Wattenberg Field, Denver Basin, Colorado'

Total Page:16

File Type:pdf, Size:1020Kb

Wattenberg Field, Denver Basin, Colorado' Wattenberg Field, Denver Basin, Colorado' R. A. MATUSZCZAK3 Abstract Wattenberg field produces from a large gas ac­ tion from the city of Boulder northward to a few cumulation (1.1 Tcf estimated recoverable reserves) in the miles south of Fort Collins. Haun (1963), Weimer "J" sandstone of Cretaceous age. The trap was formed in the delta-front environment of o northwesterly prograding (1970), and MacKenzie (1971) have provided ex­ delta. cellent studies that substantiate the presence of The gas is contained in a stratigraphic trap straddling the these delta lobes. A marine embayment crosses axis of the Denver basin. Reservoir characteristics are poor, the outcrop northwest of Denver, as indicated on and fracturing by artificial means is necessary to test a well. Figure 3. Large extensions to the field may be made in the future by following the trend of the delta-front environment. Industry Examination and evaluation of available data exploration efforts will be dependent on gas-price econom­ from old wells drilled on the Union Pacific Rail­ ics. road land (later optioned by Amoco Production Company) revealed the presence of a large area where all drill-stem tests or cores taken in the "J" INTRODUCTION sandstone had shows of gas. Core analyses of the Wattenberg gas field is located in the Colorado "J" sandstone were compared with those of the portion of the Denver basin. Its present area com­ Dakota Formation of the San Juan basin, which prises 978 sq mi (2,530 km2) lying between Den­ produces gas from very low-permeability sand­ ver and Greeley, Colorado (Fig. 1). The Denver stones of Cretaceous age. The "J" sandstone in basin is a Laramide feature oriented north-south the Wattenberg area is similar to the Lower Cre­ and paralleling the east flank of the Rocky taceous Dakota Sandstone reservoir of the San Mountain Front Range uplift. The basin is asym­ Juan basin (Table 1). metric, with a steep (10° dip) west flank and a Supporting data were provided by an earlier gentle (Vi° dip) east flank. Wattenberg field discovery at Roundup field, in T2N, R60W, straddles the basin axis. It produces from an ac­ northeast of Denver (Fig. 3). This small gas field, cumulation of gas stratigraphically trapped in the discovered in August 1967, has several unusual "J," or Muddy, sandstone of Cretaceous age (Fig. qualities. It produces from a stratigraphically 2). Estimated recoverable reserves from the "J" lower part of the "J" sandstone than is productive sandstone of Wattenberg field are estimated to be in the D-J basin "trend" area. The prospect also 1.1 Tcf of gas. In addition, the shallow Upper was located on the basis of minor shows of gas Cretaceous Hygiene sandstone is oil- and gas- recovered from drill-stem tests made in subse­ productive in local areas within the field. quently abandoned wildcat wells. The major risk The purpose of this paper is to present the his­ involved was the uncertainty of achieving a com­ tory of Wattenberg field from exploration con­ mercial completion by fracturing techniques. Res­ ception to date, tracing both evolution of geologic ervoir characteristics of the "J" sandstone are thought and working procedures used to develop similar to those of the Dakota Sandstone in the the field. San Juan basin. The discovery well in Roundup field was completed for 2,700 Mcf of gas per day EXPLORATION CONCEPT, "J" SANDSTONE after a fracture treatment. A regional and isolith map (Fig. 3) shows that a In the Wattenberg field area, gas shows suggest large lobe of the Cretaceous "J" sandstone was the presence of a sandstone of marine origin on deposited in the Denver-Greeley area by a wes­ the northeast edge of the marine reentrant. The terly to northwesterly prograding delta complex. A smaller lobe of sand was deposited in the area south of Denver by a northeasterly prograding 1 Manuscript received by editor, April 17, 1974. This paper was printed originally, in modified form, in The Mountain Geol­ delta. Study of outcrops on the west flank of the ogist, v. 10, no. 3 (July 1973), p. 99-107. basin provides further evidence of these two 2Amoco Production Company, Denver, Colorado 80219. lobes, inasmuch as the "J" sandstone is thin and This paper is printed with permission of Amoco Production exhibits characteristics of shallow-marine deposi- Company and The Mountain Geologist. Wattenberg Field, Colorado 137 SCALE rO l HYGIEME FIG. 1—Structural contour map, Denver basin. Datum is top of Precambrian. C.I.= 1,000 ft. transition from marine shale at the base of the "J" to sandstone at the top, as seen on electrical logs and in cores, implies the presence of a delta- front sandstone of a regressive marine sequence. The electrical logs run on several old wells in the GREEN HORN area are remarkably alike, indicating a similar en­ vironment of deposition. As a result of this sub­ surface evaluation, it was concluded that a delta- front sandstone was present in this area. Because delta-front sandstones tend to be sheet sand­ stones of possibly large areal extent, a prelimi­ nary prospect map was prepared (Fig. 4). FIRST STAGE OF DEVELOPMENT II The initial step was to outline the possible max­ imum areal extent of the "J" sandstone reservoir in the Wattenberg area. Of equal importance was FIG. 2—Type log, Denver basin. 138 R. A. Matuszczak MILES FIG. 3—Delta-sand isolith, "J" sandstone, Denver basin (modified from Haun, 1963). the need to prove that commercial completion production and shows in these intervals were was possible. To test these concepts, six wells present in nearby wells. However, to evaluate the were drilled close to the original control wells. Upper Cretaceous Hygiene sandstone (Parkman, Five were completed as small gas wells, and ac­ Sussex, Shannon sandstone equivalents?) proper­ quisition of additional leases began. ly by means of samples, cores, and drill-stem tests Subsequent to the acquisition of acreage by would have been very costly and would have con­ Amoco, a drilling program was undertaken in siderably slowed down the program for the deep­ partnership with Panhandle Western, a subsidiary er "J" sandstone objective. Denver basin wells of Panhandle Eastern Pipeline Company. Initial normally are drilled with native mud and water to plans were to drill 100 test wells spaced to outline at least the Niobrara Formation. This technique the limits of the "J" sandstone prospect as envi­ facilitates rapid drilling; penetration rates of 2-3 sioned at that time. ft/min (0.6-0.9 m/min) are not uncommon The evaluation of prospective shallow zones through the shallow formations. Under such con­ also was considered desirable, inasmuch as minor ditions, sample quality is poor, and proper core Wattenberg Field, Colorado 139 "~ o oo ,c Eo Vg Q t- 5 H » o & oo a. O OS \o co Q O £, <u Bt» o (3 * I ^H •* (N in i> *o r> 1, « VO ^5 io >/i v> 3 "* 3 9 13 O o en •31. O Q r< r- o> r- r- ^o Z r^ 00 4 > p z en d 7. 8. c B II I-. O > ID o & C —* in CO B0 S W IT) o 'O i—i 1% CO 3 1 -H -H V 9 d " en i-> o o A -i d !? 2 £• C II d d 3 t; a d d o o s < S V V V oo j: I 1 1 1 I § A rr o> tM vc m VO 00 o> C7\ <s ! H« J L •o _, .2 c O >. Q « '3 o o •s u CN : e ^ c Q ° 2 < 2 •B S o z O £ +i o c o "^ o ^ > fl «3 £*£ O os >. c Z § - OS II SI 2 ° 3 •H 2 <*» 6 2 tn H 0 m o SJS 2 c S • c E i» S E OS f- O So-a c^^r cT-o I < <N .5 < z^ m« ^§ 3 d C c -3d e CO <D CO CU V3 H JO £ O CO 1oS c8o <| ^ c»o : ?I PH *J CO CO 3 140 MILES FIG. 4—Isopach map of lower "J" sandstone. Preliminary prospect map, Wallenberg field. C.I. = 20 ft. points and drill-stem-test intervals are difficult to opment drilling is continuing so that production estimate. Therefore, it was decided to use mud- will be ready when equipment is installed. gas detecting units as an exploration method for the shallow formations above the "J" sandstone. PRESENT STATUS OF "J" SANDSTONE It was believed that gas-detection equipment, EXPLORATION combined with a suitable mechanical logging pro­ The discovery well for the field was the Tom gram, would provide sufficient data to make pos­ Vessels No. 1 Grenemeyer, SW >/», SW 'A, Sec. 26, sible the subsequent location of a series of shal­ TIN, R67W, Adams County, Colorado. Initial low wells to test the most prospective areas. potential, flowing, was 485 Mcf of gas plus 10 bbl Discoveries to December 1972 are shown on Fig­ of oil per day through a 2%4-in. choke. The well ure 5. was completed in July 1970 at a total depth of Cumulative production to the end of 1973 was 8,315 ft (2,537 m). 10 Bcf of gas and 260,000 bbl of oil. Most of the The drilling of 100 "J" sandstone wells by wells are shut in. Gas plants, gathering system, Amoco Production Company and Panhandle and other facilities are under construction. Devel­ Western resulted in the completion of 72 wells Wattenberg Field, Colorado 141 capable of gas production from the "J" sand­ stone. Other companies and individuals have drilled and completed over 30 additional wells in the field.
Recommended publications
  • Understanding and Mapping Variability of the Niobrara Formation
    UNDERSTANDING AND MAPPING VARIABILITY OF THE NIOBRARA FORMATION ACROSS WATTENBERG FIELD, DENVER BASIN by Nicholas Matthies A thesis submitted to the Faculty and the Board of Trustees of the Colorado School of Mines in partial fulfillment of the requirements for the degree of Master of Science (Geology). Golden, Colorado Date________________ Signed:____________________________________ Nicholas Matthies Signed:____________________________________ Dr. Stephen A. Sonnenberg Thesis Advisor Golden, Colorado Date:_______________ Signed:____________________________________ Dr. Paul Santi Professor and Head Department of Geology and Geological Engineering ii ABSTRACT Wattenberg Field has been a prolific producer of oil and gas since the 1970s, and a resurgence of activity in recent years in the Niobrara Formation has created the need for a detailed study of this area. This study focuses on mapping regional trends in stratigraphy, structure, and well log properties using digital well logs, 3D seismic data, and core X-ray diffraction data. Across Wattenberg, the Niobrara is divided into the Smoky Hill Member (made up of A Chalk, A Marl, B Chalk, B Marl, C Chalk, C Marl, and Basal Chalk/Marl) and the Fort Hays Limestone Member. Directly beneath the Niobrara, the Codell Sandstone is the uppermost part of the Carlile Formation. Stratigraphic trends in these units are primarily due to differential compaction and compensational sedimentation. The largest structural trend is a paleo-high that runs east-west to northeast-southwest across the middle of the field. It has a relief of about 100 ft, and is 20 mi wide. The A Chalk and A Marl show evidence of submarine erosion over this area. Faults mapped from 3D seismic data are consistent with previously published data on a proposed polygonal fault system in the Denver Basin.
    [Show full text]
  • GROUNDWATER LEVELS in the DENVER BASIN BEDROCK AQUIFERS 2017
    GROUNDWATER LEVELS in the DENVER BASIN BEDROCK AQUIFERS 2017 by Andrew D. Flor John W. Hickenlooper Robert W. Randall Governor Executive Director, DNR Kevin G. Rein Matthew A. Sares State Engineer Manager, Hydrogeology Section GROUNDWATER LEVELS IN THE DENVER BASIN BEDROCK AQUIFERS 2017 This report updates basic data concerning the depth to and elevation of groundwater in the four main Denver Basin bedrock aquifers collected during the spring and summer of 2017. The report is organized first by aquifer, then by well name. Well completion information is provided, where available. Wells that may be completed in more than one aquifer are listed according to the uppermost aquifer. Approximately 95 water-level measurements in this year’s report were obtained by Division of Water Resources (Division) personnel. A total of six wells have been instrumented with data loggers to collect daily water-level data. These include the following: - four wells in the Castle Rock area that monitor all four Denver Basin aquifers; CO3_LTDW (DB-204), CO3_TKD (DB-205), CO6_KA (DB-206) and CO3_KLF (DB-203); and - two wells near Golden in the Pleasant View Metropolitan District are completed in the Arapahoe (DB-201) and Laramie-Fox Hills (DB-200) aquifers. Water-level data from 126 cooperator wells are also included in this report. Personnel from cooperating water districts and municipalities graciously provided these data upon request. The Division appreciates the cooperation of the many entities that provide water-level information. Recent Legislation has directed the Division of Water Resources, in consultation with the Colorado Water Conservation Board, to encourage qualified parties to submit water level data for inclusion in the statewide water level database.
    [Show full text]
  • PALEONTOLOGICAL TECHNICAL REPORT: 6Th AVENUE and WADSWORTH BOULEVARD INTERCHANGE PHASE II ENVIRONMENTAL ASSESSMENT, CITY of LAKEWOOD, JEFFERSON COUNTY, COLORADO
    PALEONTOLOGICAL TECHNICAL REPORT: 6th AVENUE AND WADSWORTH BOULEVARD INTERCHANGE PHASE II ENVIRONMENTAL ASSESSMENT, CITY OF LAKEWOOD, JEFFERSON COUNTY, COLORADO Prepared for: TEC Inc. 1746 Cole Boulevard, Suite 265 Golden, CO 80401 Prepared by: Paul C. Murphey, Ph.D. and David Daitch M.S. Rocky Mountain Paleontology 4614 Lonespur Court Oceanside, CA 92056 303-514-1095; 760-758-4019 www.rockymountainpaleontology.com Prepared under State of Colorado Paleontological Permit 2007-33 January, 2007 TABLE OF CONTENTS 1.0 SUMMARY............................................................................................................................. 3 2.0 INTRODUCTION ................................................................................................................... 4 2.1 DEFINITION AND SIGNIFICANCE OF PALEONTOLOGICAL RESOURCES........... 4 3.0 METHODS .............................................................................................................................. 6 4.0. LAWS, ORDINANCES, REGULATIONS AND STANDARDS......................................... 7 4.1. Federal................................................................................................................................. 7 4.2. State..................................................................................................................................... 8 4.3. County................................................................................................................................. 8 4.4. City.....................................................................................................................................
    [Show full text]
  • Denudation History and Internal Structure of the Front Range and Wet Mountains, Colorado, Based on Apatite-Fission-Track Thermoc
    NEW MEXICO BUREAU OF GEOLOGY & MINERAL RESOURCES, BULLETIN 160, 2004 41 Denudation history and internal structure of the Front Range and Wet Mountains, Colorado, based on apatite­fission­track thermochronology 1 2 1Department of Earth and Environmental Science, New Mexico Institute of Mining and Technology, Socorro, NM 87801Shari A. Kelley and Charles E. Chapin 2New Mexico Bureau of Geology and Mineral Resources, New Mexico Institute of Mining and Technology, Socorro, NM 87801 Abstract An apatite fission­track (AFT) partial annealing zone (PAZ) that developed during Late Cretaceous time provides a structural datum for addressing questions concerning the timing and magnitude of denudation, as well as the structural style of Laramide deformation, in the Front Range and Wet Mountains of Colorado. AFT cooling ages are also used to estimate the magnitude and sense of dis­ placement across faults and to differentiate between exhumation and fault­generated topography. AFT ages at low elevationX along the eastern margin of the southern Front Range between Golden and Colorado Springs are from 100 to 270 Ma, and the mean track lengths are short (10–12.5 µm). Old AFT ages (> 100 Ma) are also found along the western margin of the Front Range along the Elkhorn thrust fault. In contrast AFT ages of 45–75 Ma and relatively long mean track lengths (12.5–14 µm) are common in the interior of the range. The AFT ages generally decrease across northwest­trending faults toward the center of the range. The base of a fossil PAZ, which separates AFT cooling ages of 45– 70 Ma at low elevations from AFT ages > 100 Ma at higher elevations, is exposed on the south side of Pikes Peak, on Mt.
    [Show full text]
  • 7.0 References
    I-70/32nd Avenue Interchange Environmental Assessment 7.0 REFERENCES Amuedo and Ivey. 1975. Coal mine subsidence and land-use in the Boulder-Weld coalfield, Boulder and Weld Counties, Colorado: Colorado Geological Survey, Environmental Geology Series EG-9. Anderson, D.G. and J. Stevens. 2000. City of Wheat Ridge Open Space Areas Biological Inventory. Colorado. American Society for Testing and Materials (ASTM). 2000. ASTM Standards on Environmental Site Assessments for Commercial Real Estate. E 1527-00. Beane, Ronald. 1998. Presence/absence surveys for Preble’s meadow jumping mouse, Coors Brewing Company – Eastern Parcel, Jefferson County, Colorado. October 14. Brown, R.W. 1943. Cretaceous-Tertiary boundary in the Denver Basin, Colorado: Geological Society of America Bulletin, v. 54. Brown, R.W. 1962. Paleocene flora of the Rocky Mountains and the Great Plains: U.S. Geological Survey Professional Paper 375. Bryant, B., McGrew, L., and Wobus, R.A. 1981. Geologic map of the Denver 1° X 2° Quadrangle, north-central Colorado: U.S. Geological Survey Investigations Map, I-1163, 2 sheets (Scale 1:250,000). CH2MHILL. 2000. I-70 Denver to Golden Major Investment Study, Final Major Investment Study Report. November. CH2M HILL. 2001a. Ute ladies’-tresses orchid presence/absence survey final report, I-70/SH 58 Interchange, Jefferson County, Colorado. CDOT Project No. NH 0703-246. October 31. CH2M HILL. 2001b. Threatened, endangered, and sensitive species, I-70/SH 58 Interchange, Jefferson County, Colorado. CDOT Project No. NH 0703-246. October. City of Lakewood. 2003. Comprehensive Plan. February. Retrieved March 2006 from http://www.ci.lakewood.co.us City of Wheat Ridge.
    [Show full text]
  • Hydraulic Fracturing Ban, the Economic
    HYDRAULIC FRACTURING BAN The Economic Impact of a Statewide Fracking Ban in Colorado Conducted by: Richard Wobbekind Brian Lewandowski Editor: Cindy DiPersio Student Research Assistants: Jim Dalton, Rick Brubaker, Noah Seidenfeld, and Ryan Thorpe Business Research Division Leeds School of Business University of Colorado Boulder 420 UCB Boulder, CO 80309-0420 Telephone: 303.492.3307 leeds.colorado.edu/brd March 2014 i Business Research Division The Business Research Division (BRD) of the Leeds School of Business at the University of Colorado Boulder has been serving Colorado since 1915. The BRD conducts economic impact studies and customized research projects that assist companies, associations, nonprofits, and government agencies with making informed business and policy decisions. Among the information offered to the public are the annual Colorado Business Economic Outlook Forum— now in its 49th year—which provides a forecast of the state’s economy by sector, and the quarterly Leeds Business Confidence Index, which gauges Colorado business leaders’ opinions about the national and state economies and how their industry will perform in the upcoming quarter. The Colorado Business Review is a quarterly publication that offers decision makers industry-focused analysis and information as it relates to the Colorado economy. BRD researchers collaborate with faculty researchers on projects, and graduate and undergraduate student assistants, who provide research assistance and gain valuable hands-on experience. Visit us at: www.leeds.colorado.edu/brd
    [Show full text]
  • Denver Basin
    Regional Tectonics and Their Thermal Influence on Sedimentary Basins: Denver Basin BROKAW, CASEY P., Graduate Student (Geophysics), Southern Methodist University, Roy M. Huffington Department of Earth Sciences Purpose Observations & Analysis The purpose of this project is to analyze the heat flow regime within the sedimentary Denver Basin and assess its variability. Thermal conduc- Thermal Conductivity of Basin Sediments Bottom Hole Temperature Data tivity measurements were made on Cretaceous sedimentary core samples provided by Anadarko Petroleum Corp. and the United States Geo- Average thermal conductiv- logical Survey Core Research Center (USGS CRC). Measured thermal conductivity values were used to calibrate and constrain heat flow ity values by formation. Formations are scaled for within the basin. Two equilibrium logs along with the newly measured thermal conductivity were used to calculate site specific heat flow. thickness and grain size. These new data points help constrain the observed variation in heat flow along the basin’s western syncline. Methods for the analytics of Thermal conductivity meas- urements were made on causation of basin thermal variability will follow outlines similar to those of Blackwell & Steele, 1989 (see Table 1 for thermal effects). core samples utilizing the divided bar apparatus and Table 1. From Blackwell and Steele’s study Thermal Conductivity of Sedimentary Rocks: methods outlined by Black- Measurement and Significance. It Illustrates the variables and their scale of effect that can well & Spafford, 1987. Study Area effect the thermal regimes within sedimentary basins. Generally sediments showed a decrease in ther- Uncorrected BHTS were extracted utilizing a spatial extraction (10 km radius from Eq. log well site) based on the sedimentary formations * mal conductivity value with an increase in shale/clay they were measured within.
    [Show full text]
  • DENVER BASIN PROVINCE (039) by Debra K
    DENVER BASIN PROVINCE (039) by Debra K. Higley, Richard M. Pollastro, and Jerry L. Clayton INTRODUCTION The Denver Basin Province is an asymmetrical Laramide-age structural basin located in eastern Colorado, southeastern Wyoming, the southwestern corner of South Dakota, and the Nebraska Panhandle. Two basin deeps located along the axis of the basin, close to the Front Range, separate the steeply dipping western flank and gently dipping eastern flank. The basin is bounded on the west by the Front Range of the Rocky Mountains, on the northwest by the Hartville Uplift, on the northeast by the Chadron Arch, and on the southwest and southeast by the Apishapa Uplift and Las Animas Arch, respectively. The primary producing plays in this province are the Dakota Group (Combined D and J Sandstones) Play (3905), and the J Sandstone Deep Gas (Wattenberg) Play (3906). Approximately 90 percent of the 800 MMBO and 1.2 TCFG produced from the basin has been from the J sandstone (Land and Weimer, 1978, Tainter, 1984). These two plays include 180 oil accumulations containing 1 or more MMBO. Eighteen fields have produced 6 BCFG or more (Hemborg, 1993d). Half of the province's 1.2 TCFG has been produced from the Wattenberg field; this field was discovered in 1970 and has produced about 0.63 TCFG and 2.2 MMBO from the J sandstone, Codell Sandstone, and Sussex (Terry) Sandstone. The largest oil field in the Denver Basin is Adena with more than 62 MMBO produced from the J and D sandstones and estimated ultimate recoverable of 62.5 MMBO.
    [Show full text]
  • Abdullin Colostate 0053N 11378.Pdf (3.002Mb)
    THESIS GEOPHYSICAL CONSTRAINTS ON THE FLEXURAL SUBSIDENCE OF THE DENVER BASIN Submitted by Ayrat Abdullin Department of Geosciences In partial fulfillment of the requirements For the Degree of Master of Science Colorado State University Fort Collins, Colorado Fall 2012 Master’s Committee: Advisor: Dennis L. Harry Sven Egenhoff Michael Lefsky ABSTRACT GEOPHYSICAL CONSTRAINTS ON THE FLEXURAL SUBSIDENCE OF THE DENVER BASIN The Denver Basin is an asymmetric Laramide (Late Cretaceous through Eocene) foreland basin covering portions of eastern Colorado, northwestern Kansas, southwestern Nebraska, and southeastern Wyoming, USA. It is bordered on the west by the Rocky Mountain Front Range Uplift, a basement cored Laramide anticline bounded by thrust faults, and on the east by the Great Plains and stable North American craton. A ~400 mGal negative Bouguer gravity anomaly exists over the Denver Basin and Front Range Uplift, with its minimum located over the highest topography in the central part of the uplift, approximately 100 km west of the Denver Basin. This study examines three hypotheses concerning the isostatic state of the basin and adjacent Front Range Uplift. These hypotheses are that the modern shape of the basin is due to: 1) flexure of the lithosphere under the surface load of the current topography, or 2) flexure under a subsurface load beneath the Rocky Mountains, or 3) a combination of both surface and subsurface loads. To test these hypotheses, spectral analysis and forward gravity modeling was conducted along three profiles located in the northern, central, and southern parts of the basin. Bouguer gravity power spectra along the profiles reveal 5 major density interfaces interpreted to represent the base of the lithosphere (at depths of 132 to 153 km), base of the crust (45-55 km), a mid-crustal boundary (about 20 km), the top of Precambrian basement (1-2 km), and a boundary between the Pierre Shale and Niobrara Formations within the pre-Laramide sedimentary section (-1-0 km).
    [Show full text]
  • Code of Colorado Regulations
    DEPARTMENT OF PUBLIC HEALTH AND ENVIRONMENT Water Quality Control Commission REGULATION NO. 42 - SITE-SPECIFIC WATER QUALITY CLASSIFICATIONS AND STANDARDS FOR GROUND WATER 5 CCR 1002-42 [Editor’s Notes follow the text of the rules at the end of this CCR Document.] _______________________________________________________________________________ 42.1 AUTHORITY These regulations are promulgated pursuant to section 25-8-202, 25-8-203, and 25-8-204 of the Colorado Water Quality Control Act, and the provisions of “The Basic Standards for Ground Water Regulation No. 41 (5 CCR 1002-41).” 42.2 PURPOSE The purpose of these regulations is to apply the framework for ground water classifications and water quality standards, as set forth in “The Basic Standards for Ground Water, Regulation No. 41 (5 CCR 1002-41)” to specific ground waters in the state, and to adopt an interim narrative standards to protect these ground waters prior to the adoption of use classifications and numerical standards for specific areas. 42.3 INDEX OF CLASSIFIED AREAS GROUND WATER TO WHICH QUALITY CONTROL COMMISSION HAS ASSIGNED USE CLASSIFICATIONS AND WATER QUALITY STANDARDS LOCATION COUNTY DATE FIGURE NARRATIVE FIGURE ADOPTED # PAGE # PAGE # Alamosa Alamosa 05/93 4 6 41 Bennett Adams 06/94 11 9 48 Brighton Adams 11/94 29 14 66 Brush Morgan 05/91 2 6 39 Burlington Kit Carson 06/94 12 9 49 Carbondale Garfield 06/94 13 9 50 Castle Rock Douglas 06/94 14 10 51 Co. Oil & Gas Fields Logan, N 09/97 40 18 77 Washington & NE Morgan Crowley County Crowley 06/94 15 10 52 Denver SE Suburban W & SD Douglas 06/94 16 10 53 E.
    [Show full text]
  • The Rocky Mountain Front, Southwestern USA
    The Rocky Mountain Front, southwestern USA Charles E. Chapin, Shari A. Kelley, and Steven M. Cather New Mexico Bureau of Geology and Mineral Resources, New Mexico Institute of Mining and Technology, Socorro, New Mexico 87801, USA ABSTRACT northeast-trending faults cross the Front thrust in southwest Wyoming and northern Range–Denver Basin boundary. However, Utah. A remarkable attribute of the RMF is The Rocky Mountain Front (RMF) trends several features changed from south to north that it maintained its position through multi- north-south near long 105°W for ~1500 km across the CMB. (1) The axis of the Denver ple orogenies and changes in orientation from near the U.S.-Mexico border to south- Basin was defl ected ~60 km to the north- and strength of tectonic stresses. During the ern Wyoming. This long, straight, persistent east. (2) The trend of the RMF changed from Laramide orogeny, the RMF marked a tec- structural boundary originated between 1.4 north–northwest to north. (3) Structural tonic boundary beyond which major contrac- and 1.1 Ga in the Mesoproterozoic. It cuts style of the Front Range–Denver Basin mar- tional partitioning of the Cordilleran fore- the 1.4 Ga Granite-Rhyolite Province and gin changed from northeast-vergent thrusts land was unable to penetrate. However, the was intruded by the shallow-level alkaline to northeast-dipping, high-angle reverse nature of the lithospheric fl aw that underlies granitic batholith of Pikes Peak (1.09 Ga) faults. (4) Early Laramide uplift north of the RMF is an unanswered question. in central Colorado.
    [Show full text]
  • Rio Grande Basin Saguache
    Issues and Updates in Water Division 3 Colorado Bar Association January 14, 2021 Craig Cotten Division Engineer GroundWater Use in the Rio Grande Basin Saguache Crestone Creede South Fork Monte Vista Alamosa San Luis Antonito Saguache Crestone Creede South Fork Monte Vista Alamosa San Luis Antonito • Irrigated acreage Ground Water Use (Over 250,000 production water wells) Aquifer Average Annual Supply (acre-feet)2 Denver Basin 70,000 South Platte Alluvium 300,000 Arkansas River Alluvium 200,000 San Luis Valley Aquifers 380,000 High Plains – Ogallala1 1,000,000 Bedrock Aquifers – Mountains 50,000 Other Designated Basins & Nontributary 300,000 Total 2,300,000 1High Plains- Ogallala is considered designated ground water 2One acre-foot equals 325,851 gallons First Attempts at Groundwater Administration • 1969 Water Right Determination and Administration Act • 1972 Moratorium • 1981 Moratorium • 1975 Rules Interim Administration • 1985 Closed Basin 60/40 Agreement Catalysts of Change Since 2000 • HB 1998-1011 • Drought of 2002-2005 (and ongoing) • SB 2004-222 Recent Groundwater Rules • 2004 Confined Aquifer New Use Rules (aka “Rules Governing New Withdrawals of Ground Water in Water Division 3 Affecting the Rate or Direction of Movement of Water in the Confined Aquifer System”) • 2005 Water Measurement Rules – Most wells >50 gpm must be metered. • 2010 Irrigation Season Policy - Establishment of a formal Irrigation Season. Later decreed by Water Court as part of the 2015 Groundwater Rules. • 2015 Ground Water Use Rules – Rules have been upheld. Will go into full effect on March 15, 2021. Objectives of Rules • Remedy Depletions to Surface Water Rights – Permit the continued use of groundwater consistent with the prevention of material injury to senior surface water rights.
    [Show full text]