Julia Language Companion

Total Page:16

File Type:pdf, Size:1020Kb

Julia Language Companion Introduction to Applied Linear Algebra Vectors, Matrices, and Least Squares Julia Language Companion Stephen Boyd and Lieven Vandenberghe DRAFT March 28, 2021 Contents Preface vii Getting started with Julia ix 1 Vectors 1 1.1 Vectors ................................... 1 1.2 Vector addition .............................. 9 1.3 Scalar-vector multiplication ........................ 9 1.4 Inner product ............................... 14 1.5 Complexity of vector computations .................... 15 2 Linear functions 17 2.1 Linear functions .............................. 17 2.2 Taylor approximation ........................... 18 2.3 Regression model ............................. 19 3 Norm and distance 23 3.1 Norm .................................... 23 3.2 Distance .................................. 25 3.3 Standard deviation ............................. 26 3.4 Angle .................................... 27 3.5 Complexity ................................. 28 4 Clustering 31 4.1 Clustering ................................. 31 4.2 A clustering objective ........................... 31 4.3 The k-means algorithm .......................... 32 4.4 Examples .................................. 35 4.5 Applications ................................ 39 5 Linear independence 41 5.1 Linear dependence ............................. 41 5.2 Basis .................................... 41 5.3 Orthonormal vectors ............................ 42 5.4 Gram–Schmidt algorithm ......................... 43 iv Contents 6 Matrices 47 6.1 Matrices .................................. 47 6.2 Zero and identity matrices ........................ 52 6.3 Transpose, addition, and norm ...................... 56 6.4 Matrix-vector multiplication ........................ 58 6.5 Complexity ................................. 61 7 Matrix examples 63 7.1 Geometric transformations ........................ 63 7.2 Selectors .................................. 63 7.3 Incidence matrix .............................. 65 7.4 Convolution ................................ 67 8 Linear equations 69 8.1 Linear and affine functions ........................ 69 8.2 Linear function models .......................... 71 8.3 Systems of linear equations ........................ 73 9 Linear dynamical systems 75 9.1 Linear dynamical systems ......................... 75 9.2 Population dynamics ........................... 76 9.3 Epidemic dynamics ............................ 77 9.4 Motion of a mass ............................. 77 9.5 Supply chain dynamics .......................... 78 10 Matrix multiplication 81 10.1 Matrix-matrix multiplication ....................... 81 10.2 Composition of linear functions ...................... 82 10.3 Matrix power ............................... 83 10.4 QR factorization .............................. 84 11 Matrix inverses 87 11.1 Left and right inverses ........................... 87 11.2 Inverse ................................... 88 11.3 Solving linear equations .......................... 89 11.4 Examples .................................. 92 11.5 Pseudo-inverse ............................... 93 12 Least squares 95 12.1 Least squares problem ........................... 95 12.2 Solution .................................. 96 12.3 Solving least squares problems ...................... 97 12.4 Examples .................................. 98 13 Least squares data fitting 101 13.1 Least squares data fitting ......................... 101 13.2 Validation ................................. 107 13.3 Feature engineering ............................ 110 Contents v 14 Least squares classification 115 14.1 Classification ................................ 115 14.2 Least squares classifier ........................... 116 14.3 Multi-class classifiers ........................... 117 15 Multi-objective least squares 123 15.1 Multi-objective least squares ....................... 123 15.2 Control ................................... 126 15.3 Estimation and inversion ......................... 126 15.4 Regularized data fitting .......................... 127 15.5 Complexity ................................. 129 16 Constrained least squares 131 16.1 Constrained least squares problem .................... 131 16.2 Solution .................................. 133 16.3 Solving contrained least squares problems ................ 134 17 Constrained least squares applications 137 17.1 Portfolio optimization ........................... 137 17.2 Linear quadratic control .......................... 139 17.3 Linear quadratic state estimation ..................... 145 18 Nonlinear least squares 147 18.1 Nonlinear equations and least squares .................. 147 18.2 Gauss–Newton algorithm ......................... 147 18.3 Levenberg–Marquardt algorithm ..................... 149 18.4 Nonlinear model fitting .......................... 154 18.5 Nonlinear least squares classification ................... 157 19 Constrained nonlinear least squares 159 19.1 Constrained nonlinear least squares .................... 159 19.2 Penalty algorithm ............................. 159 19.3 Augmented Lagrangian algorithm ..................... 161 19.4 Nonlinear control ............................. 163 Appendices 165 A The VMLS package 167 A.1 Utility functions .............................. 167 A.2 Algorithms ................................. 168 A.3 Data sets .................................. 169 vi Contents Preface This Julia Language Companion accompanies our book Introduction to Applied Linear Algebra: Vectors, Matrices, and Least Squares (referred to here as VMLS). It is meant to show how the ideas and methods in VMLS can be expressed and implemented in the programming language Julia. We assume that the reader has installed Julia, or is using Juliabox online, and understands the basics of the language. We also assume that the reader has care- fully read the relevant sections of VMLS. The organization of the Julia Language Companion follows VMLS, section by section. You will see that mathematical notation and Julia syntax are pretty close, but not the same. You must be careful to never confuse mathematical notation and Julia syntax. In these notes we write mathematical notation (as in VMLS) in standard mathematics font, e.g., y = Ax. Julia code, expressions, and snippets are written in a fixed-width typewriter font, e.g., y = A*x. We encourage you to cut and paste our Julia code snippets into a Julia interactive session or notebook, to test them out, and maybe modify them and run them again. You can also use our snippets as templates for your own Julia code. At some point we will collect the Julia snippets in this companion document into Julia notebooks that you can easily run. Julia is a very powerful language, but in this companion document we use only a small and limited set of its features. The code snippets in this companion are written so as to be transparent and simple, and to emphasize closeness to the concepts in VMLS. Some of the code snippets could be written in a much more compact way, or in a way that would result in faster or more efficient execution. The code snippets in this companion document are compatible with Julia 1.0, which is not quite the same as earlier versions, like Julia 0.6. Some of the functions we use are in the standard packages LinearAlgebra, SparseArrays, and Plots, and a few others. We have created a simple and small Julia package VMLS, which includes a small number of simple Julia functions that are useful for studying the material in VMLS. The next section, Getting started with Julia, explains how to install these Julia packages. We consider this companion to be a draft. We’ll be updating it occasionally, adding more examples and fixing typos as we become aware of them. So you may wish to periodically check whether a newer version is available. Stephen Boyd Stanford, California Lieven Vandenberghe Los Angeles, California Getting started with Julia Installing Julia. Download Julia 1.0 or higher from its website, and then follow the instructions to install it on your platform. You’ll want to make sure it’s working before proceeding to install additional packages, as described below. Installing packages. While most of the Julia code we use in this companion is from the base or core of the Julia language, several important functions are con- tained in other packages that you must explicitly install. Here we explain how to do this. The installation has to be done only once. To add (install) a Julia package you use the package manager system, which is entered by typing ] to the Julia prompt. You’ll then see the package manager prompt, (@v1.6) pkg>. If you type ?, you’ll see a list of package manager com- mands. You exit the package manager by typing Ctrl-C (Control-C), which returns you to the julia prompt. To add a package called PackageName, type add PackageName to the package control prompt. It may take a few minutes to get the required packages, compile, and install them. If you type status, you’ll see what packages are installed. If you type up, installed packages will be upgraded, if needed. This companion will use functions from the following packages: • LinearAlgebra • SparseArrays • Plots On a few occasions we use functions from the packages Random and DSP, but we will mention this in the text when we use these functions. Here’s what it looks like when you install the Plots package. julia> ] (@v1.6) pkg> add Plots Updating registry at `~/.julia/registries/General` Updating git-repo `https://github.com/JuliaRegistries/General.git` Resolving package versions... Updating `~/.julia/environments/v1.6/Project.toml`
Recommended publications
  • Python – an Introduction
    Python { AN IntroduCtion . default parameters . self documenting code Example for extensions: Gnuplot Hans Fangohr, [email protected], CED Seminar 05/02/2004 ² The wc program in Python ² Summary Overview ² Outlook ² Why Python ² Literature: How to get started ² Interactive Python (IPython) ² M. Lutz & D. Ascher: Learning Python Installing extra modules ² ² ISBN: 1565924649 (1999) (new edition 2004, ISBN: Lists ² 0596002815). We point to this book (1999) where For-loops appropriate: Chapter 1 in LP ² ! if-then ² modules and name spaces Alex Martelli: Python in a Nutshell ² ² while ISBN: 0596001886 ² string handling ² ¯le-input, output Deitel & Deitel et al: Python { How to Program ² ² functions ISBN: 0130923613 ² Numerical computation ² some other features Other resources: ² . long numbers www.python.org provides extensive . exceptions ² documentation, tools and download. dictionaries Python { an introduction 1 Python { an introduction 2 Why Python? How to get started: The interpreter and how to run code Chapter 1, p3 in LP Chapter 1, p12 in LP ! Two options: ! All sorts of reasons ;-) interactive session ² ² . Object-oriented scripting language . start Python interpreter (python.exe, python, . power of high-level language double click on icon, . ) . portable, powerful, free . prompt appears (>>>) . mixable (glue together with C/C++, Fortran, . can enter commands (as on MATLAB prompt) . ) . easy to use (save time developing code) execute program ² . easy to learn . Either start interpreter and pass program name . (in-built complex numbers) as argument: python.exe myfirstprogram.py Today: . ² Or make python-program executable . easy to learn (Unix/Linux): . some interesting features of the language ./myfirstprogram.py . use as tool for small sysadmin/data . Note: python-programs tend to end with .py, processing/collecting tasks but this is not necessary.
    [Show full text]
  • Introduction to GNU Octave
    Introduction to GNU Octave Hubert Selhofer, revised by Marcel Oliver updated to current Octave version by Thomas L. Scofield 2008/08/16 line 1 1 0.8 0.6 0.4 0.2 0 -0.2 -0.4 8 6 4 2 -8 -6 0 -4 -2 -2 0 -4 2 4 -6 6 8 -8 Contents 1 Basics 2 1.1 What is Octave? ........................... 2 1.2 Help! . 2 1.3 Input conventions . 3 1.4 Variables and standard operations . 3 2 Vector and matrix operations 4 2.1 Vectors . 4 2.2 Matrices . 4 1 2.3 Basic matrix arithmetic . 5 2.4 Element-wise operations . 5 2.5 Indexing and slicing . 6 2.6 Solving linear systems of equations . 7 2.7 Inverses, decompositions, eigenvalues . 7 2.8 Testing for zero elements . 8 3 Control structures 8 3.1 Functions . 8 3.2 Global variables . 9 3.3 Loops . 9 3.4 Branching . 9 3.5 Functions of functions . 10 3.6 Efficiency considerations . 10 3.7 Input and output . 11 4 Graphics 11 4.1 2D graphics . 11 4.2 3D graphics: . 12 4.3 Commands for 2D and 3D graphics . 13 5 Exercises 13 5.1 Linear algebra . 13 5.2 Timing . 14 5.3 Stability functions of BDF-integrators . 14 5.4 3D plot . 15 5.5 Hilbert matrix . 15 5.6 Least square fit of a straight line . 16 5.7 Trapezoidal rule . 16 1 Basics 1.1 What is Octave? Octave is an interactive programming language specifically suited for vectoriz- able numerical calculations.
    [Show full text]
  • Gretl User's Guide
    Gretl User’s Guide Gnu Regression, Econometrics and Time-series Allin Cottrell Department of Economics Wake Forest university Riccardo “Jack” Lucchetti Dipartimento di Economia Università Politecnica delle Marche December, 2008 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.1 or any later version published by the Free Software Foundation (see http://www.gnu.org/licenses/fdl.html). Contents 1 Introduction 1 1.1 Features at a glance ......................................... 1 1.2 Acknowledgements ......................................... 1 1.3 Installing the programs ....................................... 2 I Running the program 4 2 Getting started 5 2.1 Let’s run a regression ........................................ 5 2.2 Estimation output .......................................... 7 2.3 The main window menus ...................................... 8 2.4 Keyboard shortcuts ......................................... 11 2.5 The gretl toolbar ........................................... 11 3 Modes of working 13 3.1 Command scripts ........................................... 13 3.2 Saving script objects ......................................... 15 3.3 The gretl console ........................................... 15 3.4 The Session concept ......................................... 16 4 Data files 19 4.1 Native format ............................................. 19 4.2 Other data file formats ....................................... 19 4.3 Binary databases ..........................................
    [Show full text]
  • Automated Likelihood Based Inference for Stochastic Volatility Models H
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Institutional Knowledge at Singapore Management University Singapore Management University Institutional Knowledge at Singapore Management University Research Collection School Of Economics School of Economics 11-2009 Automated Likelihood Based Inference for Stochastic Volatility Models H. Skaug Jun YU Singapore Management University, [email protected] Follow this and additional works at: https://ink.library.smu.edu.sg/soe_research Part of the Econometrics Commons Citation Skaug, H. and YU, Jun. Automated Likelihood Based Inference for Stochastic Volatility Models. (2009). 1-28. Research Collection School Of Economics. Available at: https://ink.library.smu.edu.sg/soe_research/1151 This Working Paper is brought to you for free and open access by the School of Economics at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in Research Collection School Of Economics by an authorized administrator of Institutional Knowledge at Singapore Management University. For more information, please email [email protected]. Automated Likelihood Based Inference for Stochastic Volatility Models Hans J. SKAUG , Jun YU November 2009 Paper No. 15-2009 ANY OPINIONS EXPRESSED ARE THOSE OF THE AUTHOR(S) AND NOT NECESSARILY THOSE OF THE SCHOOL OF ECONOMICS, SMU Automated Likelihood Based Inference for Stochastic Volatility Models¤ Hans J. Skaug,y Jun Yuz October 7, 2008 Abstract: In this paper the Laplace approximation is used to perform classical and Bayesian analyses of univariate and multivariate stochastic volatility (SV) models. We show that imple- mentation of the Laplace approximation is greatly simpli¯ed by the use of a numerical technique known as automatic di®erentiation (AD).
    [Show full text]
  • Julia: a Fresh Approach to Numerical Computing∗
    SIAM REVIEW c 2017 Society for Industrial and Applied Mathematics Vol. 59, No. 1, pp. 65–98 Julia: A Fresh Approach to Numerical Computing∗ Jeff Bezansony Alan Edelmanz Stefan Karpinskix Viral B. Shahy Abstract. Bridging cultures that have often been distant, Julia combines expertise from the diverse fields of computer science and computational science to create a new approach to numerical computing. Julia is designed to be easy and fast and questions notions generally held to be \laws of nature" by practitioners of numerical computing: 1. High-level dynamic programs have to be slow. 2. One must prototype in one language and then rewrite in another language for speed or deployment. 3. There are parts of a system appropriate for the programmer, and other parts that are best left untouched as they have been built by the experts. We introduce the Julia programming language and its design|a dance between special- ization and abstraction. Specialization allows for custom treatment. Multiple dispatch, a technique from computer science, picks the right algorithm for the right circumstance. Abstraction, which is what good computation is really about, recognizes what remains the same after differences are stripped away. Abstractions in mathematics are captured as code through another technique from computer science, generic programming. Julia shows that one can achieve machine performance without sacrificing human con- venience. Key words. Julia, numerical, scientific computing, parallel AMS subject classifications. 68N15, 65Y05, 97P40 DOI. 10.1137/141000671 Contents 1 Scientific Computing Languages: The Julia Innovation 66 1.1 Julia Architecture and Language Design Philosophy . 67 ∗Received by the editors December 18, 2014; accepted for publication (in revised form) December 16, 2015; published electronically February 7, 2017.
    [Show full text]
  • Programming for Computations – Python
    15 Svein Linge · Hans Petter Langtangen Programming for Computations – Python Editorial Board T. J.Barth M.Griebel D.E.Keyes R.M.Nieminen D.Roose T.Schlick Texts in Computational 15 Science and Engineering Editors Timothy J. Barth Michael Griebel David E. Keyes Risto M. Nieminen Dirk Roose Tamar Schlick More information about this series at http://www.springer.com/series/5151 Svein Linge Hans Petter Langtangen Programming for Computations – Python A Gentle Introduction to Numerical Simulations with Python Svein Linge Hans Petter Langtangen Department of Process, Energy and Simula Research Laboratory Environmental Technology Lysaker, Norway University College of Southeast Norway Porsgrunn, Norway On leave from: Department of Informatics University of Oslo Oslo, Norway ISSN 1611-0994 Texts in Computational Science and Engineering ISBN 978-3-319-32427-2 ISBN 978-3-319-32428-9 (eBook) DOI 10.1007/978-3-319-32428-9 Springer Heidelberg Dordrecht London New York Library of Congress Control Number: 2016945368 Mathematic Subject Classification (2010): 26-01, 34A05, 34A30, 34A34, 39-01, 40-01, 65D15, 65D25, 65D30, 68-01, 68N01, 68N19, 68N30, 70-01, 92D25, 97-04, 97U50 © The Editor(s) (if applicable) and the Author(s) 2016 This book is published open access. Open Access This book is distributed under the terms of the Creative Commons Attribution-Non- Commercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/), which permits any noncommercial use, duplication, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, a link is provided to the Creative Commons license and any changes made are indicated.
    [Show full text]
  • Learning Econometrics with GAUSS
    Learning Econometrics with GAUSS by Ching-Fan Chung Institute of Economics, Academia Sinica ♠ · ♥ · ♦ · ♣ ii Contents 1 Introduction 1 1.1 Getting Started with GAUSS . 2 1.1.1 Executing DOS Commands in GAUSS . 3 1.1.2 Some GAUSS Keystrokes . 3 1.1.3 A Note on Computer Memory . 4 1.2 The GAUSS Editor . 4 1.3 GAUSS Statements . 5 1.3.1 Some Syntax Rules . 6 1.3.2 Two Types of Errors . 6 2 Data Input and Output 9 2.1 ASCII Files . 9 2.1.1 ASCII Data Files . 10 2.1.2 ASCII Output Files . 11 2.1.3 Other Commands Related to ASCII Output Files . 12 2.1.4 An Example . 13 2.2 Matrix Files . 15 3 Basic Algebraic Operations 17 3.1 Arithmetic Operators . 17 3.2 Element-by-Element Operations . 17 3.3 Other Arithmetic Operators . 18 3.4 Priority of the Arithmetic Operators . 19 3.5 Matrix Concatenation and Indexing Matrices . 20 4 GAUSS Commands 23 4.1 Special Matrices . 23 4.2 Simple Statistical Commands . 23 4.3 Simple Mathematical Commands . 24 4.4 Matrix Manipulation . 24 4.5 Basic Control Commands . 25 4.6 Some Examples . 26 4.7 Character Matrices and Strings . 34 4.7.1 Character Matrices . 34 4.7.2 Strings . 35 4.7.3 The Data Type . 36 4.7.4 Three Useful GAUSS Commands . 36 5 GAUSS Program for Linear Regression 41 5.1 A Brief Review . 41 5.1.1 The Ordinary Least Squares Estimation . 41 5.1.2 Analysis of Variance .
    [Show full text]
  • Using Gretl for Principles of Econometrics, 4Th Edition Version 1.0411
    Using gretl for Principles of Econometrics, 4th Edition Version 1.0411 Lee C. Adkins Professor of Economics Oklahoma State University April 7, 2014 1Visit http://www.LearnEconometrics.com/gretl.html for the latest version of this book. Also, check the errata (page 459) for changes since the last update. License Using gretl for Principles of Econometrics, 4th edition. Copyright c 2011 Lee C. Adkins. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.1 or any later version published by the Free Software Foundation (see AppendixF for details). i Preface The previous edition of this manual was about using the software package called gretl to do various econometric tasks required in a typical two course undergraduate or masters level econo- metrics sequence. This version tries to do the same, but several enhancements have been made that will interest those teaching more advanced courses. I have come to appreciate the power and usefulness of gretl's powerful scripting language, now called hansl. Hansl is powerful enough to do some serious computing, but simple enough for novices to learn. In this version of the book, you will find more information about writing functions and using loops to obtain basic results. The programs have been generalized in many instances so that they could be adapted for other uses if desired. As I learn more about hansl specifically and programming in general, I will no doubt revise some of the code contained here. Stay tuned for further developments. As with the last edition, the book is written specifically to be used with a particular textbook, Principles of Econometrics, 4th edition (POE4 ) by Hill, Griffiths, and Lim.
    [Show full text]
  • Gretl Manual
    Gretl Manual Gnu Regression, Econometrics and Time-series Library Allin Cottrell Department of Economics Wake Forest University August, 2005 Gretl Manual: Gnu Regression, Econometrics and Time-series Library by Allin Cottrell Copyright © 2001–2005 Allin Cottrell Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.1 or any later version published by the Free Software Foundation (see http://www.gnu.org/licenses/fdl.html). iii Table of Contents 1. Introduction........................................................................................................................................... 1 Features at a glance ......................................................................................................................... 1 Acknowledgements .......................................................................................................................... 1 Installing the programs................................................................................................................... 2 2. Getting started ...................................................................................................................................... 4 Let’s run a regression ...................................................................................................................... 4 Estimation output............................................................................................................................. 6 The
    [Show full text]
  • SDSU Sage Tutorial Documentation Release 1.2
    SDSU Sage Tutorial Documentation Release 1.2 Michael O’Sullivan, David Monarres, Matteo Polimeno Jan 25, 2019 CONTENTS 1 About this tutorial 3 1.1 Introduction...............................................3 1.2 Getting Started..............................................3 1.3 Contributing to the tutorial........................................ 11 2 SageMath as a Calculator 13 2.1 Arithmetic and Functions........................................ 13 2.2 Solving Equations and Inequalities................................... 19 2.3 Calculus................................................. 21 2.4 Statistics................................................. 26 2.5 Plotting.................................................. 27 3 Programming in SageMath 39 3.1 SageMath Objects............................................ 39 3.2 Programming Tools........................................... 54 3.3 Packages within SageMath........................................ 61 3.4 Interactive Demonstrations in the Notebook............................... 66 4 Mathematical Structures 73 4.1 Integers and Modular Arithmetic.................................... 73 4.2 Groups.................................................. 78 4.3 Linear Algebra.............................................. 88 4.4 Rings................................................... 98 4.5 Fields................................................... 109 4.6 Coding Theory.............................................. 114 Bibliography 123 Index 125 i ii SDSU Sage Tutorial Documentation, Release 1.2 Contents:
    [Show full text]
  • Econometrics with Octave
    Econometrics with Octave Dirk Eddelb¨uttel∗ Bank of Montreal, Toronto, Canada. [email protected] November 1999 Summary GNU Octave is an open-source implementation of a (mostly Matlab compatible) high-level language for numerical computations. This review briefly introduces Octave, discusses applications of Octave in an econometric context, and illustrates how to extend Octave with user-supplied C++ code. Several examples are provided. 1 Introduction Econometricians sweat linear algebra. Be it for linear or non-linear problems of estimation or infer- ence, matrix algebra is a natural way of expressing these problems on paper. However, when it comes to writing computer programs to either implement tried and tested econometric procedures, or to research and prototype new routines, programming languages such as C or Fortran are more of a bur- den than an aid. Having to enhance the language by supplying functions for even the most primitive operations adds extra programming effort, introduces new points of failure, and moves the level of abstraction further away from the elegant mathematical expressions. As Eddelb¨uttel(1996) argues, object-oriented programming provides `a step up' from Fortran or C by enabling the programmer to seamlessly add new data types such as matrices, along with operations on these new data types, to the language. But with Moore's Law still being validated by ever and ever faster processors, and, hence, ever increasing computational power, the prime reason for using compiled code, i.e. speed, becomes less relevant. Hence the growing popularity of interpreted programming languages, both, in general, as witnessed by the surge in popularity of the general-purpose programming languages Perl and Python and, in particular, for numerical applications with strong emphasis on matrix calculus where languages such as Gauss, Matlab, Ox, R and Splus, which were reviewed by Cribari-Neto and Jensen (1997), Cribari-Neto (1997) and Cribari-Neto and Zarkos (1999), have become popular.
    [Show full text]
  • Lecture 5: Scientific Computing Languages
    Scientific Computing Languages (Lectures on High-performance Computing for Economists V) Jes´usFern´andez-Villaverde1 and Pablo Guerr´on2 September 15, 2021 1University of Pennsylvania 2Boston College Programming languages for scientific computation • General-purpose languages (GPL): 1. C++. 2. Python. • Domain-specific languages (DSL): 1. Julia. 2. R. 3. Matlab. • If you want to undertake research on computational-intensive papers, learning a GPL is probably worthwhile. • Moreover, knowing a GPL will make you a better user of a DSL. 1 C++ C/C++ • C/C++ is the infrastructure of much of the modern computing world. • If you know Unix and C/C++, you can probably master everything else easily (think of Latin and Romance languages!). • In some sense, C++ is really a \federation" of languages. • What is the difference between C and C++? • C++ introduced full OOP support. 2 C++ • General-purpose, multi-paradigm, static partially inferred typed, compiled language. • Current standard is C++20 (published in December 2020). C++23 in preview release. • Developed by Bjarne Stroustrup at Bells Labs in the early 1980s. • C++ has a more modern design and approach to programming than predecessor languages. Enormously influential in successor languages. • If you know C++, you will be able to read C legacy code without much problem. • In fact, nearly all C programs are valid C++ programs (the converse is not true). • But you should try to \think" in C++20, not in C or even in older C++ standards. 3 4 C++: advantages 1. Powerful language: you can code anything you can imagine in C++. 2. Continuously evolving but with a standard: new implementations have support for meta-programming, functional programming,..
    [Show full text]