Transformations in 3D
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Enhancing Self-Reflection and Mathematics Achievement of At-Risk Urban Technical College Students
Psychological Test and Assessment Modeling, Volume 53, 2011 (1), 108-127 Enhancing self-reflection and mathematics achievement of at-risk urban technical college students Barry J. Zimmerman1, Adam Moylan2, John Hudesman3, Niesha White3, & Bert Flugman3 Abstract A classroom-based intervention study sought to help struggling learners respond to their academic grades in math as sources of self-regulated learning (SRL) rather than as indices of personal limita- tion. Technical college students (N = 496) in developmental (remedial) math or introductory col- lege-level math courses were randomly assigned to receive SRL instruction or conventional in- struction (control) in their respective courses. SRL instruction was hypothesized to improve stu- dents’ math achievement by showing them how to self-reflect (i.e., self-assess and adapt to aca- demic quiz outcomes) more effectively. The results indicated that students receiving self-reflection training outperformed students in the control group on instructor-developed examinations and were better calibrated in their task-specific self-efficacy beliefs before solving problems and in their self- evaluative judgments after solving problems. Self-reflection training also increased students’ pass- rate on a national gateway examination in mathematics by 25% in comparison to that of control students. Key words: self-regulation, self-reflection, math instruction 1 Correspondence concerning this article should be addressed to: Barry Zimmerman, PhD, Graduate Center of the City University of New York and Center for Advanced Study in Education, 365 Fifth Ave- nue, New York, NY 10016, USA; email: [email protected] 2 Now affiliated with the University of California, San Francisco, School of Medicine 3 Graduate Center of the City University of New York and Center for Advanced Study in Education Enhancing self-reflection and math achievement 109 Across America, faculty and policy makers at two-year and technical colleges have been deeply troubled by the low academic achievement and high attrition rate of at-risk stu- dents. -
Projective Geometry: a Short Introduction
Projective Geometry: A Short Introduction Lecture Notes Edmond Boyer Master MOSIG Introduction to Projective Geometry Contents 1 Introduction 2 1.1 Objective . .2 1.2 Historical Background . .3 1.3 Bibliography . .4 2 Projective Spaces 5 2.1 Definitions . .5 2.2 Properties . .8 2.3 The hyperplane at infinity . 12 3 The projective line 13 3.1 Introduction . 13 3.2 Projective transformation of P1 ................... 14 3.3 The cross-ratio . 14 4 The projective plane 17 4.1 Points and lines . 17 4.2 Line at infinity . 18 4.3 Homographies . 19 4.4 Conics . 20 4.5 Affine transformations . 22 4.6 Euclidean transformations . 22 4.7 Particular transformations . 24 4.8 Transformation hierarchy . 25 Grenoble Universities 1 Master MOSIG Introduction to Projective Geometry Chapter 1 Introduction 1.1 Objective The objective of this course is to give basic notions and intuitions on projective geometry. The interest of projective geometry arises in several visual comput- ing domains, in particular computer vision modelling and computer graphics. It provides a mathematical formalism to describe the geometry of cameras and the associated transformations, hence enabling the design of computational ap- proaches that manipulates 2D projections of 3D objects. In that respect, a fundamental aspect is the fact that objects at infinity can be represented and manipulated with projective geometry and this in contrast to the Euclidean geometry. This allows perspective deformations to be represented as projective transformations. Figure 1.1: Example of perspective deformation or 2D projective transforma- tion. Another argument is that Euclidean geometry is sometimes difficult to use in algorithms, with particular cases arising from non-generic situations (e.g. -
Lecture 12: Camera Projection
Robert Collins CSE486, Penn State Lecture 12: Camera Projection Reading: T&V Section 2.4 Robert Collins CSE486, Penn State Imaging Geometry W Object of Interest in World Coordinate System (U,V,W) V U Robert Collins CSE486, Penn State Imaging Geometry Camera Coordinate Y System (X,Y,Z). Z X • Z is optic axis f • Image plane located f units out along optic axis • f is called focal length Robert Collins CSE486, Penn State Imaging Geometry W Y y X Z x V U Forward Projection onto image plane. 3D (X,Y,Z) projected to 2D (x,y) Robert Collins CSE486, Penn State Imaging Geometry W Y y X Z x V u U v Our image gets digitized into pixel coordinates (u,v) Robert Collins CSE486, Penn State Imaging Geometry Camera Image (film) World Coordinates Coordinates CoordinatesW Y y X Z x V u U v Pixel Coordinates Robert Collins CSE486, Penn State Forward Projection World Camera Film Pixel Coords Coords Coords Coords U X x u V Y y v W Z We want a mathematical model to describe how 3D World points get projected into 2D Pixel coordinates. Our goal: describe this sequence of transformations by a big matrix equation! Robert Collins CSE486, Penn State Backward Projection World Camera Film Pixel Coords Coords Coords Coords U X x u V Y y v W Z Note, much of vision concerns trying to derive backward projection equations to recover 3D scene structure from images (via stereo or motion) But first, we have to understand forward projection… Robert Collins CSE486, Penn State Forward Projection World Camera Film Pixel Coords Coords Coords Coords U X x u V Y y v W Z 3D-to-2D Projection • perspective projection We will start here in the middle, since we’ve already talked about this when discussing stereo. -
Reflection Invariant and Symmetry Detection
1 Reflection Invariant and Symmetry Detection Erbo Li and Hua Li Abstract—Symmetry detection and discrimination are of fundamental meaning in science, technology, and engineering. This paper introduces reflection invariants and defines the directional moments(DMs) to detect symmetry for shape analysis and object recognition. And it demonstrates that detection of reflection symmetry can be done in a simple way by solving a trigonometric system derived from the DMs, and discrimination of reflection symmetry can be achieved by application of the reflection invariants in 2D and 3D. Rotation symmetry can also be determined based on that. Also, if none of reflection invariants is equal to zero, then there is no symmetry. And the experiments in 2D and 3D show that all the reflection lines or planes can be deterministically found using DMs up to order six. This result can be used to simplify the efforts of symmetry detection in research areas,such as protein structure, model retrieval, reverse engineering, and machine vision etc. Index Terms—symmetry detection, shape analysis, object recognition, directional moment, moment invariant, isometry, congruent, reflection, chirality, rotation F 1 INTRODUCTION Kazhdan et al. [1] developed a continuous measure and dis- The essence of geometric symmetry is self-evident, which cussed the properties of the reflective symmetry descriptor, can be found everywhere in nature and social lives, as which was expanded to 3D by [2] and was augmented in shown in Figure 1. It is true that we are living in a spatial distribution of the objects asymmetry by [3] . For symmetric world. Pursuing the explanation of symmetry symmetry discrimination [4] defined a symmetry distance will provide better understanding to the surrounding world of shapes. -
Point Sets up to Rigid Transformations Are Determined by the Distribution of Their Pairwise Distances
Point Sets Up to Rigid Transformations are Determined by the Distribution of their Pairwise Distances Daniel Chen December 6, 2008 Abstract This report is a summary of [BK06], which gives a simpler, albeit less general proof for the result of [BK04]. 1 Introduction [BK04] and [BK06] study the circumstances when sets of n-points in Euclidean space are determined up to rigid transformations by the distribution of unlabeled pairwise distances. In fact, they show the rather surprising result that any set of n-points in general position are determined up to rigid transformations by the distribution of unlabeled distances. 1.1 Practical Motivation The results of [BK04] and [BK06] are partly motivated by experimental results in [OFCD]. [OFCD] is an experimental study evaluating the use of shape distri- butions to classify 3D objects represented by point clouds. A shape distribution is a the distribution of a function on a randomly selected set of points from the point cloud. [OFCD] tested various such functions, including the angle be- tween three random points on the surface, the distance between the centroid and a random point, the distance between two random points, the square root of the area of the triangle between three random points, and the cube root of the volume of the tetrahedron between four random points. Then, the distri- butions are compared using dissimilarity measures, including χ2, Battacharyya, and Minkowski LN norms for both the pdf and cdf for N = 1; 2; 1. The experimental results showed that the shape distribution function that worked best for classification was the distance between two random points and the best dissimilarity measure was the pdf L1 norm. -
Draft Framework for a Teaching Unit: Transformations
Co-funded by the European Union PRIMARY TEACHER EDUCATION (PrimTEd) PROJECT GEOMETRY AND MEASUREMENT WORKING GROUP DRAFT FRAMEWORK FOR A TEACHING UNIT Preamble The general aim of this teaching unit is to empower pre-service students by exposing them to geometry and measurement, and the relevant pe dagogical content that would allow them to become skilful and competent mathematics teachers. The depth and scope of the content often go beyond what is required by prescribed school curricula for the Intermediate Phase learners, but should allow pre- service teachers to be well equipped, and approach the teaching of Geometry and Measurement with confidence. Pre-service teachers should essentially be prepared for Intermediate Phase teaching according to the requirements set out in MRTEQ (Minimum Requirements for Teacher Education Qualifications, 2019). “MRTEQ provides a basis for the construction of core curricula Initial Teacher Education (ITE) as well as for Continuing Professional Development (CPD) Programmes that accredited institutions must use in order to develop programmes leading to teacher education qualifications.” [p6]. Competent learning… a mixture of Theoretical & Pure & Extrinsic & Potential & Competent learning represents the acquisition, integration & application of different types of knowledge. Each type implies the mastering of specific related skills Disciplinary Subject matter knowledge & specific specialized subject Pedagogical Knowledge of learners, learning, curriculum & general instructional & assessment strategies & specialized Learning in & from practice – the study of practice using Practical learning case studies, videos & lesson observations to theorize practice & form basis for learning in practice – authentic & simulated classroom environments, i.e. Work-integrated Fundamental Learning to converse in a second official language (LOTL), ability to use ICT & acquisition of academic literacies Knowledge of varied learning situations, contexts & Situational environments of education – classrooms, schools, communities, etc. -
Isometries and the Plane
Chapter 1 Isometries of the Plane \For geometry, you know, is the gate of science, and the gate is so low and small that one can only enter it as a little child. (W. K. Clifford) The focus of this first chapter is the 2-dimensional real plane R2, in which a point P can be described by its coordinates: 2 P 2 R ;P = (x; y); x 2 R; y 2 R: Alternatively, we can describe P as a complex number by writing P = (x; y) = x + iy 2 C: 2 The plane R comes with a usual distance. If P1 = (x1; y1);P2 = (x2; y2) 2 R2 are two points in the plane, then p 2 2 d(P1;P2) = (x2 − x1) + (y2 − y1) : Note that this is consistent withp the complex notation. For P = x + iy 2 C, p 2 2 recall that jP j = x + y = P P , thus for two complex points P1 = x1 + iy1;P2 = x2 + iy2 2 C, we have q d(P1;P2) = jP2 − P1j = (P2 − P1)(P2 − P1) p 2 2 = j(x2 − x1) + i(y2 − y1)j = (x2 − x1) + (y2 − y1) ; where ( ) denotes the complex conjugation, i.e. x + iy = x − iy. We are now interested in planar transformations (that is, maps from R2 to R2) that preserve distances. 1 2 CHAPTER 1. ISOMETRIES OF THE PLANE Points in the Plane • A point P in the plane is a pair of real numbers P=(x,y). d(0,P)2 = x2+y2. • A point P=(x,y) in the plane can be seen as a complex number x+iy. -
Half-Turns and Line Symmetric Motions
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by LSBU Research Open Half-turns and Line Symmetric Motions J.M. Selig Faculty of Business, Computing and Info. Management, London South Bank University, London SE1 0AA, U.K. (e-mail: [email protected]) and M. Husty Institute of Basic Sciences in Engineering Unit Geometry and CAD, Leopold-Franzens-Universit¨at Innsbruck, Austria. (e-mail: [email protected]) Abstract A line symmetric motion is the motion obtained by reflecting a rigid body in the successive generator lines of a ruled surface. In this work we review the dual quaternion approach to rigid body displacements, in particular the representation of the group SE(3) by the Study quadric. Then some classical work on reflections in lines or half-turns is reviewed. Next two new characterisations of line symmetric motions are presented. These are used to study a number of examples one of which is a novel line symmetric motion given by a rational degree five curve in the Study quadric. The rest of the paper investigates the connection between sets of half-turns and linear subspaces of the Study quadric. Line symmetric motions produced by some degenerate ruled surfaces are shown to be restricted to certain 2-planes in the Study quadric. Reflections in the lines of a linear line complex lie in the intersection of a the Study-quadric with a 4-plane. 1 Introduction In this work we revisit the classical idea of half-turns using modern mathematical techniques. In particular we use the dual quaternion representation of rigid-body motions. -
Lesson 4: Definition of Reflection and Basic Properties
NYS COMMON CORE MATHEMATICS CURRICULUM Lesson 4 8•2 Lesson 4: Definition of Reflection and Basic Properties Student Outcomes . Students know the definition of reflection and perform reflections across a line using a transparency. Students show that reflections share some of the same fundamental properties with translations (e.g., lines map to lines, angle- and distance-preserving motion). Students know that reflections map parallel lines to parallel lines. Students know that for the reflection across a line 퐿 and for every point 푃 not on 퐿, 퐿 is the bisector of the segment joining 푃 to its reflected image 푃′. Classwork Example 1 (5 minutes) The reflection across a line 퐿 is defined by using the following example. MP.6 . Let 퐿 be a vertical line, and let 푃 and 퐴 be two points not on 퐿, as shown below. Also, let 푄 be a point on 퐿. (The black rectangle indicates the border of the paper.) . The following is a description of how the reflection moves the points 푃, 푄, and 퐴 by making use of the transparency. Trace the line 퐿 and three points onto the transparency exactly, using red. (Be sure to use a transparency that is the same size as the paper.) . Keeping the paper fixed, flip the transparency across the vertical line (interchanging left and right) while keeping the vertical line and point 푄 on top of their black images. The position of the red figures on the transparency now represents the Scaffolding: reflection of the original figure. 푅푒푓푙푒푐푡푖표푛(푃) is the point represented by the There are manipulatives, such red dot to the left of 퐿, 푅푒푓푙푒푐푡푖표푛(퐴) is the red dot to the right of 퐿, and point as MIRA and Georeflector, 푅푒푓푙푒푐푡푖표푛(푄) is point 푄 itself. -
2-D Drawing Geometry Homogeneous Coordinates
2-D Drawing Geometry Homogeneous Coordinates The rotation of a point, straight line or an entire image on the screen, about a point other than origin, is achieved by first moving the image until the point of rotation occupies the origin, then performing rotation, then finally moving the image to its original position. The moving of an image from one place to another in a straight line is called a translation. A translation may be done by adding or subtracting to each point, the amount, by which picture is required to be shifted. Translation of point by the change of coordinate cannot be combined with other transformation by using simple matrix application. Such a combination is essential if we wish to rotate an image about a point other than origin by translation, rotation again translation. To combine these three transformations into a single transformation, homogeneous coordinates are used. In homogeneous coordinate system, two-dimensional coordinate positions (x, y) are represented by triple- coordinates. Homogeneous coordinates are generally used in design and construction applications. Here we perform translations, rotations, scaling to fit the picture into proper position 2D Transformation in Computer Graphics- In Computer graphics, Transformation is a process of modifying and re- positioning the existing graphics. • 2D Transformations take place in a two dimensional plane. • Transformations are helpful in changing the position, size, orientation, shape etc of the object. Transformation Techniques- In computer graphics, various transformation techniques are- 1. Translation 2. Rotation 3. Scaling 4. Reflection 2D Translation in Computer Graphics- In Computer graphics, 2D Translation is a process of moving an object from one position to another in a two dimensional plane. -
In This Handout, We Discuss Orthogonal Maps and Their Significance from A
In this handout, we discuss orthogonal maps and their significance from a geometric standpoint. Preliminary results on the transpose The definition of an orthogonal matrix involves transpose, so we prove some facts about it first. Proposition 1. (a) If A is an ` × m matrix and B is an m × n matrix, then (AB)> = B>A>: (b) If A is an invertible n × n matrix, then A> is invertible and (A>)−1 = (A−1)>: Proof. (a) We compute the (i; j)-entries of both sides for 1 ≤ i ≤ n and 1 ≤ j ≤ `: m m m > X X > > X > > > > [(AB) ]ij = [AB]ji = AjkBki = [A ]kj[B ]ik = [B ]ik[A ]kj = [B A ]ij: k=1 k=1 k=1 (b) It suffices to show that A>(A−1)> = I. By (a), A>(A−1)> = (A−1A)> = I> = I: Orthogonal matrices Definition (Orthogonal matrix). An n × n matrix A is orthogonal if A−1 = A>. We will first show that \being orthogonal" is preserved by various matrix operations. Proposition 2. (a) If A is orthogonal, then so is A−1 = A>. (b) If A and B are orthogonal n × n matrices, then so is AB. Proof. (a) We have (A−1)> = (A>)> = A = (A−1)−1, so A−1 is orthogonal. (b) We have (AB)−1 = B−1A−1 = B>A> = (AB)>, so AB is orthogonal. The collection O(n) of n × n orthogonal matrices is the orthogonal group in dimension n. The above definition is often not how we identify orthogonal matrices, as it requires us to compute an n × n inverse. -
Some Linear Transformations on R2 Math 130 Linear Algebra D Joyce, Fall 2013
Some linear transformations on R2 Math 130 Linear Algebra D Joyce, Fall 2013 Let's look at some some linear transformations on the plane R2. We'll look at several kinds of operators on R2 including reflections, rotations, scalings, and others. We'll illustrate these transformations by applying them to the leaf shown in figure 1. In each of the figures the x-axis is the red line and the y-axis is the blue line. Figure 1: Basic leaf Figure 2: Reflected across x-axis 1 0 Example 1 (A reflection). Consider the 2 × 2 matrix A = . Take a generic point 0 −1 x x = (x; y) in the plane, and write it as the column vector x = . Then the matrix product y Ax is 1 0 x x Ax = = 0 −1 y −y Thus, the matrix A transforms the point (x; y) to the point T (x; y) = (x; −y). You'll recognize this right away as a reflection across the x-axis. The x-axis is special to this operator as it's the set of fixed points. In other words, it's the 1-eigenspace. The y-axis is also special as every point (0; y) is sent to its negation −(0; y). That means the y-axis is an eigenspace with eigenvalue −1, that is, it's the −1- eigenspace. There aren't any other eigenspaces. A reflection always has these two eigenspaces a 1-eigenspace and a −1-eigenspace. Every 2 × 2 matrix describes some kind of geometric transformation of the plane. But since the origin (0; 0) is always sent to itself, not every geometric transformation can be described by a matrix in this way.