Linux System Programming.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Kernel Report
The kernel report (ELC 2012 edition) Jonathan Corbet LWN.net [email protected] The Plan Look at a year's worth of kernel work ...with an eye toward the future Starting off 2011 2.6.37 released - January 4, 2011 11,446 changes, 1,276 developers VFS scalability work (inode_lock removal) Block I/O bandwidth controller PPTP support Basic pNFS support Wakeup sources What have we done since then? Since 2.6.37: Five kernel releases have been made 59,000 changes have been merged 3069 developers have contributed to the kernel 416 companies have supported kernel development February As you can see in these posts, Ralink is sending patches for the upstream rt2x00 driver for their new chipsets, and not just dumping a huge, stand-alone tarball driver on the community, as they have done in the past. This shows a huge willingness to learn how to deal with the kernel community, and they should be strongly encouraged and praised for this major change in attitude. – Greg Kroah-Hartman, February 9 Employer contributions 2.6.38-3.2 Volunteers 13.9% Wolfson Micro 1.7% Red Hat 10.9% Samsung 1.6% Intel 7.3% Google 1.6% unknown 6.9% Oracle 1.5% Novell 4.0% Microsoft 1.4% IBM 3.6% AMD 1.3% TI 3.4% Freescale 1.3% Broadcom 3.1% Fujitsu 1.1% consultants 2.2% Atheros 1.1% Nokia 1.8% Wind River 1.0% Also in February Red Hat stops releasing individual kernel patches March 2.6.38 released – March 14, 2011 (9,577 changes from 1198 developers) Per-session group scheduling dcache scalability patch set Transmit packet steering Transparent huge pages Hierarchical block I/O bandwidth controller Somebody needs to get a grip in the ARM community. -
Studying the Real World Today's Topics
Studying the real world Today's topics Free and open source software (FOSS) What is it, who uses it, history Making the most of other people's software Learning from, using, and contributing Learning about your own system Using tools to understand software without source Free and open source software Access to source code Free = freedom to use, modify, copy Some potential benefits Can build for different platforms and needs Development driven by community Different perspectives and ideas More people looking at the code for bugs/security issues Structure Volunteers, sponsored by companies Generally anyone can propose ideas and submit code Different structures in charge of what features/code gets in Free and open source software Tons of FOSS out there Nearly everything on myth Desktop applications (Firefox, Chromium, LibreOffice) Programming tools (compilers, libraries, IDEs) Servers (Apache web server, MySQL) Many companies contribute to FOSS Android core Apple Darwin Microsoft .NET A brief history of FOSS 1960s: Software distributed with hardware Source included, users could fix bugs 1970s: Start of software licensing 1974: Software is copyrightable 1975: First license for UNIX sold 1980s: Popularity of closed-source software Software valued independent of hardware Richard Stallman Started the free software movement (1983) The GNU project GNU = GNU's Not Unix An operating system with unix-like interface GNU General Public License Free software: users have access to source, can modify and redistribute Must share modifications under same -
Reducing Power Consumption in Mobile Devices by Using a Kernel
IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. Z, NO. B, AUGUST 2017 1 Reducing Event Latency and Power Consumption in Mobile Devices by Using a Kernel-Level Display Server Stephen Marz, Member, IEEE and Brad Vander Zanden and Wei Gao, Member, IEEE E-mail: [email protected], [email protected], [email protected] Abstract—Mobile devices differ from desktop computers in that they have a limited power source, a battery, and they tend to spend more CPU time on the graphical user interface (GUI). These two facts force us to consider different software approaches in the mobile device kernel that can conserve battery life and reduce latency, which is the duration of time between the inception of an event and the reaction to the event. One area to consider is a software package called the display server. The display server is middleware that handles all GUI activities between an application and the operating system, such as event handling and drawing to the screen. In both desktop and mobile devices, the display server is located in the application layer. However, the kernel layer contains most of the information needed for handling events and drawing graphics, which forces the application-level display server to make a series of system calls in order to coordinate events and to draw graphics. These calls interrupt the CPU which can increase both latency and power consumption, and also require the kernel to maintain event queues that duplicate event queues in the display server. A further drawback of placing the display server in the application layer is that the display server contains most of the information required to efficiently schedule the application and this information is not communicated to existing kernels, meaning that GUI-oriented applications are scheduled less efficiently than they might be, which further increases power consumption. -
Implementation of an Orthogonally Persistent L4 -Kernel Based System
Implementation of an Orthogonally Persistent L4 -Kernel Based System Christian Ceelen ÐÒÖºÙ º Supervisor: Cand. Scient. Espen Skoglund Universitat¨ Karlsruhe 15th February 2002 2 3 Abstract Orthogonal persistent systems open up possibilities for a wide number of appli- cations. Even more, it is a very natural concept for the storage of information, since objects and information persists until the end of their lifetime. Most current commercial non-persistent systems have only an explicit storage model. Thus, an application has to care for the persistent storage of data itself. This has to be done by transforming the data structures into something that can be stored within a file. Furthermore the file has to be opened, written to and saved explicitly; a source of overhead for programmers. Moreover the programmer also has to estimate the life-time of all valuable data. Including the conversion and recovery of data, the amount of code needed to store data explicitly could easily take up a third or half of the actual programming work. In order to support a convenient system environment, persistent storage could be handled implicitly by the operating system. The operating system has to store for each task an image of the user memory and all kernel internal data like page- tables, mapping structures, file descriptors and so on. This approach is very de- manding and very error-prone for current monolithic systems. Therefore we pro- pose a -kernel based system instead. The proposed work should provide an implementation base for further persistent systems by supplying the necessary mechanisms to build persistent applications on top of the -kernel. -
Ivoyeur: Inotify
COLUMNS iVoyeur inotify DAVE JOSEPHSEN Dave Josephsen is the he last time I changed jobs, the magnitude of the change didn’t really author of Building a sink in until the morning of my first day, when I took a different com- Monitoring Infrastructure bination of freeways to work. The difference was accentuated by the with Nagios (Prentice Hall T PTR, 2007) and is Senior fact that the new commute began the same as the old one, but on this morn- Systems Engineer at DBG, Inc., where he ing, at a particular interchange, I would zig where before I zagged. maintains a gaggle of geographically dispersed It was an unexpectedly emotional and profound metaphor for the change. My old place was server farms. He won LISA ‘04’s Best Paper off to the side, and down below, while my future was straight ahead, and literally under award for his co-authored work on spam construction. mitigation, and he donates his spare time to the SourceMage GNU Linux Project. The fact that it was under construction was poetic but not surprising. Most of the roads I [email protected] travel in the Dallas/Fort Worth area are under construction and have been for as long as anyone can remember. And I don’t mean a lane closed here or there. Our roads drift and wan- der like leaves in the water—here today and tomorrow over there. The exits and entrances, neither a part of this road or that, seem unable to anticipate the movements of their brethren, and are constantly forced to react. -
I.MX Linux® Reference Manual
i.MX Linux® Reference Manual Document Number: IMXLXRM Rev. 1, 01/2017 i.MX Linux® Reference Manual, Rev. 1, 01/2017 2 NXP Semiconductors Contents Section number Title Page Chapter 1 About this Book 1.1 Audience....................................................................................................................................................................... 27 1.1.1 Conventions................................................................................................................................................... 27 1.1.2 Definitions, Acronyms, and Abbreviations....................................................................................................27 Chapter 2 Introduction 2.1 Overview.......................................................................................................................................................................31 2.1.1 Software Base................................................................................................................................................ 31 2.1.2 Features.......................................................................................................................................................... 31 Chapter 3 Machine-Specific Layer (MSL) 3.1 Introduction...................................................................................................................................................................37 3.2 Interrupts (Operation).................................................................................................................................................. -
Seminar HPC Trends Winter Term 2017/2018 New Operating System Concepts for High Performance Computing
Seminar HPC Trends Winter Term 2017/2018 New Operating System Concepts for High Performance Computing Fabian Dreer Ludwig-Maximilians Universit¨atM¨unchen [email protected] January 2018 Abstract 1 The Impact of System Noise When using a traditional operating system kernel When running large-scale applications on clusters, in high performance computing applications, the the noise generated by the operating system can cache and interrupt system are under heavy load by greatly impact the overall performance. In order to e.g. system services for housekeeping tasks which is minimize overhead, new concepts for HPC OSs are also referred to as noise. The performance of the needed as a response to increasing complexity while application is notably reduced by this noise. still considering existing API compatibility. Even small delays from cache misses or interrupts can affect the overall performance of a large scale In this paper we study the design concepts of het- application. So called jitter even influences collec- erogeneous kernels using the example of mOS and tive communication regarding the synchronization, the approach of library operating systems by ex- which can either absorb or propagate the noise. ploring the architecture of Exokernel. We sum- Even though asynchronous communication has a marize architectural decisions, present a similar much higher probability to absorb the noise, it is project in each case, Interface for Heterogeneous not completely unaffected. Collective operations Kernels and Unikernels respectively, and show suffer the most from propagation of jitter especially benchmark results where possible. when implemented linearly. But it is hard to anal- yse noise and its propagation for collective oper- ations even for simple algorithms. -
Operating System User's Mannal ~Zilog 03-0072-01 Revision a September 1978
t_ .' Operating System User's Mannal ~Zilog 03-0072-01 Revision A September 1978 Copyright © 1978 by Zilog, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of Zilog. Zilog assumes no responsibility for the use of any circuitry other than circuitry embodied in a Zilog product. No other circuit patent licenses are implied. zaO-RIO Operating System User's Manual September 1978 TABLE OF CONTENTS CHAPTER 1 - INTRODUCTION AND OVERVIEW • 1 1.1 INTRODUCTION •• 1 1.2 SYSTEM OVERVIEW 3 1.2.1 Hardware Configuration • • • • • • 3 1.2.2 File Systems • • • • • • • . • • 3 1.2.3 System Initialization •••.••• 6 1.2.4 Commands • • .• .•..••• 7 1.2.5 I/O • • • . • • • • • . • • • • • . 7 CHAPTER 2 - RIO EXECUTIVE 9 2.1 SYSTEM INITIALIZATION 9 2.2 FILE NAME CONVENTIONS · 10 2.3 MEMORY MANAGEMENT . • • . 12 2.3.1 MEMMGR • . 13 2.4 COMMAND STRING INTERPRETATION · 13 2.5 ERROR HANDLING • • . 15 2.6 PROGRAM EXECUTION OF COMMANDS · 15 CHAPTER 3 - 1/0 STRUCTURE • · 16 3.1 OVERVIEW . • · 16 3.2 I/O REQUESTS - SYSTEM CALLS · 17 3.3 THE 'ASSIGN' I/O REQUEST ••• • 19 - i - 3.4 STANDARD RIO I/O DEVICES • • • 21 3.4.1 ZDOS . • • • . 21 3.4.2 DFS . 21 3.4.3 NULL . • • • . 21 3.4.4 CON . • • • . • • • • • 22 3.4.5 PCON • 27 3.4.6 FLOPPY • • • • • • • • • • 27 3.4.7 DISK • • • • • • 27 CHAPTER 4 - PROGRAM INTERFACE • • 28 4.1 PROGRAM LOCATION • • • • • 28 4.2 PARAMETER STRING ADDRESS · 29 4.3 PROGRAM STACK SPACE • • • 29 4.4 PROGRAM TERMINATION - ERROR HANDLING ••. -
The Linux Device File-System
The Linux Device File-System Richard Gooch EMC Corporation [email protected] Abstract 1 Introduction All Unix systems provide access to hardware via de- vice drivers. These drivers need to provide entry points for user-space applications and system tools to access the hardware. Following the \everything is a file” philosophy of Unix, these entry points are ex- posed in the file name-space, and are called \device The Device File-System (devfs) provides a power- special files” or \device nodes". ful new device management mechanism for Linux. Unlike other existing and proposed device manage- This paper discusses how these device nodes are cre- ment schemes, it is powerful, flexible, scalable and ated and managed in conventional Unix systems and efficient. the limitations this scheme imposes. An alternative mechanism is then presented. It is an alternative to conventional disc-based char- acter and block special devices. Kernel device drivers can register devices by name rather than de- vice numbers, and these device entries will appear in the file-system automatically. 1.1 Device numbers Devfs provides an immediate benefit to system ad- ministrators, as it implements a device naming scheme which is more convenient for large systems Conventional Unix systems have the concept of a (providing a topology-based name-space) and small \device number". Each instance of a driver and systems (via a device-class based name-space) alike. hardware component is assigned a unique device number. Within the kernel, this device number is Device driver authors can benefit from devfs by used to refer to the hardware and driver instance. -
Linux Kernel and Driver Development Training Slides
Linux Kernel and Driver Development Training Linux Kernel and Driver Development Training © Copyright 2004-2021, Bootlin. Creative Commons BY-SA 3.0 license. Latest update: October 9, 2021. Document updates and sources: https://bootlin.com/doc/training/linux-kernel Corrections, suggestions, contributions and translations are welcome! embedded Linux and kernel engineering Send them to [email protected] - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 1/470 Rights to copy © Copyright 2004-2021, Bootlin License: Creative Commons Attribution - Share Alike 3.0 https://creativecommons.org/licenses/by-sa/3.0/legalcode You are free: I to copy, distribute, display, and perform the work I to make derivative works I to make commercial use of the work Under the following conditions: I Attribution. You must give the original author credit. I Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting work only under a license identical to this one. I For any reuse or distribution, you must make clear to others the license terms of this work. I Any of these conditions can be waived if you get permission from the copyright holder. Your fair use and other rights are in no way affected by the above. Document sources: https://github.com/bootlin/training-materials/ - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 2/470 Hyperlinks in the document There are many hyperlinks in the document I Regular hyperlinks: https://kernel.org/ I Kernel documentation links: dev-tools/kasan I Links to kernel source files and directories: drivers/input/ include/linux/fb.h I Links to the declarations, definitions and instances of kernel symbols (functions, types, data, structures): platform_get_irq() GFP_KERNEL struct file_operations - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 3/470 Company at a glance I Engineering company created in 2004, named ”Free Electrons” until Feb. -
IODF Explorer
The Input/Output Definition File (IODF) is a critical Control Point in the management of the IBM z/Series Platform. IODF Explorer Release 4.0 USER GUIDE Contact us for additional information: NewEra Software Technical Support 800-421-5035 [email protected] www.newera.com Rev: 2009-04-24 IODF Explorer 4.0 ¾ Copyright, Trademark and Legal Notices Copyrights This Getting Started Guide and the related Software Product(s) are protected under a Copyright dated 2009 by NewEra Software, Inc. All rights are reserved. License Agreement This Getting Started Guide describes the installation and operation of Image FOCUS, its environment and applications. It is made available only under the terms of a license agreement between the licensee and NewEra Software Inc. No part of this Guide or the related Software Product(s) may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, for any purpose, without the express written permission of NewEra Software, Inc. Trademarks and Copyrights of Others The following products and/or registered trademarks of International Business Machines Corporation are referenced in this document: MVS, VM, RACF, z/OS, SYSPLEX, JES, VTAM, TSO, ISPF, ICKDSF, DFSMSdss, DF/DSS, and others. 2 NewEra Software, Inc. ‐ Image Control Environment (ICE) Applications IODF Explorer 4.0 ¾ Technical Support Information NewEra Software is dedicated to providing the highest level of technical Around-the-clock- support support to meet our customers’ growing needs. In order to meet these needs, NewEra provides around‐the‐clock technical support, 7 days a week, 24 hours a day. -
SUSE Linux Enterprise Server 11 SP4 System Analysis and Tuning Guide System Analysis and Tuning Guide SUSE Linux Enterprise Server 11 SP4
SUSE Linux Enterprise Server 11 SP4 System Analysis and Tuning Guide System Analysis and Tuning Guide SUSE Linux Enterprise Server 11 SP4 Publication Date: September 24, 2021 SUSE LLC 1800 South Novell Place Provo, UT 84606 USA https://documentation.suse.com Copyright © 2006– 2021 SUSE LLC and contributors. All rights reserved. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or (at your option) version 1.3; with the Invariant Section being this copyright notice and license. A copy of the license version 1.2 is included in the section entitled “GNU Free Documentation License”. For SUSE trademarks, see http://www.suse.com/company/legal/ . All other third party trademarks are the property of their respective owners. A trademark symbol (®, ™ etc.) denotes a SUSE or Novell trademark; an asterisk (*) denotes a third party trademark. All information found in this book has been compiled with utmost attention to detail. However, this does not guarantee complete accuracy. Neither SUSE LLC, its aliates, the authors nor the translators shall be held liable for possible errors or the consequences thereof. Contents About This Guide xi 1 Available Documentation xii 2 Feedback xiv 3 Documentation Conventions xv I BASICS 1 1 General Notes on System Tuning 2 1.1 Be Sure What Problem to Solve 2 1.2 Rule Out Common Problems 3 1.3 Finding the Bottleneck 3 1.4 Step-by-step Tuning 4 II SYSTEM MONITORING 5 2 System Monitoring Utilities 6 2.1 Multi-Purpose Tools 6 vmstat 7