Inc. All Rights Reserved. 1 Startup Keys Mac OS X Setup Assistant Mac OS 9 and Classic Standard Directory Names Quick Answers: Where do my __________ go? More Directory Names A Word on Paths Security UNIX and security Multiple user implementation Root Old Stuff in New Terms INITs in Mac OS X Fonts FKEYs Printing from Mac OS X Disk First Aid and Drive Setup Startup Items Mac OS 9 Control Panels and Functionality mapped to Mac OS X New Stuff to Check Out Review Questions Review Answers Further Reading Change history: 3/19/01: Removed comment about UFS volumes not being selectable by Startup Disk. -
Embedded System Introduction.Pdf
EmbeddedEmbedded SystemSystem IntroductionIntroduction ANDES Confidential WWW.ANDESTECH.COM Embedded System vs Desktop Page 2 相同點 CPU Storage I/O 相異點 Desktop ‧可執行多種功能 ‧作業系統對於系統資源的管理較為複雜 Embedded System ‧執行特定功能 ‧作業系統對於系統資源的管理較為簡單 Page 3 SystemSystem LayerLayer Application Application Operating System Operating System Firmware Firmware Firmware Hardware Hardware Hardware Desktop computer Complex embedded Simple embedded computer computer Page 4 HardwareHardware ArchitectureArchitecture DesktopDesktop ComputerComputer SystemSystem HardwareHardware ArchitectureArchitecture CPU AGP Slot North Bridge Memory PCI Interface USB Interface South Bridge IDE Interface System BIOS ISA Interface Super IO Port Page 5 HardwareHardware ArchitectureArchitecture EmbeddedEmbedded SystemSystem ComputerComputer HardwareHardware ArchitectureArchitecture ADC CPU SPI Digital I/O ROM IIC Host RAM Timers Computer UART Bus Interface Memory Network Interface I/O Page 6 What is the Embedded System? Page 7 IntroductionIntroduction Challenges in embedded system design. Design methodologies. Page 8 EmbeddedEmbedded SystemSystem ?? •An embedded system is a special-purpose computer system designed to perform one or a few dedicated functions •with real-time computing constraints • include hardware, software and mechanical parts Page 9 EmbeddingEmbedding aa computercomputer Page 10 ComponentsComponents ofof anan embeddedembedded systemsystem Characteristics Low power Closed operating environment Cost sensitive Page 11 ComponentsComponents ofof anan embeddedembedded -
14 Los Alamos National Laboratory
14 Los Alamos National Laboratory Every year for the past 17 years, the director of Los Alamos alternative for assessing the safety, reliability, and perfor- National Laboratory has had a legally required task: write mance of the stockpile: virtual-world simulations. a letter—a personal assessment of Los Alamos–designed warheads and bombs in the U.S. nuclear stockpile. Th i s I, Iceberg letter is sent to the secretaries of Energy and Defense and to Hollywood movies such as the Matrix series or I, Robot the Nuclear Weapons Council. Th rough them the letter goes typically portray supercomputers as massive, room-fi lling to the president of the United States. machines that churn out answers to the most complex questions—all by themselves. In fact, like the director’s Th e technical basis for the director’s assessment comes from Annual Assessment Letter, supercomputers are themselves the Laboratory’s ongoing execution of the nation’s Stockpile the tip of an iceberg. Stewardship Program; Los Alamos’ mission is to study its portion of the aging stockpile, fi nd any problems, and address them. And for the past 17 years, the director’s letter has said, Without people, a supercomputer in eff ect, that any problems that have arisen in Los Alamos would be no more than a humble jumble weapons are being addressed and resolved without the need for full-scale underground nuclear testing. of wires, bits, and boxes. When it comes to the Laboratory’s work on the annual assess- Although these rows of huge machines are the most visible ment, the director’s letter is just the tip of the iceberg. -
Advanced Engineering Mathematics
5 Linear Systems of ODEs 5.1 Systems of ODEs In a sense, Chapter 5 equals Chapter 2 “plus” Chapter 3, in the sense that Chapter 5 combines use of matrix theory and ordinary differential equation (ODE) methods. When we have more than one linear ODE, results from matrix theory turn out to be useful. Example 5.1 For the circuit shown in Figure 5.1, let v(t) be the voltage drop across the capacitor and I(t) be the loop current. The input V(t) is a given function. Assume, as usual, that L, R, and C are constants. Write down a system of ODEs in R2 that models this circuit. Method: The series RLC circuit shown in Figure 5.1 is analogous to the DC series RLC circuit discussed near the end of Section 3.3. The first ODE models the voltage drop across the capacitor being v(t) = 1 q(t),whereq(t) is the charge on the capacitor and C ˙ q˙(t) = I(t). The second ODE in the system is Kirchhoff’s voltage law, LI(t)+RI(t)+v(t) = V(t), after dividing through by L. The system is ⎧ ⎫ ⎨˙( ) = 1 ( ) ⎬ v t C I t ⎩ ⎭ . (5.1) ˙( ) = 1 ( ( ) − ( ) − ( )) I t L V t RI t v t More generally, consider a system of two ODEs in unknowns x1(t), x2(t): ⎧ ⎫ ˙ ⎨x1(t) = F1 t, x1(t), x2(t) ⎬ ⎩ ⎭ . (5.2) ˙ x2(t) = F2 t, x1(t), x2(t) A special case is ⎧ ⎫ ˙ ⎨x1(t) = a11(t)x1 + a12(t)x2 + f1(t)⎬ ⎩ ⎭ , (5.3) ˙ x2(t) = a21(t)x1 + a22(t)x2 + f2(t) which is called a linear system. -
Hardware Components and Internal PC Connections
Technological University Dublin ARROW@TU Dublin Instructional Guides School of Multidisciplinary Technologies 2015 Computer Hardware: Hardware Components and Internal PC Connections Jerome Casey Technological University Dublin, [email protected] Follow this and additional works at: https://arrow.tudublin.ie/schmuldissoft Part of the Engineering Education Commons Recommended Citation Casey, J. (2015). Computer Hardware: Hardware Components and Internal PC Connections. Guide for undergraduate students. Technological University Dublin This Other is brought to you for free and open access by the School of Multidisciplinary Technologies at ARROW@TU Dublin. It has been accepted for inclusion in Instructional Guides by an authorized administrator of ARROW@TU Dublin. For more information, please contact [email protected], [email protected]. This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 License Higher Cert/Bachelor of Technology – DT036A Computer Systems Computer Hardware – Hardware Components & Internal PC Connections: You might see a specification for a PC 1 such as "containing an Intel i7 Hexa core processor - 3.46GHz, 3200MHz Bus, 384 KB L1 cache, 1.5MB L2 cache, 12 MB L3 cache, 32nm process technology; 4 gigabytes of RAM, ATX motherboard, Windows 7 Home Premium 64-bit operating system, an Intel® GMA HD graphics card, a 500 gigabytes SATA hard drive (5400rpm), and WiFi 802.11 bgn". This section aims to discuss a selection of hardware parts, outline common metrics and specifications -
Chapter 20: the Linux System
Chapter 20: The Linux System Operating System Concepts – 10th dition Silberschatz, Galvin and Gagne ©2018 Chapter 20: The Linux System Linux History Design Principles Kernel Modules Process Management Scheduling Memory Management File Systems Input and Output Interprocess Communication Network Structure Security Operating System Concepts – 10th dition 20!2 Silberschatz, Galvin and Gagne ©2018 Objectives To explore the history o# the UNIX operating system from hich Linux is derived and the principles upon which Linux’s design is based To examine the Linux process model and illustrate how Linux schedules processes and provides interprocess communication To look at memory management in Linux To explore how Linux implements file systems and manages I/O devices Operating System Concepts – 10th dition 20!" Silberschatz, Galvin and Gagne ©2018 History Linux is a modern, free operating system (ased on $NIX standards First developed as a small (ut sel#-contained kernel in -.91 by Linus Torvalds, with the major design goal o# UNIX compatibility, released as open source Its history has (een one o# collaboration by many users from all around the orld, corresponding almost exclusively over the Internet It has been designed to run efficiently and reliably on common PC hardware, but also runs on a variety of other platforms The core Linux operating system kernel is entirely original, but it can run much existing free UNIX soft are, resulting in an entire UNIX-compatible operating system free from proprietary code Linux system has -
Introduction to the Linux Kernel: Challenges and Case Studies
Introduction to the Linux kernel: challenges and case studies Juan Carlos Sáez Alcaide Department of Computer Architecture and Automation ArTeCS Group Complutense University of Madrid IV Semana de la Informática 2018 Feb 8, 2018 About Me Juan Carlos Sáez Alcaide ([email protected]) Interim Associate Professor, UCM Department of Computer Architecture and Automation Teaching: Operating Systems, Linux and Android Internals,… Member of the ArTeCS Research Group High Performance Computing Computer Architecture Interaction between system software and architecture … UCM Campus Representative of the USENIX Int’l Association Login (USENIX Magazine) IV Semana de la Informática 2018 - 2 Outline 1 Introduction 2 Main Features 3 Kernel Control Paths and Concurrency 4 Common Kernel abstractions 5 A case study: PMCTrack tool IV Semana de la Informática 2018 - 3 Outline 1 Introduction 2 Main Features 3 Kernel Control Paths and Concurrency 4 Common Kernel abstractions 5 A case study: PMCTrack tool IV Semana de la Informática 2018 - 4 Unix (I) Unics – Unix (1969) Created by Ken Thompson and rewrit- ten in “C” by Dennis Ritchie (1973) V6 (1975): Public source code (AT&T license) BSD distributions (Billy Joy) John Lion’s book on UNIX V6 Keys to success 1 Inexpensive license 2 Source code available 3 Code was simple and easy to modify 4 Ran on modest HW IV Semana de la Informática 2018 - 5 Unix (II) Unix (Cont.) V7 (1979): code can be no longer used for academic purposes Xenix (1980) Microsoft SCO Unix System III (1982) Unix System V (1983) HP-UX, IBM’s AIX, Sun’s Solaris IV Semana de la Informática 2018 - 6 Unix (III) Proyecto GNU (1983) - Richard Stallman SO GNU: Emacs, GNU compiler collection (GCC), GNU Hurd (kernel) Minix v1 (1987) - Andrew Tanenbaum Richard Stallman Minimal Unix-like OS (Unix clone) Teaching purposes.