Navigation Techniques and Practice in the Renaissance Eric H
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Soaring Weather
Chapter 16 SOARING WEATHER While horse racing may be the "Sport of Kings," of the craft depends on the weather and the skill soaring may be considered the "King of Sports." of the pilot. Forward thrust comes from gliding Soaring bears the relationship to flying that sailing downward relative to the air the same as thrust bears to power boating. Soaring has made notable is developed in a power-off glide by a conven contributions to meteorology. For example, soar tional aircraft. Therefore, to gain or maintain ing pilots have probed thunderstorms and moun altitude, the soaring pilot must rely on upward tain waves with findings that have made flying motion of the air. safer for all pilots. However, soaring is primarily To a sailplane pilot, "lift" means the rate of recreational. climb he can achieve in an up-current, while "sink" A sailplane must have auxiliary power to be denotes his rate of descent in a downdraft or in come airborne such as a winch, a ground tow, or neutral air. "Zero sink" means that upward cur a tow by a powered aircraft. Once the sailcraft is rents are just strong enough to enable him to hold airborne and the tow cable released, performance altitude but not to climb. Sailplanes are highly 171 r efficient machines; a sink rate of a mere 2 feet per second. There is no point in trying to soar until second provides an airspeed of about 40 knots, and weather conditions favor vertical speeds greater a sink rate of 6 feet per second gives an airspeed than the minimum sink rate of the aircraft. -
16.00 Introduction to Aerospace and Design Problem Set #3 AIRCRAFT
16.00 Introduction to Aerospace and Design Problem Set #3 AIRCRAFT PERFORMANCE FLIGHT SIMULATION LAB Note: You may work with one partner while actually flying the flight simulator and collecting data. Your write-up must be done individually. You can do this problem set at home or using one of the simulator computers. There are only a few simulator computers in the lab area, so not leave this problem to the last minute. To save time, please read through this handout completely before coming to the lab to fly the simulator. Objectives At the end of this problem set, you should be able to: • Take off and fly basic maneuvers using the flight simulator, and describe the relationships between the control yoke and the control surface movements on the aircraft. • Describe pitch - airspeed - vertical speed relationships in gliding performance. • Explain the difference between indicated and true airspeed. • Record and plot airspeed and vertical speed data from steady-state flight conditions. • Derive lift and drag coefficients based on empirical aircraft performance data. Discussion In this lab exercise, you will use Microsoft Flight Simulator 2000/2002 to become more familiar with aircraft control and performance. Also, you will use the flight simulator to collect aircraft performance data just as it is done for a real aircraft. From your data you will be able to deduce performance parameters such as the parasite drag coefficient and L/D ratio. Aircraft performance depends on the interplay of several variables: airspeed, power setting from the engine, pitch angle, vertical speed, angle of attack, and flight path angle. -
The Discovery of the Sea
The Discovery of the Sea "This On© YSYY-60U-YR3N The Discovery ofthe Sea J. H. PARRY UNIVERSITY OF CALIFORNIA PRESS Berkeley • Los Angeles • London Copyrighted material University of California Press Berkeley and Los Angeles University of California Press, Ltd. London, England Copyright 1974, 1981 by J. H. Parry All rights reserved First California Edition 1981 Published by arrangement with The Dial Press ISBN 0-520-04236-0 cloth 0-520-04237-9 paper Library of Congress Catalog Card Number 81-51174 Printed in the United States of America 123456789 Copytightad material ^gSS3S38SSSSSSSSSS8SSgS8SSSSSS8SSSSSS©SSSSSSSSSSSSS8SSg CONTENTS PREFACE ix INTROn ilCTION : ONE S F A xi PART J: PRE PARATION I A RELIABLE SHIP 3 U FIND TNG THE WAY AT SEA 24 III THE OCEANS OF THE WORI.n TN ROOKS 42 ]Jl THE TIES OF TRADE 63 V THE STREET CORNER OF EUROPE 80 VI WEST AFRICA AND THE ISI ANDS 95 VII THE WAY TO INDIA 1 17 PART JJ: ACHJF.VKMKNT VIII TECHNICAL PROBL EMS AND SOMITTONS 1 39 IX THE INDIAN OCEAN C R O S S T N C. 164 X THE ATLANTIC C R O S S T N C 1 84 XJ A NEW WORT D? 20C) XII THE PACIFIC CROSSING AND THE WORI.n ENCOMPASSED 234 EPILOC.IJE 261 BIBLIOGRAPHIC AI. NOTE 26.^ INDEX 269 LIST OF ILLUSTRATIONS 1 An Arab bagMa from Oman, from a model in the Science Museum. 9 s World map, engraved, from Ptolemy, Geographic, Rome, 1478. 61 3 World map, woodcut, by Henricus Martellus, c. 1490, from Imularium^ in the British Museum. -
Tail Strikes: Prevention Regardless of Airplane Model, Tail Strikes Can Have a Number of Causes, Including Gusty Winds and Strong Crosswinds
Tail Strikes: Prevention Regardless of airplane model, tail strikes can have a number of causes, including gusty winds and strong crosswinds. But environmental factors such as these can often be overcome by a well-trained and knowledgeable flight crew following prescribed procedures. Boeing conducts extensive research into the causes of tail strikes and continually looks for design solutions to prevent them, such as an improved elevator feel system. Enhanced preventive measures, such as the tail strike protection feature in some by Capt. Dave Carbaugh, Chief Pilot, Boeing 777 models, further reduce the probability of incidents. Flight Operations Safety Tail strikes can cause significant damage and cost taiL strikes: an overview a constant feel elevator pressure, which has operators millions of dollars in repairs and lost reduced the potential of varied feel pressure revenue. In the most extreme scenario, a tail strike A tail strike occurs when the tail of an airplane on the yoke contributing to a tail strike. The can cause pressure bulkhead failure, which can strikes the ground during takeoff or landing. 747-400 has a lower rate of tail strikes than ultimately lead to structural failure; however, long Although many tail strikes occur on takeoff, most the 747-100/-200/-300. shallow scratches that are not repaired correctly occur on landing. Tail strikes are often due to In addition, some 777 models incorporate a tail can also result in increased risks. Yet tail strikes can human error. strike protection system that uses a combination be prevented when flight crews understand their Tail strikes can cause significant damage to of software and hardware to protect the airplane. -
The Future of the Knot As a Unit of Speed
FORUM The Future of the Knot as a Unit of Speed Oliver Stewart FEW will deny the merits of the knot as a unit of speed. It does in one syllable what all other units of speed take three or more to do. It is accepted and used by a great many countries, including those like France which show a general pre- ference for the metric system. Aviation has taken to it as well as shipping. It is not therefore surprising that the full acceptance of the Systeme International d'Unitis (or S.I.) is meeting with some opposition when it offers to supplant the knot. At present the situation is that the knot is to continue for a 'limited time' as a speed unit for use in aviation and shipping. Just how limited the time will be has not been revealed, but the member countries of the European Economic Com- munity have set i January 1978 as the date after which 'only a prescribed system of metric units may be used'. Strictly interpreted the S.I. admits one and only one speed unit, the metre per second; if the minute or the hour were to be intro- duced in place of the second, decimalization would break down. This would mean that the familiar kilometre per hour would be inadmissible as a substitute for the knot, although the present trend is in that direction. Both the metre and the second are now denned in terms of atomic radiation with a precision far ahead of anything previously known and give the measurer the highest attainable accuracy. -
Mind Your Aviation Language – What Knot Mark Twain!
Mind Your (Aviation) Language…. What Knot? Mark Twain! As aviators we are all familiar with keeping an eye on our airspeed – and that we measure airspeed in knots. Many will also know that a knot is 1 nautical mile per hour. And some will know that a nautical mile is one minute (one sixtieth) of a degree of latitude, or even 1,852 metres. But why do we use the word ‘knot’ and does it have any connection to knots in ropes? Until the mid-19th century, vessel speed at sea was measured using a chip log. This consisted of a wooden panel, attached by line to a reel, and weighted on one edge to float perpendicularly to the water surface and thus present substantial resistance to the water moving around it. The chip log was cast over the stern of the moving vessel and the line allowed to pay out. Knots placed at a distance of 47 feet 3 inches (14.4018 m) from each other, passed through a sailor's fingers, while another sailor used a 30-second sand- glass (28-second sand-glass is the currently accepted timing) to time the operation. The knot count would be reported and used in the sailing master's dead reckoning and navigation. This method gives a value for the knot of 20.25 in/s, or 1.85166 km/h. The difference from the modern definition is less than 0.02%. And in both today’s pilothouse and cockpit, the speed equal to one nautical mile an hour is still called a knot, and pilots still record details of the journey in the ship’s log - terms that echo of the days when crewmembers got creative with a few simple materials and produced an essential and significant little gadget. -
A Critical Review of the Hypothesis of a Medieval Origin for Portolan Charts
A critical review of the hypothesis of a medieval origin for portolan charts i Roelof Nicolai A critical review of the hypothesis of a medieval origin for portolan charts Keywords: portolan, chart, medieval, geodesy, cartography, cartometric analysis, history, science ISBN/EAN: 978-90-76851-33-4 NUR-code: 930 Uitgeverij Educatieve Media, Houten. E-mail: [email protected] Vormgeving en drukwerkrealisatie: Atalanta, Houten Cover design: Sander Nicolai The cover shows part of the Carte Pisane, Bibliothèque nationale de France, Cartes et Plans, Ge B 1118. Copyright © by Roelof Nicolai All rights reserved. No part of the material protected by this copyright notice may be repro- duced or utilised in any form or by any means, electronic or mechanical, including photocopy- ing, recording or by information storage and retrieval system, without the prior permission of the author. ii A critical review of the hypothesis of a medieval origin for portolan charts Een kritische beschouwing van de hypothese van een middeleeuwse oorsprong voor portolaankaarten (met een samenvatting in het Nederlands) Proefschrift ter verkrijging van de graad van doctor aan de Universiteit Utrecht op gezag van de rector magnificus, prof.dr. G.J. van der Zwaan, ingevolge het besluit van het college voor promoties in het openbaar te verdedigen op maandag 3 maart 2014 des middags te 2.30 uur door Roelof Nicolai geboren op 20 november 1953 te Achtkarspelen iii Promotor: Prof. dr. J. P. Hogendijk Co-promotoren: Dr. S. A. Wepster Dr. P. C. J. van der Krogt iv He had bought a large map representing the sea, Without the least vestige of land: And the crew were much pleased when they found it to be A map they could all understand. -
SIS Bulletin Issue 68
Scientific Inst~ u: nent SOciety • ~ ~': ~z ~ ........ ....... ~ :~,,, _~ , ......~ ,~ ., .. ~. "i I, ~'~..~ i;.)~ i!~ ~' • Bulletin March No. 68 2001 Bulletin of the Scientific Instrument Society IssN 0956-8271 For Table of Contents, see back cover President Gerard Turner Vice-President Howard Dawes Honorary Committee Stuart Talbot, Chairman Gloria Clifton, SecretaW John Didcock, Treasurer WiUem Hackmann, Editor Sunon Chetfetz Alexander Crum-Ewmg Peter de Clercq Tom l~mb Svh'ia Sunmra L~ba Taub Membership and Administrative Matters The Executive Officer (Wg Cdr Geoffrey Bennett) 31 HJ~h Sweet Stanford m the Vale Farmgdon Tel: 01367 710223 Oxon SNr7 8LH Fax: 01367 718963 e-mail: [email protected] See outside back cover for infvrmation on membership Editorial Matters Dr. Willem D. Hackmann Museum of the History of Science Old Ashmolean Building Tel: 01865 277282 (office) Broad Street Fax: 01865 277288 Oxford OXI 3AZ Tel: 01608 811110 (home) e-mail: willemhackmann@m~.ox,ac.uk " Society's Website http://ww~,.sis.org.uk Advertising .See 'Summary of Advertising Services' panel elsewhere in this Bulletin. Further enquiries to the Executive Officer. Typesetting and Printing IJthoflow Ltd 26-36 Wharfdale Road Tel: 020 7833 2344 King's Cross Fax: 020 7833 8150 London N1 9RY Price: £6 per issue, including back numbers where available. (Enquiries to the Executive Officer) The Scientific Instrument Society is Registered Charily No. 326733 :~ The Scientific Instrument Society 2001 i; Editorial Spring is in the Air - Somewhere maxnum opus on Elizabethan Lnstruments. Getting the March Bulletin ready always Object' brings with it a special excitement as it This issue's 'Mystery has elicited a coincides with nature awakening from its great deal of interest,and has been correctly winter slumber; there is a sense of renewal, identified as what the German's call a for measunng the of new plausibilities. -
Mathematical Instruments Commonly Used Among the Ottomans
Advances in Historical Studies, 2019, 8, 36-57 http://www.scirp.org/journal/ahs ISSN Online: 2327-0446 ISSN Print: 2327-0438 Mathematical Instruments Commonly Used among the Ottomans Irem Aslan Seyhan Department of Philosophy, Bartın University, Bartın, Turkey How to cite this paper: Seyhan, I. A. Abstract (2019). Mathematical Instruments Com- monly Used among the Ottomans. Ad- At the end of 17th century and during 18th century, after devastating Russian vances in Historical Studies, 8, 36-57. wars the Ottomans realized that they fell behind of the war technology of the https://doi.org/10.4236/ahs.2019.81003 Western militaries. In order to catch up with their Western rivals, they de- cided that they had to reform their education systems. For that they sent sev- Received: January 24, 2019 Accepted: March 5, 2019 eral students to abroad for education and started to translate Western books. Published: March 8, 2019 They established Western style military academies of engineering. They also invited foreign teachers in order to give education in these institutes and they Copyright © 2019 by author(s) and consulted them while there were preparing the curriculum. For all these, Scientific Research Publishing Inc. This work is licensed under the Creative during the modernization period, the reform (nizâm-ı cedid) planers mod- Commons Attribution International elled mainly France, especially for teaching the applied disciplines. Since their License (CC BY 4.0). main aim was to grasp the technology of the West, their interest focused on http://creativecommons.org/licenses/by/4.0/ the applied part of sciences and mathematics. -
United States National Museum
? Lat. Capitol, .58:.^,5, N. lEBBf/^ Lonl 0: 0. l/BEiF) ]E/iEP^ cnLVv ,Ei^tS^ "tnnB EEC^ ^^ferjtiBt^ GEOKGEnnnnDco\\T 3Er^t> ^«r;j]p prac^ iSlilEEBiR up 13 0BSERT^\TI0]VS explanatory of the 1. lHE-f>csitto,isJ,rthc ili/jrrent Jiflifirc.,, m„7/h- //i several S^uairs cr. 4rca., ofdi^eni shxfts. as tha, an htd ^ rlvun,. utrejirst detcniuned vn t/„ „„^t ,uh„„tar^,,,s ,;n;„u/, ^ m„mar.dn,r^ ,Ar „„^r r.vh„st,rfirasfjrrfs, and du letter s,ucrphH^ >fsuc/, nuf„-r,rn,n,Ts. a., nt/.rr ase or ,.r„a,„n,l ,„a>, /.nra,ln^- 11. L.INi:S or. irrnues rfdirrct ronn,n„ar„tw„ /.mr Orrn dn, b> co„nrrr thr .,.,,„rnte „ud .„os, d,.,fan, oh,rrt. ,n,/, d,e pnnrn, and y,„.nr //„„,/, ,/,, ,,/,./. a rrri^, rr,,,,,.;:.,„J,j f,^,,i, ^^'''f'r'; /'^s /rrn^uf fo d,r/,a^^,,>; ,fr/u^., f„,,/,,,,:_ y„,^,„^.. ,„^^ moMJarcrohh r^,r,o<d /,:,y.n.,^rf and rrarr,an,rr. M.JfojtrB and Aon,/, l.nrs .nUrseCrd In, rtUrs n..,„.a, due Eas, a„d fn.r., hare f.rn so co,nhu,ed a, A, ».rr, a, crrUa,, .pj„f,..n„s ,,,7/ ,(,,.„ ^nnyral. i.r„ar... ,,o a., to on //>r A).„er., f,r,„ '//rst drf'r,„u,rdr ,/, SmmrfS cr. /rras. Scale of Poles, 6i<c -Prirs. f)' Iiirbrs. ''^ idCrrfk S .-^^pf the CITY o£^ ( of Coliunbia, ) ) r. / r "^n tKe TprrifoF>' "^^^^ ceded hv the States of ^^-^ Virgi:n^ia and Maryla:nd I '-'-ft a , i&s Cfimti0 5^tat<8 OF x!i\\\ix\tiK\ aiK^ ,7^I'll l/icin endNi.ilirfl <i.> llie Seat <?/ then tir/e/- r/if '//^///' md6cc. -
Mathematical and Optical Instruments THOMAS WHITNEY, from London
Thomas Whitney (3/11/1761 – 8/30/1823 1761—T W Born Mar 11 1761 Cheshire England TW-01 1777 – Mary Rodgers Born Sept 25 1777 County of Caermarthen, Wales TW-01 1782 –T W apprenticed to Samuel Browning Sept 5 1782 TW-06 1790 -- T W free Jan 7, 1790 TW-06 1796 Tw in Philadelphia TW-05 John Aitken of the City of Philadelphia, Silversmith being duly affirmed according to law, on his affirmation declareth that he hath been well acquainted with Thomas Whitney the foregoing petitioner, for the space of two years now last past, and upwards, during which time the said Thomas Whitney hath to the affirments knowledge, behaved as a man of good moral character, attached to the Constitution of the United States, and well disposed to the good order and happiness of the same 1798 Stafford Whitney Thomas No entry 1798 – T. W. naturalized Court of common pleas Philadelphia June 5 1798 TW-05 Note Sworn crossed out and affirmed written by hand 1798 ad Philadelphia Gazette 4/12/1798 to 6/1 1798 TW- Mathematical and Optical Instruments THOMAS WHITNEY, From London. Manufacturer and importer of Mathematical Instruments, &c, &c, Informs his friends and the public, that he has Removed from No. 72, (late Mr. Gould’s) to No. 74 south Front street, where he makes various instruments in the most improved and accurate manner, particularly large patent Azimuth and steering Compasses; Surveying instruments, on an improved construction, and generally Instruments useful in Navigation, Land Surveying, Leveling, Mensuration, Gunnery. Drawing, Philosophical enquires, &c. -
Portolan Charts
P O R T O L A N C H A R T S THEI R ORIG IN AND CHARACTERISTICS W ITH A DESCRI PTIV E LIST OF THOSE BELONG ING TO THE HISPANIC SOCIETY OF AM ERICA D ARD L T R T E W U E S E E S PH . H V N ON , D . NEW Y ORK 191 1 OPYRI G HT 1 1 1 C , 9 BY T HE HISPANI C S OC IE TY OF AMERI CA t he knicketbocket pteas. n ew mom CONTENTS T PORTOLAN CHAR S . BIBLIOGRAPHY DESCRIPTIVE LIST OF CHARTS AND ATLASES I N THE COLLECTION OF THE HISPANIC SOCI ETY OF AMERICA : H 1 T GI ROLDI 5H . GIACOMO , EARLY CENTURY N 1 468 PETRUS ROSELLI , . O 1 470 O . NICOLAUS DE NICOLO, - F T 1 5 E L H ANONYMOUS . A E T ‘ O VES CONTE I 1 51 2 DE MA OLO, J ’ N FRED CI 1 24 C D H OCTOM A NO U C 5 . CON E , Q OT H OMANO FREDU CCI L E CONTE DE , AT AS OF FIV CHARTS, 1 537 ° 9 1 GT H T ANONYMOUS, EARLY CEN URY 59 1 GTH ANONYMOUS, EARLY CENTURY 1 L 1 T 0 . G H ANONYMOUS, ATLAS OF THREE CHARTS, EAR Y CEN TURY 1 1 L OE L I 5TH . BAPTISTA AGNESE, AT AS FOURTEEN CHARTS, EAR Y CENTURY 1 2 . L L BARTO OMEO O IVO, AFTER 1 3 . H I ERONY M O GI RI VA , AFTER 1 552 52 BARTOLOMEO OLIVES, 60 .