The Laboratory of the Mind: Thought Experiments in the Natural Sciences/James Robert Brown

Total Page:16

File Type:pdf, Size:1020Kb

The Laboratory of the Mind: Thought Experiments in the Natural Sciences/James Robert Brown THE LABORATORY OF THE MIND Thought Experiments in the Natural Sciences James Robert Brown London and New York First published 1991 This edition published in the Taylor & Francis e-Library, 2005. “To purchase your own copy of this or any of Taylor & Francis or Routledge’s collection of thousands of eBooks please go to www.eBookstore.tandf.co.uk.” Paperback edition first published in 1993 by Routledge 11 New Fetter Lane London EC4P 4EE Simultaneously published in the USA and Canada by Routledge 29 West 35th Street, New York, NY 10001 © 1991 James Robert Brown All rights reserved. No part of this book may be reprinted or reproduced or utilized in any form or by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying and recording, or in any information storage or retrieval system, without permission in writing from the publishers. British Library Cataloguing in Publication Data Brown, James Robert The laboratory of the mind. 1. Science. Philosophical perspectives I. Title II. Series 501 Library of Congress Cataloging in Publication Data Brown, James Robert. The laboratory of the mind: thought experiments in the natural sciences/James Robert Brown. p. cm.—(Philosophical issues in science) Includes bibliographical references and index. 1. Physics—Philosophy. 2. Quantum theory. 3. Science—Methodology. 4. Rationalism. 5. Knowledge, Theory of. I. Title. II. Series. Q175.B7965 1991 530′.01–dc20 90–47820 ISBN 0-203-97915-X Master e-book ISBN ISBN 0-415-05470-2 (Print Edition) 0-415-09579-4 pbk For Kathleen who doesn’t believe a word of it CONTENTS Preface and Acknowledgements viii 1 ILLUSTRATIONS FROM THE LABORATORY OF 1 THE MIND 2 THE STRUCTURE OF THOUGHT 33 EXPERIMENTS 3 MATHEMATICAL THINKING 49 4 SEEING THE LAWS OF NATURE 75 5 EINSTEIN’S BRAND OF VERIFICATIONISM 99 6 QUANTUM MECHANICS: A PLATONIC 127 INTERPRETATION Afterword 155 Notes 159 Bibliography 165 Index 175 PREFACE AND ACKNOWLEDGEMENTS Like most philosophers, I encountered a bit of rationalism (Plato and Descartes) and a bit of empiricism (Hume) in my first formal introduction to the subject. And like most students of philosophy I found the rationalists endlessly fascinating, but not in the least believable. It seemed obvious to me, as it does to most, that all our knowledge is based upon sensory experience. Then one day I heard about Galileo’s thought experiment showing that all bodies must fall at the same rate—I almost fell out of my chair. It was a wonderful intellectual experience. Suddenly, traditional rationalism seemed a live option; perhaps my philosophical heroes—Plato, Descartes, and Leibniz—were on the right track after all. All of this remained on the back burner until a couple of years ago when I got around to looking at thought experiments in general. I was surprised by two things. First, that there is remarkably little literature on the subject. People often use the expression ‘thought experiments’, but hardly anyone has thought seriously (or at least written extensively) about them. The second thing I was surprised at was that my old rationalist sentiments stood up; if anything, they have been reinforced by looking at this topic anew. I have long held a platonistic view of mathematics; I now hold a platonistic view of physics as well. In brief, the book is as follows. The first chapter introduces the subject by giving several examples of thought experiments. A multitude of cases is necessary since I have no definition of thought experiment to work with; we need a variety of paradigm instances. But this is not the only reason for describing several specimens. They are such a pleasure to contemplate that it’s an opportunity not to be missed. With lots of examples under our belt we can begin to talk about how they work. This task is begun in chapter two, which offers a ix taxonomy of thought experiments. Some commentators say thought experiments do this or that or some other thing. Actually they do several quite distinct things and chapter two tries to classify their diverse uses. Chapter three is a defence of platonism in mathematics. It serves as a model of how I’d like theorizing about thought experiments to go. Platonism in the philosophy of mathematics, though a minority view, is eminently respectable, whereas a priorism about the physical world is likely be dismissed out of hand. So the point of the third chapter is to carry empiricist-, naturalist-, and physicalist- minded readers as gently as possible into chapter four which contends that we really do have some a priori knowledge of nature. Of course, the great bulk of our knowledge must be accounted for along empiricist lines; but there is, I contend, the odd bit that is a priori and it comes from thought experiments. Not all thought experiments generate a priori knowledge. Only a very select class is capable of doing so. This a priori knowledge is gained by a kind of perception of the relevant laws of nature which are, it is argued, interpreted realistically. Just as the mathematical mind can grasp (some) abstract sets, so the scientific mind can grasp (some of) the abstract entities which are the laws of nature. The next two chapters function as a kind of test of my platonist outlook, though I hope there is some independent interest in these final chapters as well. A novel interpretation of Einstein is offered in chapter five. It attempts to make sense of what is commonly thought to be Einstein’s ‘youthful empiricism’ and his ‘mature realism’ as well as accounting for the role of thought experiments in his scientific work. Chapter six surveys some of the philosophical problems of quantum mechanics and some of the interpretations which have been proposed to solve them. Though my discussion of thought experiments has been mainly about the epistemology of science, much ontological machinery has been developed. Laws of nature, understood as real entities in their own right, are now put to work to give an account of quantum phenomena—not just thought experiments about quantum phenomena, but the actual measurement results themselves—which is realistic and does not violate the locality requirements of special relativity. It is a commonplace at this point in a preface for authors to say that they are less interested in having their own views stand up to close scrutiny than in stimulating interest in their chosen subjects. x Of course, such remarks are largely disingenuous. Nobody wants to be shot down in flames—certainly I don’t; yet the chance of this happening is great since the central views put forward here are far removed from mainstream thinking about how either science or nature work. Even if some of my claims are on the right track, the details are bound to be seriously flawed. At best this work is a first attempt at a (modern) rationalist interpretation of science. So it is probably wise for me also to take the disingenuous route and declare that I am content to provoke interest in the subject of thought experiments, and to hope that readers are more than usually indulgent. I mentioned that there is very little literature on the subject of thought experiments. This lamentable state of affairs is about to change radically. Two other books are soon to be published: Nicholas Rescher (ed.), Thought Experiments, and Roy Sorensen, Thought Experiments. I have seen some of the contributions to the first and they have played a role in my developing views. This is especially true of John Norton’s excellent essay, Thought Experiments in Einstein’s Work’. In several places below I borrow from it or argue against it. Norton’s is one of the most intelligent and persuasive pieces going on this subject. Unfortunately, I found out about Roy Sorensen’s book too late to let it have any impact on this one—though it certainly would have if I’d read it earlier. It’s a rich, readable, and wide-ranging work, bound to be influential over the long haul. If an antidote to my gung-ho platonism should be needed, then it can be found in either Norton’s empiricism or Sorensen’s naturalism. Both are warmly recommended. Much of the material in this book was presented to various audiences in Canada, Dubrovnik, Yugoslavia, Lanzhou, China, and Moscow. In every case I am grateful to my hosts and numerous critics. Some of this work stems from earlier essays: ‘Thought Experiments since the Scientific Revolution’, International Studies in the Philosophy of Science, 1986, ‘Einstein’s Brand of Verificationism’, International Studies in the Philosophy of Science, 1987, and ‘π in the Sky’, A.Irvine (ed.), Physicalism in Mathematics, Kluwer, 1989. There are a large number of individuals who deserve special mention: Igor Akchurin, Brian Baigrie, John L.Bell, Lars Bergström, Harvey Brown, Robert Butts, John Carruthers, Paul Forster, Rolf George, David Gooding, Ian Hacking, Andrew Irvine, Dominick Jenkins, Randell Keen, André xi Kukla, Igal Kvart, Lin Li, Ma Jin-Song, Penelope Maddy, Elena Mamchur, James McAllister, Cheryl Misak, Margaret Morrison, William Newton-Smith, John Norton, Kathleen Okruhlik, David Papineau, Kent Peacock, Michael Ruse, David Savan, Valerie Schweitzer, William Seager, Roy Sorensen, Demetra Sfendoni- Mentzou, Jacek Urbaniec, Alasdair Urquhart, Wang Jian-Hua, Kathleen Wilkes, and Polly Winsor. I’m grateful to them all. Finally, I am extremely grateful to David Kotchan who did the diagrams. Note to paperback edition I have taken this opportunity to correct a few slips and misprints. I am especially grateful to Kent Peacock who pointed many of these out to me. 1 ILLUSTRATIONS FROM THE LABORATORY OF THE MIND Thought experiments are performed in the laboratory of the mind.
Recommended publications
  • Einstein's Simple Mathematical Trick –And the Illusion of a Constant
    Applied Physics Research; Vol. 5, No. 4; 2013 ISSN 1916-9639 E-ISSN 1916-9647 Published by Canadian Center of Science and Education Einstein’s Simple Mathematical Trick –and the Illusion of a Constant Speed of Light Conrad Ranzan1 1 DSSU Research, Niagara Falls, Canada Correspondence: Conrad Ranzan, Director, DSSU Research, 5145 Second Avenue, Niagara Falls, ON. L2E 4J8, Canada. Tel: 1-905-357-0788. E-mail: [email protected], [email protected] Received: May 24, 2013 Accepted: June 25, 2013 Online Published: July 15, 2013 doi:10.5539/apr.v5n4p85 URL: http://dx.doi.org/10.5539/apr.v5n4p85 Abstract It is shown how Einstein achieves the illusion of lightspeed invariance by employing a simple mathematical trick—and magically abolishing the aether. As if part of a "conspiracy" against man's efforts to obtain knowledge of the physical world, Nature has a “trick” of its own in providing the illusion of lightspeed invariance. The illusion works remarkably well, thanks to length contraction and clock slowing both of which are induced by absolute motion with respect to aether. Einstein’s illusion and Nature’s illusion, however, conceal the physical reality that the one-way speed of light, contrary to a strict interpretation of Einstein’s 2nd postulate, is NOT constant. Keywords: Albert Einstein, DSSU aether theory, special relativity, speed of light, 2nd postulate, absolute motion, absolute space, aether, length contraction, clock retardation As Einstein regarded the situation, the [aether] experiments, seemed to indicate a "conspiracy" on the part of nature against man's efforts to obtain knowledge of the physical world.
    [Show full text]
  • APPARENT SIMULTANEITY Hanoch Ben-Yami
    APPARENT SIMULTANEITY Hanoch Ben-Yami ABSTRACT I develop Special Relativity with backward-light-cone simultaneity, which I call, for reasons made clear in the paper, ‘Apparent Simultaneity’. In the first section I show some advantages of this approach. I then develop the kinematics in the second section. In the third section I apply the approach to the Twins Paradox: I show how it removes the paradox, and I explain why the paradox was a result of an artificial symmetry introduced to the description of the process by Einstein’s simultaneity definition. In the fourth section I discuss some aspects of dynamics. I conclude, in a fifth section, with a discussion of the nature of light, according to which transmission of light energy is a form of action at a distance. 1 Considerations Supporting Backward-Light-Cone Simultaneity ..........................1 1.1 Temporal order...............................................................................................2 1.2 The meaning of coordinates...........................................................................3 1.3 Dependence of simultaneity on location and relative motion........................4 1.4 Appearance as Reality....................................................................................5 1.5 The Time Lag Argument ...............................................................................6 1.6 The speed of light as the greatest possible speed...........................................8 1.7 More on the Apparent Simultaneity approach ...............................................9
    [Show full text]
  • 1 Hilary Putnam, Reason, Truth and History, (Cambridge: Harvard University Press, 1979). Henceforth 'RTH'. the Position Th
    [The Journal of Philosophical Research XVII (1992): 313-345] Brains in a Vat, Subjectivity, and the Causal Theory of Reference Kirk Ludwig Department of Philosophy University of Florida Gainesville, FL 32611-8545 1. Introduction In the first chapter of Reason, Truth and History,1 Putnam argued that it is not epistemically possible that we are brains in a vat (of a certain sort). If his argument is correct, and can be extended in certain ways, then it seems that we can lay to rest the traditional skeptical worry that most or all of our beliefs about the external world are false. Putnam’s argument has two parts. The first is an argument for a theory of reference2 according to which we cannot refer to an object or a type of object unless we have had a certain sort of causal interaction with it. The second part argues from this theory to the conclusion that we can know that we are not brains in a vat. In this paper I will argue that Putnam’s argument to show that we cannot be brains in a vat is unsuccessful. However, the flaw is not in the argument from the theory of reference to the conclusion 1 Hilary Putnam, Reason, Truth and History, (Cambridge: Harvard University Press, 1979). Henceforth ‘RTH’. The position that Putnam advances in this first chapter is one that in later chapters of RTH he abandons in favor of the position that he calls ‘internal realism’. He represents the arguments he gives in chapter 1 as a problem posed for the ‘external realist’, who assumes the possibility of a God’s eye point of view.
    [Show full text]
  • Ponderable Aethers, Which Arise in fixed Clock Theories
    Prepared for submission to JCAP Ponderable aether Antony J. Speranzaa,b aMaryland Center for Fundamental Physics, University of Maryland, College Park, Maryland 20742 bPerimeter Institute for Theoretical Physics, 31 Caroline Street North, ON N2L 2Y5, Canada E-mail: [email protected] Abstract. We consider a Lorentz-violating theory of gravity where the aether vector is taken to be nondynamical. This “ponderable aether theory” is almost the same as Einstein- aether theory (where the aether vector is dynamical), but involves additional integration constants arising due to the loss of initial value constraints. One of these produces an effective energy density for the aether fluid, similar to the appearance of dark matter in projectable Hoˇrava gravity and the mimetic dark matter theory. Here we investigate the extent to which this energy density can reproduce the phenomenology of dark matter. Although it is indistinguishable from cold dark matter in homogeneous, isotropic cosmology, it encounters phenomenological problems in both spherically symmetric configurations and cosmological perturbations. Furthermore, inflationary considerations lead us to expect a tiny value for the ponderable aether energy density today unless a sourcing effect is added to the theory. The theory then effectively reduces to dynamical Einstein-aether theory, rendering moot the question of whether an aether must be dynamical in order to be consistent. arXiv:1504.03305v1 [gr-qc] 13 Apr 2015 Contents 1 Introduction 1 2 Lorentz-violating structures 3 2.1 Dynamics for Lorentz-violation
    [Show full text]
  • Einstein's Boxes
    Einstein’s Boxes Travis Norsen∗ Marlboro College, Marlboro, Vermont 05344 (Dated: February 1, 2008) At the 1927 Solvay conference, Albert Einstein presented a thought experiment intended to demon- strate the incompleteness of the quantum mechanical description of reality. In the following years, the experiment was modified by Einstein, de Broglie, and several other commentators into a simple scenario involving the splitting in half of the wave function of a single particle in a box. This paper collects together several formulations of this thought experiment from the literature, analyzes and assesses it from the point of view of the Einstein-Bohr debates, the EPR dilemma, and Bell’s the- orem, and argues for “Einstein’s Boxes” taking its rightful place alongside similar but historically better known quantum mechanical thought experiments such as EPR and Schr¨odinger’s Cat. I. INTRODUCTION to Copenhagen such as Bohm’s non-local hidden variable theory. Because of its remarkable simplicity, the Einstein Boxes thought experiment also is well-suited as an intro- It is well known that several of quantum theory’s duction to these topics for students and other interested founders were dissatisfied with the theory as interpreted non-experts. by Niels Bohr and other members of the Copenhagen school. Before about 1928, for example, Louis de Broglie The paper is organized as follows. In Sec. II we intro- duce Einstein’s Boxes by quoting a detailed description advocated what is now called a hidden variable theory: a pilot-wave version of quantum mechanics in which parti- due to de Broglie. We compare it to the EPR argument and discuss how it fares in eluding Bohr’s rebuttal of cles follow continuous trajectories, guided by a quantum wave.1 David Bohm’s2 rediscovery and completion of the EPR.
    [Show full text]
  • Basic Concepts for a Fundamental Aether Theory1
    BASIC CONCEPTS FOR A FUNDAMENTAL AETHER THEORY1 Joseph Levy 4 square Anatole France, 91250 St Germain-lès-Corbeil, France E-mail: [email protected] 55 Pages, 8 figures, Subj-Class General physics ABSTRACT In the light of recent experimental and theoretical data, we go back to the studies tackled in previous publications [1] and develop some of their consequences. Some of their main aspects will be studied in further detail. Yet this text remains self- sufficient. The questions asked following these studies will be answered. The consistency of these developments in addition to the experimental results, enable to strongly support the existence of a preferred aether frame and of the anisotropy of the one-way speed of light in the Earth frame. The theory demonstrates that the apparent invariance of the speed of light results from the systematic measurement distortions entailed by length contraction, clock retardation and the synchronization procedures with light signals or by slow clock transport. Contrary to what is often believed, these two methods have been demonstrated to be equivalent by several authors [1]. The compatibility of the relativity principle with the existence of a preferred aether frame and with mass-energy conservation is discussed and the relation existing between the aether and inertial mass is investigated. The experimental space-time transformations connect co-ordinates altered by the systematic measurement distortions. Once these distortions are corrected, the hidden variables they conceal are disclosed. The theory sheds light on several points of physics which had not found a satisfactory explanation before. (Further important comments will be made in ref [1d]).
    [Show full text]
  • Class 4: Space-Time Diagrams
    Class 4: Space-time Diagrams In this class we will explore how space-time diagrams may be used to visualize events and causality in relativity Class 4: Space-time Diagrams At the end of this session you should be able to … • … create a space-time diagram showing events and world lines in a given reference frame • … determine geometrically which events are causally connected, via the concept of the light cone • … understand that events separated by a constant space-time interval from the origin map out a hyperbola in space-time • … use space-time diagrams to relate observations in different inertial frames, via tilted co-ordinate systems What is a space-time diagram? • A space-time diagram is a graph showing the position of objects (events) in a reference frame, as a function of time • Conventionally, space (�) is represented in the horizontal direction, and time (�) runs upwards �� Here is an event This is the path of a light ray travelling in the �- direction (i.e., � = ��), We have scaled time by a which makes an angle of factor of �, so it has the 45° with the axis same dimensions as space What would be the � path of an object moving at speed � < �? What is a space-time diagram? • The path of an object (or light ray) moving through a space- time diagram is called a world line of that object, and may be thought of as a chain of many events • Note that a world line in a space-time diagram may not be the same shape as the path of an object through space �� Rocket ship accelerating in �-direction (path in Rocket ship accelerating in �-
    [Show full text]
  • EPR, Time, Irreversibility and Causality
    EPR, time, irreversibility and causality Umberto Lucia 1;a & Giulia Grisolia 1;b 1 Dipartimento Energia \Galileo Ferraris", Politecnico di Torino Corso Duca degli Abruzzi 24, 10129 Torino, Italy a [email protected] b [email protected] Abstract Causality is the relationship between causes and effects. Following Relativity, any cause of an event must always be in the past light cone of the event itself, but causes and effects must always be related to some interactions. In this paper, causality is developed as a conse- quence of the analysis of the Einstein, Podolsky and Rosen paradox. Causality is interpreted as the result of the time generation, due to irreversible interactions of real systems among them. Time results as a consequence of irreversibility, so any state function of a system in its space cone, when affected by an interaction with an observer, moves into a light cone or within it, with the consequence that any cause must precede its effect in a common light cone. Keyword: EPR paradox; Irreversibility; Quantum Physics; Quan- tum thermodynamics; Time. 1 Introduction The problem of the link between entropy and time has a long story and many viewpoints. In relation to irreversibility, Franklin [1] analysed some processes, in their steady states, evaluating their entropy variation, and he highlighted that they are related only to energy transformations. Thermodynamics is the physical science which develops the study of the energy transformations , allowing the scientists and engineers to ob- tain fundamental results [2{4] in physics, chemistry, biophysics, engineering and information theory. During the development of this science, entropy 1 has generally been recognized as one of the most important thermodynamic quantities due to its interdisciplinary applications [5{8].
    [Show full text]
  • The Flow of Time in the Theory of Relativity Mario Bacelar Valente
    The flow of time in the theory of relativity Mario Bacelar Valente Abstract Dennis Dieks advanced the view that the idea of flow of time is implemented in the theory of relativity. The ‘flow’ results from the successive happening/becoming of events along the time-like worldline of a material system. This leads to a view of now as local to each worldline. Each past event of the worldline has occurred once as a now- point, and we take there to be an ever-changing present now-point ‘marking’ the unfolding of a physical system. In Dieks’ approach there is no preferred worldline and only along each worldline is there a Newtonian-like linear order between successive now-points. We have a flow of time per worldline. Also there is no global temporal order of the now-points of different worldlines. There is, as much, what Dieks calls a partial order. However Dieks needs for a consistency reason to impose a limitation on the assignment of the now-points along different worldlines. In this work it is made the claim that Dieks’ consistency requirement is, in fact, inbuilt in the theory as a spatial relation between physical systems and processes. Furthermore, in this work we will consider (very) particular cases of assignments of now-points restricted by this spatial relation, in which the now-points taken to be simultaneous are not relative to the adopted inertial reference frame. 1 Introduction When we consider any experiment related to the theory of relativity,1 like the Michelson-Morley experiment (see, e.g., Møller 1955, 26-8), we can always describe it in terms of an intuitive notion of passage or flow of time: light is send through the two arms of the interferometer at a particular moment – the now of the experimenter –, and the process of light propagation takes time to occur, as can be measured by a clock calibrated to the adopted time scale.
    [Show full text]
  • 2.3 Twin Paradox and Light Clocks (Computational Example)
    2.3 Twin paradox and light clocks (Computational example) With the Lorentz transformation, world points and world lines are transformed between coordinate systems with constant relative velocity. This can be used to study the twin paradox of the Special Theory of Relativity, or to show that, in a moving frame of reference, time slows down. clear all Lorentz transformation from chapter 2.2 load Kap02 LT LT = syms c positive 1 World lines Light cone Light propagates in all directions at the same speed. The world points appear shifted in different reference systems, but the cone's opening angle remains the same. Light cone: LK=[-2 -1, 0 1 2;2 1 0 1 2] LK = -2 -1 0 1 2 2 1 0 1 2 1 Graphic representation of world lines (WeLi see 'function' below) in reference systems with velocities subplot(3,3,4) WeLi(LK,-c/2,0.6*[1 1 0],LT) axis equal subplot(3,3,5) WeLi(LK,0,0.6*[1 1 0],LT) axis equal subplot(3,3,6) WeLi(LK,c/2,0.6*[1 1 0],LT) axis equal 2 Twin paradox One twin stays at home, the other moves away at half the speed of light, to turn back after one unit of time (in the rest frame of the one staying at home). World lines of the twins: ZW=[0 0 0 1/2 0;2 1 0 1 2]; Graphics Plo({LK ZW},{.6*[1 1 0] 'b'},LT) 2 In the rest frame of the 'home stayer', his twin returns after one time unit, but in the rest frame of the 'traveler' this happens already after 0.86 time units.
    [Show full text]
  • Meaning Ain't in the Head 1. Hilary Putnam (1926-2016)
    Louis deRosset { Spring 2019 Putnam: Meaning Ain't in the Head 1. Hilary Putnam (1926-2016): Philosopher, logician, mathematician. Putnam is famous for important and seminal work in just about every sub- field in philosophy. 2. Putnam's Target: . two unchallenged assumptions: (1) That knowing the meaning of a term is just a matter of being in a certain psychological state. (2) That the meaning of a term determines its extension. (700) DEFINITION: The extension of a term is its nominatum: • for names, definite descriptions: a certain person, place, or thing. EX.: `Obama', `The president of the U.S.' • for predicates: the set of things of which the predicate is true. EX.: `is a student', `is a person'. Putnam's Target is the Fregean theory of intentionality: The Fregean Triangle (yet again!): Sense 4< expresses determines #+ expression Nominatum Putnam (following Carnap) uses different terminology for the same ideas: Frege says... Putnam says... sense meaning, intension nominatum extension The Fregean Triangle (Putnam's terms): meaning 3; expresses determines expression extension"* Putnam adds the speaker to the picture [BLACKBOARD: draw the speaker with a speech balloon around the expression]. Louis deRosset { Spring 2019 In this situation, Putnam (following Frege), says that the speaker grasps the sense. [BLACKBOARD: draw the grasping relation between the speaker and the sense]. Putnam's target: (a) grasping a meaning is a psychological state; and (b) meaning determines extension, (i.e. if A and B grasp the same meaning, their expressions have the same extension.) 3. Putnam's Thesis: I shall argue that these two assumptions are not jointly sat- isfied by any notion, let alone any notion of meaning.
    [Show full text]
  • A Historical Survey of Sir Karl Popper's Contribution to Quantum
    A Historical Survey of Sir Karl Popper’s Contribution to Quantum Mechanics William M. Shields Worcester Polytechnic Institute, Worcester, Massachusetts, United States. E-mail: [email protected] Editors: Ion C. Baianu, Christoph Lehner, Debajyoti Gangopadhyay & Danko Georgiev Article history: Submitted on May 28, 2012; Accepted on July 28, 2012; Published on November 15, 2012. ir Karl Popper (1902–1994), though not 1 Popper in the physics journals trained as a physicist and embarrassed early Sin his career by a physics error pointed out by Sir Karl Popper, by any measure one of the preeminent Einstein and Bohr, ultimately made substantial con- philosophers of the twentieth century, died in 1994 at the tributions to the interpretation of quantum mechan- age of 92. He was productive to the end, publishing in ics. As was often the case, Popper initially formu- the year of his death a criticism of Kuhn’s incommensu- lated his position by criticizing the views of others – rability of paradigms [1]. That debate continues over his in this case Niels Bohr and Werner Heisenberg. Un- many and profound philosophical ideas and opinions is derlying Popper’s criticism was his belief that, first, hardly surprising, almost two decades after his death. The the Copenhagen interpretation of quantum mechan- proliferation of book-length biographies and scholarly ics abandoned scientific realism and second, the as- philosophical articles is testimony to Popper’s standing as sertion that quantum theory was complete (an asser- a philosopher [2–5]. Major conferences are also regularly tion rejected by Einstein among others) amounted held on the thought of Karl Popper [6, 7].
    [Show full text]