4 Number Theory I: Prime Numbers
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
81684-1B SP.Pdf
INTERMEDIATE ALGEBRA The Why and the How First Edition Mathew Baxter Florida Gulf Coast University Bassim Hamadeh, CEO and Publisher Jess Estrella, Senior Graphic Designer Jennifer McCarthy, Acquisitions Editor Gem Rabanera, Project Editor Abbey Hastings, Associate Production Editor Chris Snipes, Interior Designer Natalie Piccotti, Senior Marketing Manager Kassie Graves, Director of Acquisitions Jamie Giganti, Senior Managing Editor Copyright © 2018 by Cognella, Inc. All rights reserved. No part of this publication may be reprinted, reproduced, transmitted, or utilized in any form or by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information retrieval system without the written permission of Cognella, Inc. For inquiries regarding permissions, translations, foreign rights, audio rights, and any other forms of reproduction, please contact the Cognella Licensing Department at [email protected]. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Cover image copyright © Depositphotos/agsandrew. Printed in the United States of America ISBN: 978-1-5165-0303-2 (pbk) / 978-1-5165-0304-9 (br) iii | CONTENTS 1 The Real Number System 1 RealNumbersandTheirProperties 2:1.1 RealNumbers 2 PropertiesofRealNumbers 6 Section1.1Exercises 9 TheFourBasicOperations 11:1.2 AdditionandSubtraction 11 MultiplicationandDivision -
The Unique Natural Number Set and Distributed Prime Numbers
mp Co uta & tio d n e a li Jabur and Kushnaw, J Appl Computat Math 2017, 6:4 l p M p a Journal of A t h DOI: 10.4172/2168-9679.1000368 f e o m l a a n t r ISSN: 2168-9679i c u s o J Applied & Computational Mathematics Research Article Open Access The Unique Natural Number Set and Distributed Prime Numbers Alabed TH1* and Bashir MB2 1Computer Science, Shendi University, Shendi, Sudan 2Shendi University, Shendi, Sudan Abstract The Natural number set has a new number set behind three main subset: odd, even and prime which are unique number set. It comes from a mathematical relationship between the two main types even and odd number set. It consists of prime and T-semi-prime numbers set. However, finding ways to understand how prime number was distributed was ambiguity and it is impossible, this new natural set show how the prime number was distributed and highlight focusing on T-semi-prime number as a new sub natural set. Keywords: Prime number; T-semi-prime number; Unique number purely mathematical sciences and it has been used prime number set within theoretical physics to try and produce a theory that ties together prime numbers with quantum chaos theory [3]. However, researchers Introduction were made a big effort to find algorithm which can describe how prime The Unique natural number set is sub natural number set which number are distributed, still distribution of prime numbers throughout consist of prime and T-semi-prime numbers. T-semi-prime is natural a list of integers leads to the emergence of many unanswered and number divided by one or more prime numbers. -
An Amazing Prime Heuristic.Pdf
This document has been moved to https://arxiv.org/abs/2103.04483 Please use that version instead. AN AMAZING PRIME HEURISTIC CHRIS K. CALDWELL 1. Introduction The record for the largest known twin prime is constantly changing. For example, in October of 2000, David Underbakke found the record primes: 83475759 264955 1: · The very next day Giovanni La Barbera found the new record primes: 1693965 266443 1: · The fact that the size of these records are close is no coincidence! Before we seek a record like this, we usually try to estimate how long the search might take, and use this information to determine our search parameters. To do this we need to know how common twin primes are. It has been conjectured that the number of twin primes less than or equal to N is asymptotic to N dx 2C2N 2C2 2 2 Z2 (log x) ∼ (log N) where C2, called the twin prime constant, is approximately 0:6601618. Using this we can estimate how many numbers we will need to try before we find a prime. In the case of Underbakke and La Barbera, they were both using the same sieving software (NewPGen1 by Paul Jobling) and the same primality proving software (Proth.exe2 by Yves Gallot) on similar hardware{so of course they choose similar ranges to search. But where does this conjecture come from? In this chapter we will discuss a general method to form conjectures similar to the twin prime conjecture above. We will then apply it to a number of different forms of primes such as Sophie Germain primes, primes in arithmetic progressions, primorial primes and even the Goldbach conjecture. -
A Short and Simple Proof of the Riemann's Hypothesis
A Short and Simple Proof of the Riemann’s Hypothesis Charaf Ech-Chatbi To cite this version: Charaf Ech-Chatbi. A Short and Simple Proof of the Riemann’s Hypothesis. 2021. hal-03091429v10 HAL Id: hal-03091429 https://hal.archives-ouvertes.fr/hal-03091429v10 Preprint submitted on 5 Mar 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A Short and Simple Proof of the Riemann’s Hypothesis Charaf ECH-CHATBI ∗ Sunday 21 February 2021 Abstract We present a short and simple proof of the Riemann’s Hypothesis (RH) where only undergraduate mathematics is needed. Keywords: Riemann Hypothesis; Zeta function; Prime Numbers; Millennium Problems. MSC2020 Classification: 11Mxx, 11-XX, 26-XX, 30-xx. 1 The Riemann Hypothesis 1.1 The importance of the Riemann Hypothesis The prime number theorem gives us the average distribution of the primes. The Riemann hypothesis tells us about the deviation from the average. Formulated in Riemann’s 1859 paper[1], it asserts that all the ’non-trivial’ zeros of the zeta function are complex numbers with real part 1/2. 1.2 Riemann Zeta Function For a complex number s where ℜ(s) > 1, the Zeta function is defined as the sum of the following series: +∞ 1 ζ(s)= (1) ns n=1 X In his 1859 paper[1], Riemann went further and extended the zeta function ζ(s), by analytical continuation, to an absolutely convergent function in the half plane ℜ(s) > 0, minus a simple pole at s = 1: s +∞ {x} ζ(s)= − s dx (2) s − 1 xs+1 Z1 ∗One Raffles Quay, North Tower Level 35. -
New Formulas for Semi-Primes. Testing, Counting and Identification
New Formulas for Semi-Primes. Testing, Counting and Identification of the nth and next Semi-Primes Issam Kaddouraa, Samih Abdul-Nabib, Khadija Al-Akhrassa aDepartment of Mathematics, school of arts and sciences bDepartment of computers and communications engineering, Lebanese International University, Beirut, Lebanon Abstract In this paper we give a new semiprimality test and we construct a new formula for π(2)(N), the function that counts the number of semiprimes not exceeding a given number N. We also present new formulas to identify the nth semiprime and the next semiprime to a given number. The new formulas are based on the knowledge of the primes less than or equal to the cube roots 3 of N : P , P ....P 3 √N. 1 2 π( √N) ≤ Keywords: prime, semiprime, nth semiprime, next semiprime 1. Introduction Securing data remains a concern for every individual and every organiza- tion on the globe. In telecommunication, cryptography is one of the studies that permits the secure transfer of information [1] over the Internet. Prime numbers have special properties that make them of fundamental importance in cryptography. The core of the Internet security is based on protocols, such arXiv:1608.05405v1 [math.NT] 17 Aug 2016 as SSL and TSL [2] released in 1994 and persist as the basis for securing dif- ferent aspects of today’s Internet [3]. The Rivest-Shamir-Adleman encryption method [4], released in 1978, uses asymmetric keys for exchanging data. A secret key Sk and a public key Pk are generated by the recipient with the following property: A message enciphered Email addresses: [email protected] (Issam Kaddoura), [email protected] (Samih Abdul-Nabi) 1 by Pk can only be deciphered by Sk and vice versa. -
A NEW LARGEST SMITH NUMBER Patrick Costello Department of Mathematics and Statistics, Eastern Kentucky University, Richmond, KY 40475 (Submitted September 2000)
A NEW LARGEST SMITH NUMBER Patrick Costello Department of Mathematics and Statistics, Eastern Kentucky University, Richmond, KY 40475 (Submitted September 2000) 1. INTRODUCTION In 1982, Albert Wilansky, a mathematics professor at Lehigh University wrote a short article in the Two-Year College Mathematics Journal [6]. In that article he identified a new subset of the composite numbers. He defined a Smith number to be a composite number where the sum of the digits in its prime factorization is equal to the digit sum of the number. The set was named in honor of Wi!anskyJs brother-in-law, Dr. Harold Smith, whose telephone number 493-7775 when written as a single number 4,937,775 possessed this interesting characteristic. Adding the digits in the number and the digits of its prime factors 3, 5, 5 and 65,837 resulted in identical sums of42. Wilansky provided two other examples of numbers with this characteristic: 9,985 and 6,036. Since that time, many things have been discovered about Smith numbers including the fact that there are infinitely many Smith numbers [4]. The largest Smith numbers were produced by Samuel Yates. Using a large repunit and large palindromic prime, Yates was able to produce Smith numbers having ten million digits and thirteen million digits. Using the same large repunit and a new large palindromic prime, the author is able to find a Smith number with over thirty-two million digits. 2. NOTATIONS AND BASIC FACTS For any positive integer w, we let S(ri) denote the sum of the digits of n. -
Appendix a Tables of Fermat Numbers and Their Prime Factors
Appendix A Tables of Fermat Numbers and Their Prime Factors The problem of distinguishing prime numbers from composite numbers and of resolving the latter into their prime factors is known to be one of the most important and useful in arithmetic. Carl Friedrich Gauss Disquisitiones arithmeticae, Sec. 329 Fermat Numbers Fo =3, FI =5, F2 =17, F3 =257, F4 =65537, F5 =4294967297, F6 =18446744073709551617, F7 =340282366920938463463374607431768211457, Fs =115792089237316195423570985008687907853 269984665640564039457584007913129639937, Fg =134078079299425970995740249982058461274 793658205923933777235614437217640300735 469768018742981669034276900318581864860 50853753882811946569946433649006084097, FlO =179769313486231590772930519078902473361 797697894230657273430081157732675805500 963132708477322407536021120113879871393 357658789768814416622492847430639474124 377767893424865485276302219601246094119 453082952085005768838150682342462881473 913110540827237163350510684586298239947 245938479716304835356329624224137217. The only known Fermat primes are Fo, ... , F4 • 208 17 lectures on Fermat numbers Completely Factored Composite Fermat Numbers m prime factor year discoverer 5 641 1732 Euler 5 6700417 1732 Euler 6 274177 1855 Clausen 6 67280421310721* 1855 Clausen 7 59649589127497217 1970 Morrison, Brillhart 7 5704689200685129054721 1970 Morrison, Brillhart 8 1238926361552897 1980 Brent, Pollard 8 p**62 1980 Brent, Pollard 9 2424833 1903 Western 9 P49 1990 Lenstra, Lenstra, Jr., Manasse, Pollard 9 p***99 1990 Lenstra, Lenstra, Jr., Manasse, Pollard -
William D. Banks Department of Mathematics, University of Missouri, Columbia, Missouri [email protected]
#A3 INTEGERS 16 (2016) EVERY NATURAL NUMBER IS THE SUM OF FORTY-NINE PALINDROMES William D. Banks Department of Mathematics, University of Missouri, Columbia, Missouri [email protected] Received: 9/4/15, Accepted: 1/4/16, Published: 1/21/16 Abstract It is shown that the set of decimal palindromes is an additive basis for the natural numbers. Specifically, we prove that every natural number can be expressed as the sum of forty-nine (possibly zero) decimal palindromes. 1. Statement of Result Let N .= 0, 1, 2, . denote the set of natural numbers (including zero). Every { } number n N has a unique decimal representation of the form 2 L 1 − j n = 10 δj, (1) j=0 X where each δj belongs to the digit set .= 0, 1, 2, . , 9 , D { } and the leading digit δL 1 is nonzero whenever L 2. In what follows, we use − ≥ diagrams to illustrate the ideas; for example, n = δL 1 δ1 δ0 − · · · represents the relation (1). The integer n is said to be a decimal palindrome if its decimal digits satisfy the symmetry condition δj = δL 1 j (0 j < L). − − Denoting by the collection of all decimal palindromes in N, the aim of this note P is to show that is an additive basis for N. P INTEGERS: 16 (2016) 2 Theorem 1. The set of decimal palindromes is an additive basis for the natural P numbers N. Every natural number is the sum of forty-nine (possibly zero) decimal palindromes. The proof is given in the next section. It is unlikely that the second statement is optimal; a refinement of our method may yield an improvement. -
Bayesian Perspectives on Mathematical Practice
Bayesian perspectives on mathematical practice James Franklin University of New South Wales, Sydney, Australia In: B. Sriraman, ed, Handbook of the History and Philosophy of Mathematical Practice, Springer, 2020. Contents 1. Introduction 2. The relation of conjectures to proof 3. Applied mathematics and statistics: understanding the behavior of complex models 4. The objective Bayesian perspective on evidence 5. Evidence for and against the Riemann Hypothesis 6. Probabilistic relations between necessary truths? 7. The problem of induction in mathematics 8. Conclusion References Abstract Mathematicians often speak of conjectures as being confirmed by evi- dence that falls short of proof. For their own conjectures, evidence justifies further work in looking for a proof. Those conjectures of mathematics that have long re- sisted proof, such as the Riemann Hypothesis, have had to be considered in terms of the evidence for and against them. In recent decades, massive increases in com- puter power have permitted the gathering of huge amounts of numerical evidence, both for conjectures in pure mathematics and for the behavior of complex applied mathematical models and statistical algorithms. Mathematics has therefore be- come (among other things) an experimental science (though that has not dimin- ished the importance of proof in the traditional style). We examine how the evalu- ation of evidence for conjectures works in mathematical practice. We explain the (objective) Bayesian view of probability, which gives a theoretical framework for unifying evidence evaluation in science and law as well as in mathematics. Nu- merical evidence in mathematics is related to the problem of induction; the occur- rence of straightforward inductive reasoning in the purely logical material of pure mathematics casts light on the nature of induction as well as of mathematical rea- soning. -
The History of the Primality of One—A Selection of Sources
THE HISTORY OF THE PRIMALITY OF ONE|A SELECTION OF SOURCES ANGELA REDDICK, YENG XIONG, AND CHRIS K. CALDWELLy This document, in an altered and updated form, is available online: https:// cs.uwaterloo.ca/journals/JIS/VOL15/Caldwell2/cald6.html. Please use that document instead. The table below is a selection of sources which address the question \is the number one a prime number?" Whether or not one is prime is simply a matter of definition, but definitions follow use, context and tradition. Modern usage dictates that the number one be called a unit and not a prime. We choose sources which made the author's view clear. This is often difficult because of language and typographical barriers (which, when possible, we tried to reproduce for the primary sources below so that the reader could better understand the context). It is also difficult because few addressed the question explicitly. For example, Gauss does not even define prime in his pivotal Disquisitiones Arithmeticae [45], but his statement of the fundamental theorem of arithmetic makes his stand clear. Some (see, for example, V. A. Lebesgue and G. H. Hardy below) seemed ambivalent (or allowed it to depend on the context?)1 The first column, titled `prime,' is yes when the author defined one to be prime. This is just a raw list of sources; for an evaluation of the history see our articles [17] and [110]. Any date before 1200 is an approximation. We would be glad to hear of significant additions or corrections to this list. Date: May 17, 2016. 2010 Mathematics Subject Classification. -
2 Primes Numbers
V55.0106 Quantitative Reasoning: Computers, Number Theory and Cryptography 2 Primes Numbers Definition 2.1 A number is prime is it is greater than 1, and its only divisors are itself and 1. A number is called composite if it is greater than 1 and is the product of two numbers greater than 1. Thus, the positive numbers are divided into three mutually exclusive classes. The prime numbers, the composite numbers, and the unit 1. We can show that a number is composite numbers by finding a non-trivial factorization.8 Thus, 21 is composite because 21 = 3 7. The letter p is usually used to denote a prime number. × The first fifteen prime numbers are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41 These are found by a process of elimination. Starting with 2, 3, 4, 5, 6, 7, etc., we eliminate the composite numbers 4, 6, 8, 9, and so on. There is a systematic way of finding a table of all primes up to a fixed number. The method is called a sieve method and is called the Sieve of Eratosthenes9. We first illustrate in a simple example by finding all primes from 2 through 25. We start by listing the candidates: 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 The first number 2 is a prime, but all multiples of 2 after that are not. Underline these multiples. They are eliminated as composite numbers. The resulting list is as follows: 2, 3, 4,5,6,7,8,9,10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,25 The next number not eliminated is 3, the next prime. -
Prime Number Theorem
Prime Number Theorem Bent E. Petersen Contents 1 Introduction 1 2Asymptotics 6 3 The Logarithmic Integral 9 4TheCebyˇˇ sev Functions θ(x) and ψ(x) 11 5M¨obius Inversion 14 6 The Tail of the Zeta Series 16 7 The Logarithm log ζ(s) 17 < s 8 The Zeta Function on e =1 21 9 Mellin Transforms 26 10 Sketches of the Proof of the PNT 29 10.1 Cebyˇˇ sev function method .................. 30 10.2 Modified Cebyˇˇ sev function method .............. 30 10.3 Still another Cebyˇˇ sev function method ............ 30 10.4 Yet another Cebyˇˇ sev function method ............ 31 10.5 Riemann’s method ...................... 31 10.6 Modified Riemann method .................. 32 10.7 Littlewood’s Method ..................... 32 10.8 Ikehara Tauberian Theorem ................. 32 11ProofofthePrimeNumberTheorem 33 References 39 1 Introduction Let π(x) be the number of primes p ≤ x. It was discovered empirically by Gauss about 1793 (letter to Enke in 1849, see Gauss [9], volume 2, page 444 and Goldstein [10]) and by Legendre (in 1798 according to [14]) that x π(x) ∼ . log x This statement is the prime number theorem. Actually Gauss used the equiva- lent formulation (see page 10) Z x dt π(x) ∼ . 2 log t 1 B. E. Petersen Prime Number Theorem For some discussion of Gauss’ work see Goldstein [10] and Zagier [45]. In 1850 Cebyˇˇ sev [3] proved a result far weaker than the prime number theorem — that for certain constants 0 <A1 < 1 <A2 π(x) A < <A . 1 x/log x 2 An elementary proof of Cebyˇˇ sev’s theorem is given in Andrews [1].