A Retrospective on Porting Ioccore to Multiple Operating Systems
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Overrun Handling for Mixed-Criticality Support in RTEMS Kuan-Hsun Chen, Georg Von Der Brüggen, Jian-Jia Chen
Overrun Handling for Mixed-Criticality Support in RTEMS Kuan-Hsun Chen, Georg von der Brüggen, Jian-Jia Chen To cite this version: Kuan-Hsun Chen, Georg von der Brüggen, Jian-Jia Chen. Overrun Handling for Mixed-Criticality Support in RTEMS. WMC 2016, Nov 2016, Porto, Portugal. hal-01438843 HAL Id: hal-01438843 https://hal.archives-ouvertes.fr/hal-01438843 Submitted on 25 Jan 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Overrun Handling for Mixed-Criticality Support in RTEMS Kuan-Hsun Chen, Georg von der Bruggen,¨ and Jian-Jia Chen Department of Informatics, TU Dortmund University, Germany Email: fkuan-hsun.chen, georg.von-der-brueggen, [email protected] Abstract—Real-time operating systems are not only used in of real-time operation systems is sufficient. However, some embedded real-time systems but also useful for the simulation and applications also have tasks with arbitrary deadlines, i.e., for validation of those systems. During the evaluation of our paper some tasks D > T . If the tasks are strictly periodic, this about Systems with Dynamic Real-Time Guarantees that appears i i in RTSS 2016 we discovered certain unexpected system behavior leads to a situation where two or more instances of the same in the open-source real-time operating system RTEMS. -
Development of the Software Tools Using Python for Epics-Based Control System T
TPPA16 Proceedings of ICALEPCS07, Knoxville, Tennessee, USA DEVELOPMENT OF THE SOFTWARE TOOLS USING PYTHON FOR EPICS-BASED CONTROL SYSTEM T. T. Nakamura, K. Furukawa, J-I. Odagiri, N. Yamamoto, KEK, Tsukuba, Ibaraki, Japan Abstract Basic functions of CA are get, put, and monitor In the commissioning phase of accelerators, many operations. List 1 shows an example of get operation of application programs are built and modified frequently by Python-CA. Module name of Python-CA is “ca”, which nonexpert programmers. Scripting language such as appears in import statement. Python is suitable for such quick development. Since List 1: Example of Python-CA (get operation) EPICS Channel Access interface library in Python was import ca developed in KEKB accelerator control system, many programs has been written in Python. We have been chan = ca.channel("channel_name") developing, providing some tools and libraries for Python chan.wait_conn() programming. Some of the recent developments in KEK chan.get() are reported, and possible applications are also discussed. ca.pend_event(1.0) value = chan.val INTRODUCTION KEKB is an asymmetric electron-positron collider at 8 Simple-CA library × 3.5 GeV/c, which is dedicated to B-meson physics. Its While Python-CA provides powerful functions of CA operation was started in December 1998. The KEKB client library, most people still feels complexity for CA accelerators control system has been constructed based on programming. List 1 show that even for single get EPICS (Experimental Physics and Industrial Control operation it needs 4 function (or method) calls. System) tool kit [1]. EPICS provides core mechanism for We have also developed Simple-CA library, which is a the distributed control system. -
The Many Approaches to Real-Time and Safety Critical Linux Systems
Corporate Technology The Many Approaches to Real-Time and Safety-Critical Linux Open Source Summit Japan 2017 Prof. Dr. Wolfgang Mauerer Siemens AG, Corporate Research and Technologies Smart Embedded Systems Corporate Competence Centre Embedded Linux Copyright c 2017, Siemens AG. All rights reserved. Page 1 31. Mai 2017 W. Mauerer Siemens Corporate Technology Corporate Technology The Many Approaches to Real-Time and Safety-Critical Linux Open Source Summit Japan 2017 Prof. Dr. Wolfgang Mauerer, Ralf Ramsauer, Andreas Kolbl¨ Siemens AG, Corporate Research and Technologies Smart Embedded Systems Corporate Competence Centre Embedded Linux Copyright c 2017, Siemens AG. All rights reserved. Page 1 31. Mai 2017 W. Mauerer Siemens Corporate Technology Overview 1 Real-Time and Safety 2 Approaches to Real-Time Architectural Possibilities Practical Approaches 3 Approaches to Linux-Safety 4 Guidelines and Outlook Page 2 31. Mai 2017 W. Mauerer Siemens Corporate Technology Introduction & Overview About Siemens Corporate Technology: Corporate Competence Centre Embedded Linux Technical University of Applied Science Regensburg Theoretical Computer Science Head of Digitalisation Laboratory Target Audience Assumptions System Builders & Architects, Software Architects Linux Experience available Not necessarily RT-Linux and Safety-Critical Linux experts Page 3 31. Mai 2017 W. Mauerer Siemens Corporate Technology A journey through the worlds of real-time and safety Page 4 31. Mai 2017 W. Mauerer Siemens Corporate Technology Outline 1 Real-Time and Safety 2 Approaches to Real-Time Architectural Possibilities Practical Approaches 3 Approaches to Linux-Safety 4 Guidelines and Outlook Page 5 31. Mai 2017 W. Mauerer Siemens Corporate Technology Real-Time: What and Why? I Real Time Real Fast Deterministic responses to stimuli Caches, TLB, Lookahead Bounded latencies (not too late, not too Pipelines early) Optimise average case Repeatable results Optimise/quantify worst case Page 6 31. -
OPERATING SYSTEMS.Ai
Introduction Aeroflex Gaisler provides LEON and ERC32 users with a wide range of popular embedded operating systems. Ranging from very small footprint task handlers to full featured Real-Time Operating System (RTOS). A summary of available operating systems and their characteristics is outlined below. VxWorks The VxWorks SPARC port supports LEON3/4 and LEON2. Drivers for standard on-chip peripherals are included. The port supports both non-MMU and MMU systems allowing users to program fast and secure applications. Along with the graphical Eclipse based workbench comes the extensive VxWorks documentation. • MMU and non-MMU system support • SMP support (in 6.7 and later) • Networking support (Ethernet 10/100/1000) • UART, Timer, and interrupt controller support • PCI, SpaceWire, CAN, MIL-STD-1553B, I2C and USB host controller support • Eclipse based Workbench • Commercial license ThreadX The ThreadX SPARC port supports LEON3/4 and its standard on-chip peripherals. ThreadX is an easy to learn and understand advanced pico-kernel real-time operating system designed specifically for deeply embedded applications. ThreadX has a rich set of system services for memory allocation and threading. • Non-MMU system support • Bundled with newlib C library • Support for NetX, and USBX ® • Very small footprint • Commercial license Nucleus Nucleus is a real time operating system which offers a rich set of features in a scalable and configurable manner. • UART, Timer, Interrupt controller, Ethernet (10/100/1000) • TCP offloading and zero copy TCP/IP stack (using GRETH GBIT MAC) • USB 2.0 host controller and function controller driver • Small footprint • Commercial license LynxOS LynxOS is an advanced RTOS suitable for high reliability environments. -
Final Report
Parallel Programming Models for Space Systems BSC - Evidence ESA Contract No. 4000114391/15/NL/Cbi/GM Final Report Parallel Programming Models for Space Systems (ESA Contract No. 4000114391/15/NL/Cbi/GM) Main contractor Subcontractor Barcelona Supercomputing Center (BSC) Evidence Srl. Eduardo Quiñones, Paolo Gai, [email protected] [email protected] Dissemination level: All information contained in this document is puBlic June 2016 1 Parallel Programming Models for Space Systems BSC - Evidence ESA Contract No. 4000114391/15/NL/Cbi/GM Table of Contents 1 Introduction ..................................................................................................... 3 2 Future work: Next development activities to reach higher TRL (5/6) ................ 4 Annex I - D1.1. Report on parallelisation experiences for the space application .... 5 Annex II - D2.1. Report on the evaluation of current implementations of OpenMP ............................................................................................................................ 23 Annex III - D3.1. Report on the applicability of OpenMP4 on multi-core space platforms ............................................................................................................ 36 2 Parallel Programming Models for Space Systems BSC - Evidence ESA Contract No. 4000114391/15/NL/Cbi/GM 1 Introduction High-performance parallel architectures are becoming a reality in the critical real-time embedded systems in general, and in the space domain in particular. This is the case of the -
KINTSUGI Identifying & Addressing Challenges in Embedded Binary
KINTSUGI Identifying & addressing challenges in embedded binary security jos wetzels Supervisors: Prof. dr. Sandro Etalle Ali Abbasi, MSc. Department of Mathematics and Computer Science Eindhoven University of Technology (TU/e) June 2017 Jos Wetzels: Kintsugi, Identifying & addressing challenges in embed- ded binary security, © June 2017 To my family Kintsugi ("golden joinery"), is the Japanese art of repairing broken pottery with lacquer dusted or mixed with powdered gold, silver, or platinum. As a philosophy, it treats breakage and repair as part of the history of an object, rather than something to disguise. —[254] ABSTRACT Embedded systems are found everywhere from consumer electron- ics to critical infrastructure. And with the growth of the Internet of Things (IoT), these systems are increasingly interconnected. As a re- sult, embedded security is an area of growing concern. Yet a stream of offensive security research, as well as real-world incidents, contin- ues to demonstrate how vulnerable embedded systems actually are. This thesis focuses on binary security, the exploitation and miti- gation of memory corruption vulnerabilities. We look at the state of embedded binary security by means of quantitative and qualitative analysis and identify several gap areas and show embedded binary security to lag behind the general purpose world significantly. We then describe the challenges and limitations faced by embedded exploit mitigations and identify a clear open problem area that war- rants attention: deeply embedded systems. Next, we outline the cri- teria for a deeply embedded exploit mitigation baseline. Finally, as a first step to addressing this problem area, we designed, implemented and evaluated µArmor : an exploit mitigation baseline for deeply em- bedded systems. -
Flight Software Workshop 2007 ( FSW-07)
Flight Software Workshop 2007 ( FSW-07) Current and Future Flight Operating Systems Alan Cudmore Flight Software Branch NASAIGSFC November 2007 Page I Outline Types of Real Time Operating Systems - Classic Real Time Operating Systems - Hybrid Real Time Operating Systems - Process Model Real Time Operating Systems - Partitioned Real Time Operating Systems Is the Classic RTOS Showing it's Age? Process Model RTOS for Flight Systems Challenges of Migrating to a Process Model RTOS Which RTOS Solution is Best? Conclusion November 2007 Page 2 GSFC Satellites with COTS Real (waiting for launch) (launched 8/92) (launched 12/98) (launched 3/98) (launched 2/99) (12/04) XTE (launched 12/95) TRMM (launched 11/97) JWST lSlM (201 1) Icesat GLAS f01/03) MAP (launched 06/01) LRO HST 386 4llH -%Y ST-5 (5/06) November 2007 Page 3 Classic Real Time OS What is a "Classic" RTOS? - Developed for easy COTS development on common 16 and 32 bit CPUs. - Designed for systems with single address space, and low resources - Literally Dozens of choices with a wide array of features. November 2007 Page 4 Classic RTOS - VRTX Ready Systems VRTX Size: Small - 8KB RTOS Kernel Provides: Very basic RTOS services Used on: - Small Explorer Missions Used from 1992 to 1999 8086 and 80386 Processors - Medium Explorer Missions XTE (1995) TRMM (1997) 80386 Processors - Hubble Space Telescope 80386 Processors Advantages: - Small, fast - Uses 80386 memory protection -- A feature we have missed since we stopped using it! Current use: - Only being maintained, not used for new development -
Embedded Operating Systems
7 Embedded Operating Systems Claudio Scordino1, Errico Guidieri1, Bruno Morelli1, Andrea Marongiu2,3, Giuseppe Tagliavini3 and Paolo Gai1 1Evidence SRL, Italy 2Swiss Federal Institute of Technology in Zurich (ETHZ), Switzerland 3University of Bologna, Italy In this chapter, we will provide a description of existing open-source operating systems (OSs) which have been analyzed with the objective of providing a porting for the reference architecture described in Chapter 2. Among the various possibilities, the ERIKA Enterprise RTOS (Real-Time Operating System) and Linux with preemption patches have been selected. A description of the porting effort on the reference architecture has also been provided. 7.1 Introduction In the past, OSs for high-performance computing (HPC) were based on custom-tailored solutions to fully exploit all performance opportunities of supercomputers. Nowadays, instead, HPC systems are being moved away from in-house OSs to more generic OS solutions like Linux. Such a trend can be observed in the TOP500 list [1] that includes the 500 most powerful supercomputers in the world, in which Linux dominates the competition. In fact, in around 20 years, Linux has been capable of conquering all the TOP500 list from scratch (for the first time in November 2017). Each manufacturer, however, still implements specific changes to the Linux OS to better exploit specific computer hardware features. This is especially true in the case of computing nodes in which lightweight kernels are used to speed up the computation. 173 174 Embedded Operating Systems Figure 7.1 Number of Linux-based supercomputers in the TOP500 list. Linux is a full-featured OS, originally designed to be used in server or desktop environments. -
Pure Labview Implementation of EPICS Communication Protocol
Pure LabVIEW Implementation of EPICS Communication Protocol Alexander Zhukov Spallation Neutron Source, ORNL NIWeek 2012 Managed by UT-Battelle for the Department of Energy What is EPICS Experimental Physics and Industrial Control System (EPICS) is a set of Open Source software tools, libraries and applications developed collaboratively and used worldwide to create distributed soft real-time control systems for scientific instruments such as a particle accelerators, telescopes and other large scientific experiments. Major collaborators – ANL – LANL – ORNL (SNS) – SLAC (SSRL, LCLS) – JLAB (CEBAF) – DESY – BESSY – PSI (SLS) – KEK Runs on variety of hardware/OS (Linux, VxWorks, Windows, Mac, RTEMS…) 2 Managed by UT-Battelle for the Department of Energy How EPICS works A network based fully distributed client/server model Client and server use Channel Access (CA) protocol to communicate Everything spins around process variables (PV) – an entity similar to LabVIEW network shared variable – A server (Input Output Controller – IOC) publishes data by updating PVs – PV corresponds to some value (measurement, setting, status etc) – Every PV has unique name – Client has ways to read PVs and update them over network – Client can subscribe to particular PV and monitor its value or state without polling it Standard EPICS server also has records processing mechanism – Control logic is programmed in records definition file – Allows perform routine tasks without explicitly programming in C – In addition to value every record has also status (OK, -
Timing Comparison of the Real-Time Operating Systems for Small Microcontrollers
S S symmetry Article Timing Comparison of the Real-Time Operating Systems for Small Microcontrollers Ioan Ungurean 1,2 1 Faculty of Electrical Engineering and Computer Science; Stefan cel Mare University of Suceava, 720229 Suceava, Romania; [email protected] 2 MANSiD Integrated Center, Stefan cel Mare University, 720229 Suceava, Romania Received: 9 March 2020; Accepted: 1 April 2020; Published: 8 April 2020 Abstract: In automatic systems used in the control and monitoring of industrial processes, fieldbuses with specific real-time requirements are used. Often, the sensors are connected to these fieldbuses through embedded systems, which also have real-time features specific to the industrial environment in which it operates. The embedded operating systems are very important in the design and development of embedded systems. A distinct class of these operating systems is real-time operating systems (RTOSs) that can be used to develop embedded systems, which have hard and/or soft real-time requirements on small microcontrollers (MCUs). RTOSs offer the basic support for developing embedded systems with applicability in a wide range of fields such as data acquisition, internet of things, data compression, pattern recognition, diversity, similarity, symmetry, and so on. The RTOSs provide basic services for multitasking applications with deterministic behavior on MCUs. The services provided by the RTOSs are task management and inter-task synchronization and communication. The selection of the RTOS is very important in the development of the embedded system with real-time requirements and it must be based on the latency in the handling of the critical operations triggered by internal or external events, predictability/determinism in the execution of the RTOS primitives, license costs, and memory footprint. -
EPICS Application Developer's Guide
1 EPICS Application Developer’s Guide EPICS Base Release 3.15.0.2 17 October 2014 Andrew N. Johnson, Janet B. Anderson, Martin R. Kraimer (Argonne National Laboratory) W. Eric Norum (Lawrence Berkeley National Laboratory) Jeffrey O. Hill (Los Alamos National Laboratory) Ralph Lange, Benjamin Franksen (Helmholtz-Zentrum Berlin) Peter Denison (Diamond Light Source) 2 Contents EPICS Applications Developer’s Guide1 Table of Contents 7 1 Introduction 9 1.1 Overview.................................................9 1.2 Acknowledgments............................................ 11 2 Getting Started 13 2.1 Introduction................................................ 13 2.2 Example IOC Application........................................ 13 2.3 Channel Access Host Example...................................... 15 2.4 iocsh.................................................... 16 2.5 Building IOC components........................................ 16 2.6 makeBaseApp.pl............................................. 19 2.7 vxWorks boot parameters......................................... 22 2.8 RTEMS boot procedure.......................................... 23 3 EPICS Overview 25 3.1 What is EPICS?.............................................. 25 3.2 Basic Attributes.............................................. 26 3.3 IOC Software Components........................................ 26 3.4 Channel Access.............................................. 28 3.5 OPI Tools................................................. 30 3.6 EPICS Core Software.......................................... -
RTEMS Classic API Guide Release 6.7B289f6 (23Th September 2021) © 1988, 2020 RTEMS Project and Contributors
RTEMS Classic API Guide Release 6.7b289f6 (23th September 2021) © 1988, 2020 RTEMS Project and contributors CONTENTS 1 Preface 3 2 Overview 7 2.1 Introduction......................................8 2.2 Real-time Application Systems............................9 2.3 Real-time Executive.................................. 10 2.4 RTEMS Application Architecture........................... 11 2.5 RTEMS Internal Architecture............................. 12 2.6 User Customization and Extensibility......................... 14 2.7 Portability....................................... 15 2.8 Memory Requirements................................. 16 2.9 Audience........................................ 17 2.10 Conventions...................................... 18 2.11 Manual Organization................................. 19 3 Key Concepts 23 3.1 Introduction...................................... 24 3.2 Objects......................................... 25 3.2.1 Object Names................................. 25 3.2.2 Object IDs................................... 26 3.2.2.1 Object ID Format........................... 26 3.2.3 Object ID Description............................. 26 3.3 Communication and Synchronization........................ 28 3.4 Locking Protocols................................... 29 3.4.1 Priority Inversion............................... 29 3.4.2 Immediate Ceiling Priority Protocol (ICPP)................. 29 3.4.3 Priority Inheritance Protocol......................... 30 3.4.4 Multiprocessor Resource Sharing Protocol (MrsP)............. 30 3.4.5