Promotes Inflammation Impairs Macrophage Phagocytosis, And

Total Page:16

File Type:pdf, Size:1020Kb

Promotes Inflammation Impairs Macrophage Phagocytosis, And Proteinase 3, the Autoantigen in Granulomatosis with Polyangiitis, Associates with Calreticulin on Apoptotic Neutrophils, Impairs Macrophage Phagocytosis, and This information is current as Promotes Inflammation of September 28, 2021. Julie Gabillet, Arnaud Millet, Magali Pederzoli-Ribeil, Pascale Tacnet-Delorme, Loïc Guillevin, Luc Mouthon, Philippe Frachet and Véronique Witko-Sarsat J Immunol published online 27 July 2012 Downloaded from http://www.jimmunol.org/content/early/2012/07/27/jimmun ol.1200600 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 28, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2012 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published July 27, 2012, doi:10.4049/jimmunol.1200600 The Journal of Immunology Proteinase 3, the Autoantigen in Granulomatosis with Polyangiitis, Associates with Calreticulin on Apoptotic Neutrophils, Impairs Macrophage Phagocytosis, and Promotes Inflammation Julie Gabillet,*,†,‡,1 Arnaud Millet,*,†,‡,1 Magali Pederzoli-Ribeil,*,†,‡ Pascale Tacnet-Delorme,x,{,‖ Loı¨c Guillevin,# Luc Mouthon,*,†,‡,# Philippe Frachet,x,{,‖ and Ve´ronique Witko-Sarsat*,†,‡ Proteinase 3 (PR3) is the target of anti-neutrophil cytoplasm Abs in granulomatosis with polyangiitis, a form of systemic vasculitis. Upon neutrophil apoptosis, PR3 is coexternalized with phosphatidylserine and impaired macrophage phagocytosis. Calreticulin Downloaded from (CRT), a protein involved in apoptotic cell recognition, was found to be a new PR3 partner coexpressed with PR3 on the neutrophil plasma membrane during apoptosis, but not after degranulation. The association between PR3 and CRT was demonstrated in neutrophils by confocal microscopy and coimmunoprecipitation. Evidence for a direct interaction between PR3 and the globular domain of CRT, but not with its P domain, was provided by surface plasmon resonance spectroscopy. Phagocytosis of apoptotic neutrophils from healthy donors was decreased after blocking lipoprotein receptor-related protein (LRP), a CRT receptor on mac- rophages. In contrast, neutrophils from patients with granulomatosis with polyangiitis expressing high membrane PR3 levels http://www.jimmunol.org/ showed a lower rate of phagocytosis than those from healthy controls not affected by anti-LRP, suggesting that the LRP-CRT pathway was disturbed by PR3-CRT association. Moreover, phagocytosis of apoptotic PR3-expressing cells potentiated proinflam- matory cytokine in vitro by human monocyte-derived macrophages and in vivo by resident murine peritoneal macrophages, and diverted the anti-inflammatory response triggered by the phagocytosis of apoptotic cells after LPS challenge in thioglycolate-elicited murine macrophages. Therefore, membrane PR3 expressed on apoptotic neutrophils might amplify inflammation and promote autoimmunity by affecting the anti-inflammatory “reprogramming” of macrophages. The Journal of Immunology, 2012, 189: 000–000. by guest on September 28, 2021 ranulomatosis with polyangiitis (GPA), formerly called In vitro, ANCA bind to their cognate Ag to trigger neutrophil Wegener’s granulomatosis, is a systemic disease char- adhesion to endothelial cells and activation. Described first in G acterized by granulomatous inflammation of the upper azurophilic granules, its main storage compartment, PR3 is also and lower respiratory tract, glomerulonephritis, and necrotizing present in the secretory vesicles and on the plasma membrane (3). vasculitis (1). GPA is associated with anti-neutrophil cytoplasmic The peculiarity of PR3 membrane expression is its heterogeneity autoantibodies (ANCAs) directed against proteinase 3 (PR3) (2). (4): the percentage of membrane PR3-expressing neutrophils varies among individuals but is genetically determined. Notably, a high percentage of membrane PR3-expressing positive neu- † *INSERM U1016, Paris 75014, France; Institut Cochin, Universite´ Paris Descartes, trophils is observed in patients with chronic inflammatory diseases Paris 75014, France; ‡Centre National de la Recherche Scientifique-Unite´ Mixte de Recherche 8104, Paris 75014, France; xUniversite´ Joseph Fourier Grenoble 1, Institut such as ANCA-associated vasculitis. In addition, unlike other { de Biologie Structurale Jean-Pierre Ebel, Grenoble F-38027 Cedex 1, France; Centre neutrophil granule proteins, PR3 is coexternalized with phospha- National de la Recherche Scientifique, Grenoble F-38000, France; ‖Commissariat a` l’Energie Atomique, Institut de Biologie Structurale Jean-Pierre Ebel, Grenoble tidylserine (PS) during neutrophil apoptosis because of its asso- F-38000, France; and #Service de Me´decine Interne, Hoˆpital Cochin, Paris 75014, ciation with phospholipid scramblase 1 and impaired macrophage France phagocytosis (5). We recently reported that PR3, which is a pe- 1J.G. and A.M. contributed equally to this work. ripheral membrane protein, has a hydrophobic patch essential for Received for publication February 17, 2012. Accepted for publication June 25, 2012. its membrane anchorage and for its proinflammatory activity (6). This work was supported by the Association “Vaincre La Mucoviscidose” (to J.G.), Accordingly, a hydrophobic patch-deficient PR3 mutant was not INSERM (to A.M.), Agence Nationale de la Recherche-genopat (to V.W.-S.), the externalized on apoptosis and did not impair phagocytosis (6). Chancellerie des Universite´s de Paris (Legs Poix to V.W.-S.), Agence Nationale de la Recherche (ANR-09-PIRIbio to P.F.), and Joseph Fourier University in Grenoble Phagocytosis of apoptotic cells, also known as efferocytosis, (to P.F.). prevents the release of intracellular contents and unwanted immune Address correspondence and reprint requests to Dr. Ve´ronique Witko-Sarsat, responses to self-Ags derived from dying cells (7). During inflam- INSERM U1016, Institut Cochin, 27 Bis Rue du Faubourg St Jacques, 75014 Paris, mation, neutrophils are massively recruited at the inflammation site France. E-mail address: [email protected] where they play a fundamental role in pathogen destruction and Abbreviations used in this article: 7-AAD, 7-amino-actinomycin D; ANCA, anti- neutrophil cytoplasmic autoantibody; BFA, brefeldin A; CRT, calreticulin; GPA, then undergo apoptosis. Apoptotic neutrophils are recognized and granulomatosis with polyangiitis; LRP, lipoprotein receptor-related protein; MFI, ingested by macrophages, thereby inducing an anti-inflammatory mean fluorescence intensity; PR3, proteinase 3; PS, phosphatidylserine; RBL, rat phenotype and promoting the resolution of inflammation (7). Ap- basophilic cell line; SPR, surface plasmon resonance. optotic cell uptake involves many phagocyte receptors that bind Copyright Ó 2012 by The American Association of Immunologists, Inc. 0022-1767/12/$16.00 molecules expressed at the apoptotic cell surface called “eat-me” www.jimmunol.org/cgi/doi/10.4049/jimmunol.1200600 2 PROTEINASE 3 AND CALRETICULIN IN APOPTOTIC NEUTROPHILS signals. These signals include the adsorption of soluble proteins Flow cytometry analysis of PR3, CRT, CD177, and LRP, and (such as C1q and thrombospondin) from outside the cell, and the CD66b membrane expression translocation of molecules such as PS and calreticulin (CRT) from After FcR blocking, 5 3 105 cells were incubated for 30 min with one of inside the cell to the surface, as well as the suppression of “don’t- the following Abs: mouse monoclonal anti-PR3 (clone CLB12.8; 2 mg/ml; eat-me” signals such as CD47 (8). The best characterized eat-me Sanquin), rabbit polyclonal anti-CRT (clone PA3-900; 5 mg/ml; Thermo- signal is PS, exposed at the cell surface in the early stages of Scientific), mouse monoclonal anti-CRT (clone SPA 601; 30 mg/ml; Stress- m apoptosis. PS is recognized by phagocyte receptors, among them Gen), mouse monoclonal anti-hCD177 (1.2 g/ml; Serotec), mouse monoclonal anti-LRP (6 mg/ml; Becton Dickinson), or mouse monoclonal TIM4 and BAI1 (7, 8). Unlike necrotic cells, apoptotic cell recog- anti–CD66b-FITC (25 mg/ml; Immunotech), followed by incubation with nition induces the release from macrophages of anti-inflammatory fluorochrome-conjugated anti-mouse IgG or anti-rabbit IgG (Immunotech). mediators such as TGF-b,IL-10,andPGE2, and inhibits proin- flammatory cytokine secretion, such as TNF-a and IL-8 (9). Confocal microscopy analysis of immunofluorescence labeling It is now commonly accepted that CRT, originally characterized of PR3 and CRT as an endoplasmic reticulum chaperone protein (10), is also a Neutrophils were induced to adhere to poly-L-lysine–precoated coverslips, majoreat-me signal expressed at the surface of apoptotic cells, then fixed and permeabilized with streptolysin-O as described previously including neutrophils (11). Accordingly, decreased CRT mem- (5). After saturation in PBS with 1% BSA, cells were incubated for 45 min with the mouse anti-PR3 or rabbit
Recommended publications
  • Characterization of a Novel Mouse Model with Genetic Deletion of CD177
    Protein Cell 2015, 6(2):117–126 DOI 10.1007/s13238-014-0109-1 Protein & Cell RESEARCH ARTICLE Characterization of a novel mouse model with genetic deletion of CD177 Qing Xie1,2, Julia Klesney-Tait3, Kathy Keck3, Corey Parlet2, Nicholas Borcherding2, Ryan Kolb2, Wei Li2, & Lorraine Tygrett2, Thomas Waldschmidt2, Alicia Olivier2, Songhai Chen4, Guang-Hui Liu5,6, Xiangrui Li1 , Weizhou Zhang2& 1 College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China 2 Department of Pathology, Holden Comprehensive Cancer Center, Carver College of Medicine/University of Iowa, Iowa, IA 52242, USA 3 Department of Internal Medicine, Carver College of Medicine/University of Iowa, Iowa, IA 52242, USA 4 Department of Pharmacology, Carver College of Medicine/University of Iowa, Iowa, IA 52242, USA Cell 5 National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China & 6 Beijing Institute for Brain Disorders, Beijing 100069, China & Correspondence: [email protected] (X. Li), [email protected] (W. Zhang) Received September 1, 2014 Accepted September 25, 2014 Protein ABSTRACT neutrophil counts in inflammatory skin caused by S. aureus. Mechanistically we found that CD177 deletion in Neutrophils play an essential role in the innate immune mouse neutrophils has no significant impact in CXCL1/ response to infection. Neutrophils migrate from the KC- or fMLP-induced migration, but led to significant cell vasculature into the tissue in response to infection. death. Herein we established a novel genetic mouse Recently, a neutrophil cell surface receptor, CD177, was model to study the role of CD177 and found that CD177 shown to help mediate neutrophil migration across the plays an important role in neutrophils.
    [Show full text]
  • Journal of Translational Medicine Biomed Central
    Journal of Translational Medicine BioMed Central Review Open Access CD177: A member of the Ly-6 gene superfamily involved with neutrophil proliferation and polycythemia vera David F Stroncek*, Lorraine Caruccio and Maria Bettinotti Address: From the Department of Transfusion Medicine, Warren G. Magnuson Clinical Center, National Institutes of Health, Bethesda, MD, USA Email: David F Stroncek* - [email protected]; Lorraine Caruccio - [email protected]; Maria Bettinotti - [email protected] * Corresponding author Published: 29 March 2004 Received: 22 December 2003 Accepted: 29 March 2004 Journal of Translational Medicine 2004, 2:8 This article is available from: http://www.translational-medicine.com/content/2/1/8 © 2004 Stroncek et al; licensee BioMed Central Ltd. This is an Open Access article: verbatim copying and redistribution of this article are permitted in all media for any purpose, provided this notice is preserved along with the article's original URL. CD177PRV-1NB1neutrophilspolycythemia veramyelopoiesis Abstract Genes in the Leukocyte Antigen 6 (Ly-6) superfamily encode glycosyl-phosphatidylinositol (GPI) anchored glycoproteins (gp) with conserved domains of 70 to 100 amino acids and 8 to 10 cysteine residues. Murine Ly-6 genes encode important lymphocyte and hematopoietic stem cell antigens. Recently, a new member of the human Ly-6 gene superfamily has been described, CD177. CD177 is polymorphic and has at least two alleles, PRV-1 and NB1. CD177 was first described as PRV-1, a gene that is overexpressed in neutrophils from approximately 95% of patients with polycythemia vera and from about half of patients with essential thrombocythemia. CD177 encodes NB1 gp, a 58–64 kD GPI gp that is expressed by neutrophils and neutrophil precursors.
    [Show full text]
  • Organization, Evolution and Functions of the Human and Mouse Ly6/Upar Family Genes Chelsea L
    Loughner et al. Human Genomics (2016) 10:10 DOI 10.1186/s40246-016-0074-2 GENE FAMILY UPDATE Open Access Organization, evolution and functions of the human and mouse Ly6/uPAR family genes Chelsea L. Loughner1, Elspeth A. Bruford2, Monica S. McAndrews3, Emili E. Delp1, Sudha Swamynathan1 and Shivalingappa K. Swamynathan1,4,5,6,7* Abstract Members of the lymphocyte antigen-6 (Ly6)/urokinase-type plasminogen activator receptor (uPAR) superfamily of proteins are cysteine-rich proteins characterized by a distinct disulfide bridge pattern that creates the three-finger Ly6/uPAR (LU) domain. Although the Ly6/uPAR family proteins share a common structure, their expression patterns and functions vary. To date, 35 human and 61 mouse Ly6/uPAR family members have been identified. Based on their subcellular localization, these proteins are further classified as GPI-anchored on the cell membrane, or secreted. The genes encoding Ly6/uPAR family proteins are conserved across different species and are clustered in syntenic regions on human chromosomes 8, 19, 6 and 11, and mouse Chromosomes 15, 7, 17, and 9, respectively. Here, we review the human and mouse Ly6/uPAR family gene and protein structure and genomic organization, expression, functions, and evolution, and introduce new names for novel family members. Keywords: Ly6/uPAR family, LU domain, Three-finger domain, uPAR, Lymphocytes, Neutrophils Introduction an overview of the Ly6/uPAR gene family and their gen- The lymphocyte antigen-6 (Ly6)/urokinase-type plas- omic organization, evolution, as well as functions, and minogen activator receptor (uPAR) superfamily of struc- provide a nomenclature system for the newly identified turally related proteins is characterized by the LU members of this family.
    [Show full text]
  • Suppressive Myeloid Cells Are a Hallmark of Severe COVID-19
    medRxiv preprint doi: https://doi.org/10.1101/2020.06.03.20119818; this version posted June 5, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license . 1 Suppressive myeloid cells are a hallmark of 2 severe COVID-19 3 Jonas Schulte-Schrepping1*, Nico Reusch1*, Daniela Paclik2*, Kevin Baßler1*, Stephan 4 Schlickeiser3*, Bowen Zhang4*, Benjamin Krämer5*, Tobias Krammer6*, Sophia Brumhard7*, 5 Lorenzo Bonaguro1*, Elena De Domenico8*, Daniel Wendisch7*, Martin Grasshoff4, Theodore S. 6 Kapellos1, Michael Beckstette4, Tal Pecht1, Adem Saglam8, Oliver Dietrich6, Henrik E. Mei9, Axel 7 R. Schulz9, Claudia Conrad7, Désirée Kunkel10, Ehsan Vafadarnejad6, Cheng-Jian Xu4,11, Arik 8 Horne1, Miriam Herbert1, Anna Drews8, Charlotte Thibeault7, Moritz Pfeiffer7, Stefan 9 Hippenstiel7,12, Andreas Hocke7,12, Holger Müller-Redetzky7, Katrin-Moira Heim7, Felix Machleidt7, 10 Alexander Uhrig7, Laure Bousquillon de Jarcy7, Linda Jürgens7, Miriam Stegemann7, Christoph 11 R. Glösenkamp7, Hans-Dieter Volk2,3,13, Christine Goffinet14,15, Jan Raabe5, Kim Melanie Kaiser5, 12 Michael To Vinh5, Gereon Rieke5, Christian Meisel14, Thomas Ulas8, Matthias Becker8, Robert 13 Geffers16, Martin Witzenrath7,12, Christian Drosten14,19, Norbert Suttorp7,12, Christof von Kalle17, 14 Florian Kurth7,18, Kristian Händler8, Joachim L. Schultze1,8,#,$, Anna C Aschenbrenner20,#, Yang 15 Li4,#,
    [Show full text]
  • Cardiac SARS‐Cov‐2 Infection Is Associated with Distinct Tran‐ Scriptomic Changes Within the Heart
    Cardiac SARS‐CoV‐2 infection is associated with distinct tran‐ scriptomic changes within the heart Diana Lindner, PhD*1,2, Hanna Bräuninger, MS*1,2, Bastian Stoffers, MS1,2, Antonia Fitzek, MD3, Kira Meißner3, Ganna Aleshcheva, PhD4, Michaela Schweizer, PhD5, Jessica Weimann, MS1, Björn Rotter, PhD9, Svenja Warnke, BSc1, Carolin Edler, MD3, Fabian Braun, MD8, Kevin Roedl, MD10, Katharina Scher‐ schel, PhD1,12,13, Felicitas Escher, MD4,6,7, Stefan Kluge, MD10, Tobias B. Huber, MD8, Benjamin Ondruschka, MD3, Heinz‐Peter‐Schultheiss, MD4, Paulus Kirchhof, MD1,2,11, Stefan Blankenberg, MD1,2, Klaus Püschel, MD3, Dirk Westermann, MD1,2 1 Department of Cardiology, University Heart and Vascular Center Hamburg, Germany. 2 DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck. 3 Institute of Legal Medicine, University Medical Center Hamburg‐Eppendorf, Germany. 4 Institute for Cardiac Diagnostics and Therapy, Berlin, Germany. 5 Department of Electron Microscopy, Center for Molecular Neurobiology, University Medical Center Hamburg‐Eppendorf, Germany. 6 Department of Cardiology, Charité‐Universitaetsmedizin, Berlin, Germany. 7 DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany. 8 III. Department of Medicine, University Medical Center Hamburg‐Eppendorf, Germany. 9 GenXPro GmbH, Frankfurter Innovationszentrum, Biotechnologie (FIZ), Frankfurt am Main, Germany. 10 Department of Intensive Care Medicine, University Medical Center Hamburg‐Eppendorf, Germany. 11 Institute of Cardiovascular Sciences,
    [Show full text]
  • Endothelium-Neutrophil Interactions in ANCA-Associated Diseases
    BRIEF REVIEW www.jasn.org Endothelium-Neutrophil Interactions in ANCA-Associated Diseases † Lise Halbwachs* and Philippe Lesavre* *Institut National de la Santé et de la Recherche Medicale INSERM U845, Université Paris Descartes, Sorbonne Paris Cité, France; and †Assistance Publique-Hôpitaux de Paris, Hôpital Necker, Paris, France ABSTRACT The two salient features of ANCA-associated vasculitis (AAV) are the restricted without activation that could result from microvessel localization and the mechanism of inflammatory damage, independent neutrophil-neutrophil interactions, of vascular immune deposits. The microvessel localization of the disease is due to contact with endothelium, or distortion; the ANCA antigen accessibility, which is restricted to the membrane of neutrophils and neutrophil adhesion to inflamed en- engaged in b2-integrin–mediated adhesion, while these antigens are cytoplasmic dothelium and diapedesis through the and inaccessible in resting neutrophils. The inflammatory vascular damage is the vessel wall should occur without release consequence of maximal proinflammatory responses of neutrophils, which face cu- of toxic oxidants or proteases, which mulative stimulations by TNF-a, b2-integrin engagement, C5a, and ANCA by the should be delayed until cells reach the FcgRII receptor. This results in the premature intravascular explosive release by inflammatory focus. This review exam- adherent neutrophils of all of their available weapons, normally designed to kill ines current concepts of the ways ANCA IgG-opsonized bacteria after
    [Show full text]
  • Supplementary Materials
    Supplementary Materials Supplemental Figure S1. Distinct difference in expression of 576 sensome genes comparing cortex versus microglia. (A) This heatmap shows all 576 sensome candidate genes ordered by DE and with the left column shows if the gene is present in the “Hickman et al. sensome” Supplemental Figure S2. Mouse sensome and human sensome genes categorized by group. (A) Bar graph showing the number of mouse and human sensome genes per group (Cell-Cell Interactions, Chemokine and related receptors, Cytokine receptors, ECM receptors, Endogenous ligands receptors, sensors and transporters, Fc receptors, Pattern recognition and related receptors, Potential sensors but no known ligands and Purinergic and related receptors). Supplementary Figure S3. Overlap of ligands recognized by microglia sensome (A) Overlap between the ligands of the receptors from respectively human and mouse core sensome was shown using Venn Diagrams. (B) Ligands of human and mouse receptors categorized in groups (Glycoproteins, Cytokines, Immunoglobulin, Amino acids, Carbohydrates, Electrolytes, Lipopeptides, Chemokines, Neuraminic acids, Nucleic acids, Receptors, Lipids, Fatty acids, Leukotrienes, Hormones, Steroids and Phospholipids) and spread of different groups shown as parts of whole again highlighting that the distribution of ligands what the human and mouse sensome genes can sense (Categorization of ligands in Supplementary Table S1). Supplementary Figure S4. Microglia core sensome expression during aging. (A) Two-log fold change of microglia core sensome genes in aging mice derived from Holtman et al. [12]. (B) Accelerated aging model (ERCC1), with impaired DNA repair mechanism, shows changes of microglia core sensome expression [12]. (C) Microglia core sensome expression during aging in human derived from Olah et al.
    [Show full text]
  • Development of a Bioinformatics Framework for Identification And
    ORIGINAL RESEARCH published: 31 March 2020 doi: 10.3389/fimmu.2020.00380 Development of a Bioinformatics Framework for Identification and Validation of Genomic Biomarkers and Key Immunopathology Processes and Controllers in Infectious and Non-infectious Severe Edited by: Hyundoo Hwang, Inflammatory Response Syndrome BBB Inc., South Korea 1,2† 3† 4 2 Reviewed by: Dong Ling Tong , Karen E. Kempsell , Tamas Szakmany * and Graham Ball Katie Louise Flanagan, 1 RMIT University, Australia Artificial Intelligence Laboratory, Faculty of Engineering and Computing, First City University College, Petaling Jaya, 2 3 Sharvan Sehrawat, Malaysia, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom, Public Health 4 Indian Institute of Science Education England, National Infection Service, Porton Down, Salisbury, United Kingdom, Department of Anaesthesia Intensive Care and Research Mohali, India and Pain Medicine, Division of Population Medicine, Cardiff University, Cardiff, United Kingdom Tao Zeng, Shanghai Research Center for Brain Sepsis is defined as dysregulated host response caused by systemic infection, leading Science and Brain-Inspired Intelligence, China to organ failure. It is a life-threatening condition, often requiring admission to an intensive *Correspondence: care unit (ICU). The causative agents and processes involved are multifactorial but are Tamas Szakmany characterized by an overarching inflammatory response, sharing elements in common [email protected] with severe inflammatory response syndrome (SIRS) of non-infectious origin. Sepsis †These authors have contributed presents with a range of pathophysiological and genetic features which make clinical equally to this work differentiation from SIRS very challenging. This may reflect a poor understanding of Specialty section: the key gene inter-activities and/or pathway associations underlying these disease This article was submitted to processes.
    [Show full text]
  • Human CD Marker Chart Reviewed by HLDA1 Bdbiosciences.Com/Cdmarkers
    BD Biosciences Human CD Marker Chart Reviewed by HLDA1 bdbiosciences.com/cdmarkers 23-12399-01 CD Alternative Name Ligands & Associated Molecules T Cell B Cell Dendritic Cell NK Cell Stem Cell/Precursor Macrophage/Monocyte Granulocyte Platelet Erythrocyte Endothelial Cell Epithelial Cell CD Alternative Name Ligands & Associated Molecules T Cell B Cell Dendritic Cell NK Cell Stem Cell/Precursor Macrophage/Monocyte Granulocyte Platelet Erythrocyte Endothelial Cell Epithelial Cell CD Alternative Name Ligands & Associated Molecules T Cell B Cell Dendritic Cell NK Cell Stem Cell/Precursor Macrophage/Monocyte Granulocyte Platelet Erythrocyte Endothelial Cell Epithelial Cell CD1a R4, T6, Leu6, HTA1 b-2-Microglobulin, CD74 + + + – + – – – CD93 C1QR1,C1qRP, MXRA4, C1qR(P), Dj737e23.1, GR11 – – – – – + + – – + – CD220 Insulin receptor (INSR), IR Insulin, IGF-2 + + + + + + + + + Insulin-like growth factor 1 receptor (IGF1R), IGF-1R, type I IGF receptor (IGF-IR), CD1b R1, T6m Leu6 b-2-Microglobulin + + + – + – – – CD94 KLRD1, Kp43 HLA class I, NKG2-A, p39 + – + – – – – – – CD221 Insulin-like growth factor 1 (IGF-I), IGF-II, Insulin JTK13 + + + + + + + + + CD1c M241, R7, T6, Leu6, BDCA1 b-2-Microglobulin + + + – + – – – CD178, FASLG, APO-1, FAS, TNFRSF6, CD95L, APT1LG1, APT1, FAS1, FASTM, CD95 CD178 (Fas ligand) + + + + + – – IGF-II, TGF-b latency-associated peptide (LAP), Proliferin, Prorenin, Plasminogen, ALPS1A, TNFSF6, FASL Cation-independent mannose-6-phosphate receptor (M6P-R, CIM6PR, CIMPR, CI- CD1d R3G1, R3 b-2-Microglobulin, MHC II CD222 Leukemia
    [Show full text]
  • Engineered Type 1 Regulatory T Cells Designed for Clinical Use Kill Primary
    ARTICLE Acute Myeloid Leukemia Engineered type 1 regulatory T cells designed Ferrata Storti Foundation for clinical use kill primary pediatric acute myeloid leukemia cells Brandon Cieniewicz,1* Molly Javier Uyeda,1,2* Ping (Pauline) Chen,1 Ece Canan Sayitoglu,1 Jeffrey Mao-Hwa Liu,1 Grazia Andolfi,3 Katharine Greenthal,1 Alice Bertaina,1,4 Silvia Gregori,3 Rosa Bacchetta,1,4 Norman James Lacayo,1 Alma-Martina Cepika1,4# and Maria Grazia Roncarolo1,2,4# Haematologica 2021 Volume 106(10):2588-2597 1Department of Pediatrics, Division of Stem Cell Transplantation and Regenerative Medicine, Stanford School of Medicine, Stanford, CA, USA; 2Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA, USA; 3San Raffaele Telethon Institute for Gene Therapy, Milan, Italy and 4Center for Definitive and Curative Medicine, Stanford School of Medicine, Stanford, CA, USA *BC and MJU contributed equally as co-first authors #AMC and MGR contributed equally as co-senior authors ABSTRACT ype 1 regulatory (Tr1) T cells induced by enforced expression of interleukin-10 (LV-10) are being developed as a novel treatment for Tchemotherapy-resistant myeloid leukemias. In vivo, LV-10 cells do not cause graft-versus-host disease while mediating graft-versus-leukemia effect against adult acute myeloid leukemia (AML). Since pediatric AML (pAML) and adult AML are different on a genetic and epigenetic level, we investigate herein whether LV-10 cells also efficiently kill pAML cells. We show that the majority of primary pAML are killed by LV-10 cells, with different levels of sensitivity to killing. Transcriptionally, pAML sensitive to LV-10 killing expressed a myeloid maturation signature.
    [Show full text]
  • A Neutrophil Activation Signature in Covid-19 Athanasios Didangelos
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 April 2020 doi:10.20944/preprints202004.0363.v1 A Neutrophil activation signature in Covid-19 Athanasios Didangelos (PhD) [email protected] University of Leicester, Mayer IgA Nephropathy Laboratory, University of Leicester, Leicester, LE1 7RH, United Kingdom Abstract Covid-19 is often related to hyperinflammation that drives lung or multi-organ damage and mortality. The immunopathological mechanisms that cause excessive inflammation following SARS-Cov-2 infection are under investigation while different approaches to limit hyperinflammation in affected patients are being proposed. Here, a computational network approach was used on recently available data to identify possible Covid-19 inflammatory mechanisms. First, network analysis of putative SARS-Cov-2 cellular receptors and their directly associated interacting proteins, led to the mining of a robust neutrophil-response signature and multiple relevant inflammatory response genes. Second, analysis of RNA-seq datasets of lung epithelial cells infected with SARS-Cov-2 found that infected cells specifically expressed neutrophil-attracting chemokines, further supporting the likely role of neutrophils in Covid-19 inflammation. The role of neutrophils in Covid-19 needs to be studied further. Different immunoregulatory molecules and pathways presented here (TNF Receptor, IL8, CXCR1, CXCR2, ADAM10, GPR84, MME-neprilysin, ANPEP, LAP3) are druggable and might be therapeutic targets in efforts to limit SARS-Cov-2 inflammation in severe clinical cases. Introduction New studies have highlighted that Covid-19 is often characterised by an extreme inflammatory response associated with lung and multi-organ injury and mortality and have suggested promising anti-inflammatory options (1). Other studies recommend caution with immunosuppression given that regulated inflammation is necessary for an effective anti-viral response (2).
    [Show full text]
  • Mouse CD Marker Chart Bdbiosciences.Com/Cdmarkers
    BD Mouse CD Marker Chart bdbiosciences.com/cdmarkers 23-12400-01 CD Alternative Name Ligands & Associated Molecules T Cell B Cell Dendritic Cell NK Cell Stem Cell/Precursor Macrophage/Monocyte Granulocyte Platelet Erythrocyte Endothelial Cell Epithelial Cell CD Alternative Name Ligands & Associated Molecules T Cell B Cell Dendritic Cell NK Cell Stem Cell/Precursor Macrophage/Monocyte Granulocyte Platelet Erythrocyte Endothelial Cell Epithelial Cell CD Alternative Name Ligands & Associated Molecules T Cell B Cell Dendritic Cell NK Cell Stem Cell/Precursor Macrophage/Monocyte Granulocyte Platelet Erythrocyte Endothelial Cell Epithelial Cell CD1d CD1.1, CD1.2, Ly-38 Lipid, Glycolipid Ag + + + + + + + + CD104 Integrin b4 Laminin, Plectin + DNAX accessory molecule 1 (DNAM-1), Platelet and T cell CD226 activation antigen 1 (PTA-1), T lineage-specific activation antigen 1 CD112, CD155, LFA-1 + + + + + – + – – CD2 LFA-2, Ly-37, Ly37 CD48, CD58, CD59, CD15 + + + + + CD105 Endoglin TGF-b + + antigen (TLiSA1) Mucin 1 (MUC1, MUC-1), DF3 antigen, H23 antigen, PUM, PEM, CD227 CD54, CD169, Selectins; Grb2, β-Catenin, GSK-3β CD3g CD3g, CD3 g chain, T3g TCR complex + CD106 VCAM-1 VLA-4 + + EMA, Tumor-associated mucin, Episialin + + + + + + Melanotransferrin (MT, MTF1), p97 Melanoma antigen CD3d CD3d, CD3 d chain, T3d TCR complex + CD107a LAMP-1 Collagen, Laminin, Fibronectin + + + CD228 Iron, Plasminogen, pro-UPA (p97, MAP97), Mfi2, gp95 + + CD3e CD3e, CD3 e chain, CD3, T3e TCR complex + + CD107b LAMP-2, LGP-96, LAMP-B + + Lymphocyte antigen 9 (Ly9),
    [Show full text]