Eclipse Newsletter

Total Page:16

File Type:pdf, Size:1020Kb

Eclipse Newsletter ECLIPSE NEWSLETTER The Eclipse Newsletter is dedicated to increasing the knowledge of Astronomy, Astrophysics, Cosmology and related subjects. VOLUMN III - NUMBER I JANUARY – FEBRUARY 2019 PLEASE SEND ALL PHOTOS, QUESTIONS AND REQUST FOR ARTICLES TO [email protected] Page | 1 CONTENTS: CONSTELLATION ORIAN WHAT ARE THE MESSIER OBJECTS? MESSIER OBJECT NUMBER 42 WHAT IS THE LIFECYCLE OF A STAR? PART 1. DARK MATTER MCAO PUBLIC NIGHTS AND FAMILY NIGHTS. HOW TO FIND CONSTELLATIONS HYPERLINKS IN BLUE DEFINITIONS IN RED ORION CONSTELLATION Around this time of year, I like to revisit the Orion Constellation. I have always thought of Orion as the Archer. He has drawn his bow. His arrow is pointing at Antares, the bright red heart of Scorpius, the scorpion. The archer is avenging Orion, who was slain by the scorpion's sting. Others view Orion as the Hunter. Page | 2 To others, Orion is viewed with a club and Lions head. As the old saying goes, it’s all in the eye of the beholder. Once you have chosen how you prefer to view Orion, we can move on to some interesting information. Orion is clearly visible in the night sky from November to February. Orion is in the southwestern sky if you are in the Northern Hemisphere. Alnilam, Mintaka and Alnitak, which form Orion’s belt, are the most prominent stars in the Orion constellation. Betelgeuse, the second brightest star in Orion, establishes the right shoulder of the hunter. Bellatrix serves as Orion's left shoulder. We can also find in the Orion Constellation, the Orion Nebula. Page | 3 The Orion Nebula — a formation of dust, hydrogen, helium and other ionized gases rather than a star — is the middle "star" not exactly, in Orion’s sword holder, which hangs off of Orion's Belt. The Horsehead Nebula is also nearby. Other stars in the constellation include Hatsya, which establishes the tip of Orion's sword that hangs off the belt, and Meissa, which forms Orion's head. Saiph serves as Orion's right knee. Rigel, Orion’s brightest star, forms the hunter's left knee. WHAT ARE THE MESSIER OBJECTS? The Messier objects are a set of over 100 astronomical objects first listed by French astronomer Charles Messier in 1771.[1] Messier was a comet hunter, and was frustrated by objects which resembled but were not comets, so he compiled a list of them,[2] in collaboration with his assistant Pierre Méchain, to avoid wasting time on them. The number of objects in the lists he published reached 103, but a few more thought to have been observed by Messier have been added by other astronomers over the years. For a list of Messier objects: https://en.wikipedia.org/wiki/List of Messier objects THE ORIAN NEBULA MESSIER OBJECT 42. Page | 4 The Orion Nebula is one of the most scrutinized and photographed objects in the night sky, and is among the most intensely studied celestial features. The nebula has revealed much about the process of how stars and planetary systems are formed from collapsing clouds of gas and dust. The nebula is visible with the naked eye even from areas affected by some light pollution. It is seen as the middle "star" in the "sword" of Orion, which are the three stars located south of Orion's Belt. The star appears fuzzy to sharp-eyed observers, and the nebulosity is obvious through binoculars or a small telescope. The peak surface brightness of the central region is about 17 Mag/arcsec2 ( Mag/arcec (is a value used to define surface brightness)) (about 14 milliunits) (a unit of measurement) and the outer bluish glow has a peak surface brightness of 21.3 Mag/arcsec2 (about 0.27 milliunits). (In the photo shown here the brightness, or luminance, is enhanced by a large factor.) The Orion Nebula contains a very young open cluster, known as the Trapezium due to the asterism of its primary four stars. Two of these can be resolved into their component binary systems on nights with good seeing, giving a total of six stars. The stars of the Trapezium, along with many other stars, are still in their early years. The Trapezium is a component of the much larger Orion Nebula Cluster, an association of about 2,800 stars within a diameter of 20 light years. Two million years ago this cluster may have been the home of the runaway stars AE Aurigae, 53 Arietis, and Mu Columbae, which are currently moving away from the nebula at speeds greater than 100 km/s. Page | 5 Orion Nebula Trapezium is in the center of the green area. WHAT IS THE LIFECYCLE OF A STAR? Our Star, the Sun, is considered by most to be a 3rd generation Star. Two other generations of Stars preceded it. They are known as 1st and 2nd generation Stars. Page | 6 The universe is constantly evolving. Even today, clouds of dust and gas swirling among the vast reaches of space remain capable of giving birth to new stars just as they did billions of years ago. Obviously, not all stars came into existence at the same time. At 4.3 billion years old, the star the Earth orbits and that humans call the sun is among the younger stars known which are referred to as 3rd generation stars. However, there were two generations of stars that came before the 3rd generation. More on that later. Like so many things in the universe, stars begin very small -- mere particles in vast clouds of dust and gas. Far from active stars, these nebulae remain cold and monotonous for ages. Then everything stirs up when a newcomer speeds through. This disturbance might take the form of a streaking comet or the shockwave from a distant supernova. As the resulting force moves though the cloud, particles collide and begin to form clumps. Individually, a clump attains more mass and therefore a stronger gravitational pull, attracting even more particles from the surrounding cloud. Refer back to the picture above. As you can see, the process starts with a nebula which turns into a dust cloud then a Globule and then a Protostar. One of two things will happen to the Protostar. Become a full-blown star or a Brown Dwarf. More later. For now, let’s consider the 1st generation of stars. The best evidence yet for the very first generation of stars, ones made only from ingredients provided directly by the big bang they being made from essentially only hydrogen and helium. These 1st generation stars concentrated in the disks of spiral galaxies. Second generation stars tend to be found in globular clusters (a large compact spherical star cluster) and the nucleus of a galaxy. They tend to last longer therefore being older than the 1st generation of star we can still observe and less luminous and cooler than 1st generation stars which are predicted to be enormous in size, live fast and die young. Until recently, many astronomers had thought they would never be able to see such stars, because they would have all burned and died in the universe’s early history therefore too far for us to see. But using new instruments on the world’s top telescopes, a group of astronomers found a uniquely bright galaxy that seems to bear all the hallmarks of containing 1st generation stars. The space between stars, termed the interstellar medium, is filled with gases and traces of molecular elements. Most abundant in the interstellar medium is hydrogen gas, followed by helium. Certain pockets of space are so cold and lacking in energy that gravity can pull these gases together with particles of dust, eventually giving rise to stars. For this reason, scientists believe that the first stars were composed primarily of these abundant gases, hydrogen and helium. 2nd generation stars tend to be older, less luminous and cooler than 3rd generation stars. Stars may be classified by their heavy element abundance, which correlates with their age and the type of galaxy in which they are found. 3rd generation stars which includes the sun tend to be luminous, hot and young, concentrated in the disks of spiral galaxies. They are particularly found in the spiral arms which is where we find our star. Back to the life cycle. How does a nebula change into a protostar? A nebula is made of clouds of gas and dust. There is hydrogen gas, of course, and hydrogen atoms. Due to gravity, hydrogen gas tends to clumped together, and the hydrogen atoms Page | 7 will start to spin and pulls up more hydrogen atoms that will cause collision. This collision of the hydrogen atoms causes the hydrogen gas to heat up. When the temperature reach 15,000,000 C , (27,000.000 F) nuclear fusion starts. A protostar is then formed. Let’s go back to the Life Cycle of a Star picture above and start with a Nebula. The most common Nebula∘ for us is the Orion Nebula. The above shows the location of the Orion Nebula. The best-known image from the Orion Nebula is the Horse Head but is not all inclusive of this Nebula. The Horsehead Nebula is a dark nebula in the constellation Orion. The nebula is located just to the south of the star Alnitak, which is farthest east on Orion's Belt, and is part of the much larger Orion Molecular Cloud Complex. Let’s review a bit. Stars begin as a particles in clouds of dust and gas called Nebula. A Nebula will remain cold and basically inactive for ages. Then, the Nebula begins to stir up due to a disturbance.
Recommended publications
  • Stsci Newsletter: 1997 Volume 014 Issue 01
    January 1997 • Volume 14, Number 1 SPACE TELESCOPE SCIENCE INSTITUTE Highlights of this issue: • AURA science and functional awards to Leitherer and Hanisch — pages 1 and 23 • Cycle 7 to be extended — page 5 • Cycle 7 approved Newsletter program listing — pages 7-13 Astronomy with HST Climbing the Starburst Distance Ladder C. Leitherer Massive stars are an important and powerful star formation events in sometimes dominant energy source for galaxies. Even the most luminous star- a galaxy. Their high luminosity, both in forming regions in our Galaxy are tiny light and mechanical energy, makes on a cosmic scale. They are not them detectable up to cosmological dominated by the properties of an distances. Stars ~100 times more entire population but by individual massive than the Sun are one million stars. Therefore stochastic effects times more luminous. Except for stars prevail. Extinction represents a severe of transient brightness, like novae and problem when a reliable census of the supernovae, hot, massive stars are Galactic high-mass star-formation the most luminous stellar objects in history is atempted, especially since the universe. massive stars belong to the extreme Massive stars are, however, Population I, with correspondingly extremely rare: The number of stars small vertical scale heights. Moreover, formed per unit mass interval is the proximity of Galactic regions — roughly proportional to the -2.35 although advantageous for detailed power of mass. We expect to find very studies of individual stars — makes it few massive stars compared to, say, difficult to obtain integrated properties, solar-type stars. This is consistent with such as total emission-line fluxes of observations in our solar neighbor- the ionized gas.
    [Show full text]
  • On the Weak-Wind Problem in Massive Stars: X-Ray Spectra Reveal a Massive Hot Wind in Mu Columbae
    East Tennessee State University From the SelectedWorks of Richard Ignace September 10, 2012 On the Weak-Wind Problem in Massive Stars: X- Ray Spectra Reveal a Massive Hot Wind in mu Columbae. David P. Huenemoerder, Massachusetts nI stitute of Technology Lidia M. Oskinova, University of Potsdam Richard Ignace, East Tennessee State University Wayne L. Waldron, Eureka Scientific nI c. Helge Todt, University of Potsdam, et al. Available at: https://works.bepress.com/richard_ignace/61/ The Astrophysical Journal Letters, 756:L34 (5pp), 2012 September 10 doi:10.1088/2041-8205/756/2/L34 C 2012. The American Astronomical Society. All rights reserved. Printed in the U.S.A. ON THE WEAK-WIND PROBLEM IN MASSIVE STARS: X-RAY SPECTRA REVEAL A MASSIVE HOT WIND IN μ COLUMBAE David P. Huenemoerder1, Lidia M. Oskinova2, Richard Ignace3, Wayne L. Waldron4, Helge Todt2, Kenji Hamaguchi5,6, and Shunji Kitamoto7 1 Massachusetts Institute of Technology, Kavli Institute for Astrophysics and Space Research, 70 Vassar Street, Cambridge, MA 02139, USA 2 Institute for Physics and Astronomy, University of Potsdam, D-14476 Potsdam, Germany 3 Department of Physics and Astronomy, East Tennessee State University, Johnson City, TN 37614, USA 4 Eureka Scientific Inc., 2452 Dellmer Street, Suite 100, Oakland, CA 94602, USA 5 CRESST and X-ray Astrophysics Laboratory, NASA/GSFC, Greenbelt, MD 20771, USA 6 Department of Physics, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA 7 Department of Physics, Rikkyo University, Tokyo 171-8501, Japan Received 2012 June 16; accepted 2012 August 3; published 2012 August 22 ABSTRACT μ Columbae is a prototypical weak-wind O star for which we have obtained a high-resolution X-ray spectrum with the Chandra LETG/ACIS instrument and a low-resolution spectrum with Suzaku.
    [Show full text]
  • Winter Messier List Observing Club
    Winter Messier List Observing Club Raleigh Astronomy Club Version 1.1 24 November 2012 Introduction Welcome to the Winter Messier List Observing Club. The objects on this list represent many of the most prominent deep sky objects (Globular Clusters, Open Clusters, Nebula, Galaxies) visible from mid-northern latitudes. The Messier list of objects was compiled in the 1700’s by the French comet hunter Charles Messier and his associates as a list of objects to not confuse with their primary goal of discovering new comets. What they really produced, was a list of many of the best deep sky objects for astronomers to enjoy. Observing the Messier List is an excellent way for beginning astronomers to learn the night sky. This club is intended for those who wish to tour the Messier objects while adding more structure to their observing activities. Club members who wish to work their way through the Messier objects, a season at a time, will find this list to be a helpful guide. Two certificate levels are offered, Silver and Gold. The Silver certificate is earned by viewing and logging all objects on the list while using Go-To or Digital Setting Circles to help locate the Messier objects. The Gold certificate is earned by those who view and log all the objects while only using charts and star hopping to locate them. Anyone who intends to use their RAC list results as a stepping-stone to the Astronomlcal League Messier certificate, MUST work to the Gold certificate rules. Rules To earn the Winter Messier List certificate, you must: 1.
    [Show full text]
  • Messier Objects
    Messier Objects From the Stocker Astroscience Center at Florida International University Miami Florida The Messier Project Main contributors: • Daniel Puentes • Steven Revesz • Bobby Martinez Charles Messier • Gabriel Salazar • Riya Gandhi • Dr. James Webb – Director, Stocker Astroscience center • All images reduced and combined using MIRA image processing software. (Mirametrics) What are Messier Objects? • Messier objects are a list of astronomical sources compiled by Charles Messier, an 18th and early 19th century astronomer. He created a list of distracting objects to avoid while comet hunting. This list now contains over 110 objects, many of which are the most famous astronomical bodies known. The list contains planetary nebula, star clusters, and other galaxies. - Bobby Martinez The Telescope The telescope used to take these images is an Astronomical Consultants and Equipment (ACE) 24- inch (0.61-meter) Ritchey-Chretien reflecting telescope. It has a focal ratio of F6.2 and is supported on a structure independent of the building that houses it. It is equipped with a Finger Lakes 1kx1k CCD camera cooled to -30o C at the Cassegrain focus. It is equipped with dual filter wheels, the first containing UBVRI scientific filters and the second RGBL color filters. Messier 1 Found 6,500 light years away in the constellation of Taurus, the Crab Nebula (known as M1) is a supernova remnant. The original supernova that formed the crab nebula was observed by Chinese, Japanese and Arab astronomers in 1054 AD as an incredibly bright “Guest star” which was visible for over twenty-two months. The supernova that produced the Crab Nebula is thought to have been an evolved star roughly ten times more massive than the Sun.
    [Show full text]
  • A Unifying Theory of Dark Energy and Dark Matter: Negative Masses and Matter Creation Within a Modified ΛCDM Framework J
    Astronomy & Astrophysics manuscript no. theory_dark_universe_arxiv c ESO 2018 November 5, 2018 A unifying theory of dark energy and dark matter: Negative masses and matter creation within a modified ΛCDM framework J. S. Farnes1; 2 1 Oxford e-Research Centre (OeRC), Department of Engineering Science, University of Oxford, Oxford, OX1 3QG, UK. e-mail: [email protected]? 2 Department of Astrophysics/IMAPP, Radboud University, PO Box 9010, NL-6500 GL Nijmegen, the Netherlands. Received February 23, 2018 ABSTRACT Dark energy and dark matter constitute 95% of the observable Universe. Yet the physical nature of these two phenomena remains a mystery. Einstein suggested a long-forgotten solution: gravitationally repulsive negative masses, which drive cosmic expansion and cannot coalesce into light-emitting structures. However, contemporary cosmological results are derived upon the reasonable assumption that the Universe only contains positive masses. By reconsidering this assumption, I have constructed a toy model which suggests that both dark phenomena can be unified into a single negative mass fluid. The model is a modified ΛCDM cosmology, and indicates that continuously-created negative masses can resemble the cosmological constant and can flatten the rotation curves of galaxies. The model leads to a cyclic universe with a time-variable Hubble parameter, potentially providing compatibility with the current tension that is emerging in cosmological measurements. In the first three-dimensional N-body simulations of negative mass matter in the scientific literature, this exotic material naturally forms haloes around galaxies that extend to several galactic radii. These haloes are not cuspy. The proposed cosmological model is therefore able to predict the observed distribution of dark matter in galaxies from first principles.
    [Show full text]
  • A Wideband Polarization Survey of the Extragalactic Sky at 2-4 Ghz: A
    A Wideband Polarization Survey of the Extragalactic Sky at 2-4 GHz: A Science White Paper for the VLA Sky Survey Sui Ann Mao (NRAO, U Wisconsin Madison, [email protected]), Julie Banfield (CASS, CSIRO), Bryan Gaensler (CAASTRO, University of Sydney), Lawrence Rudnick (U Minnesota), Jeroen Stil (U Calgary), Cormac Purcell (University of Sydney), Rainer Beck (MPIfR), Jamie Farnes (University of Sydney), Shane O’Sullivan (University of Sydney), Dominic Schnitzeler (MPIfR), Tony Willis (DRAO), Xiaohui Sun (Uni- versity of Sydney), Ettore Carretti (CASS, CSRIO), Klaus Dolag (U Munich), Dmitry Sokoloff (Moscow State University), Roland Kothes (DRAO), Maik Wolleben (U Calgary), George Heald (ASTRON), Joern Geisbuesch (DRAO), Tim Robishaw (DRAO), Jose Afonso (Observatorio Astronomico de Lisboa), Antonio Mario Magalh˜aes (U S˜ao Paulo), Britt Lundgren (U Wisconsin Madison), Marijke Haverkorn (Radboud University Nijmegen), Niels Oppermann (CITA), Russ Taylor (U Calgary) Abstract A VLA Sky Survey of the extragalactic sky at S band (2-4 GHz) with polarization information can uniquely probe the magneto-ionic medium in a wide range of astrophysical environments over cosmic time. For a shallow all-sky survey, we expect to detect over 4 million sources in total intensity > 0.45 mJy beam−1 and over 2.2 105 sources in polarized intensity. With × these new observations, we expect to discover new classes of polarized radio sources in very turbulent astrophysical environments and those with extreme values of Faraday depth. Moreover, by determining reliable
    [Show full text]
  • Extragalactic Continuum (And Spectral Line) Surveys with the SKA
    Netherlands Institute for Radio Astronomy Extragalactic Continuum (and spectral line) surveys with the SKA John McKean (ASTRON and Kapteyn Astronomical Institute) on behalf of Extragalactic continuum/line SWG ASTRON is part of the Netherlands Organisation for Scientific Research (NWO) 1 Extragalactic continuum SWG § AIM: SWG established to investigate survey strategies and science capabilities of using continuum science (mainly star-forming galaxies and active galaxies). § OUTLINE: 1.Continuum science (overview) 2.NL focus / interests (KSP) 3.Issues and concerns § THE TEAM: • Chairs: Mark Sargent (Sussex) and Natasha Hurley-Walker (Curtin) • Associate Members: 103 from 21 countries • NL Team Members: John McKean (core), Ilse van Bemmel, Jamie Farnes, Huib Intema, Carole Jackson, Tom Oosterloo, Jack Radcliffe, Huub Rottgering, Tim Shimwell, Reinout van Weeren, Continuum science (low-frequencies) LOFAR (Shimwell et al. 2017) Continuum science (low-frequencies) LOFAR (van Weeren et al. 2016) Key science: Testing particle acceleration in the largest colliders. Key lesson: Calibration needs the raw visibilities. (Shimwell et al. 2017) Continuum science (low-frequencies) (McKean et al. 2017) (Morabito et al. 2016) Key science: Test AGN feedback at the jet/interstellar medium interface. SKA Continuum survey plans Main science goal: Study the evolution of star-formation and active galactic nuclei activity across cosmic time (in competition with JWST and ALMA). Methodology: Will be carried out in a tiered survey approach from wide-shallow to narrow-deep. General user: Continuum science will be the basic observing mode for the SKA and will have extensive general user appeal, requiring additional observations with different field of view and frequency requirements — user friendly? SKA Continuum survey plans (Dark Matter and Energy) Key questions: 1) What is dark energy? 2) What is dark matter? Large surveys aimed to answer these question (LSST, DES, Euclid).
    [Show full text]
  • Print Special Issue Flyer
    CITESCORE 2.8 SCOPUS an Open Access Journal by MDPI The Power of Faraday Tomography Guest Editors: Message from the Guest Editors Dr. Mami Machida Dear Colleagues, [email protected] We invite you to submit manuscripts for a Special Issue Dr. Marijke Haverkorn o f Galaxies on “The Power of Faraday Tomography”. [email protected] Magnetic fields play vital roles on all scales throughout the Dr. Takuya Akahori Universe, allowing the creation of stars and exoplanets, [email protected] affecting the gas flows in the interstellar medium, forming galactic and AGN jet structures, and permeating the cosmic Dr. Jamie Farnes web such as galaxy clusters. Yet the origin of these cosmic [email protected] magnets and the mechanisms of field amplification/ordering over the history of the Universe are still largely unsolved. Recent developments from new Deadline for manuscript astronomical messengers, such as fast radio bursts (FRBs), submissions: in combination with new polarimetric radio surveys, are closed (1 November 2018) rapidly developing this field from a data-restricted niche into a diverse and rapidly-developing field. This Special Issue aims to review the current status and future prospects of the Faraday tomography method, by combining astronomical observations, numerical simulations, and astrophysical theories. mdpi.com/si/16169 SpeciaIslsue CITESCORE 2.8 SCOPUS an Open Access Journal by MDPI Editor-in-Chief Message from the Editor-in-Chief Prof. Dr. Emilio Elizalde Galaxies provides an advanced forum for studies related to Consejo Superior de astronomy, astrophysics, and cosmology, including all of Investigaciones Científicas, their subfields.
    [Show full text]
  • TRANSIT the Newsletter Of
    TRANSIT The Newsletter of 05 January 2009 Hubble caught Saturn with the edge-on rings in 1996. Image courtesy Eric Karkoschka (UoA) Front Page Image - Saturn, like the Earth, is tilted on its axis compared to the plane of its orbit, being off vertical by 26.7 degrees. Saturn’s rings are aligned with its equator so that means that roughly twice every orbit of Saturn we on Earth see the rings edge on. We pass through the ring plane in September 2009 but at that time Saturn is on the other side of the Sun, so now is the best time to view Saturn in Leo with the almost disappeared rings when they are inclined at 0.8 degrees to our line of sight. The next ring plane crossing is March 2025 Last meeting : 12 December 2008. “The Large Hadron Collider” by Dr Peter Edwards of Durham University. Dr Edwards proved he was a skilled public communicator when he initially launched into a short history of particle physics – we all understood what he was talking about! After then explaining what the LHC was actually looking for and how their massive detectors work he explained the problems caused by the unfortunate accident when firing up the LHC for the first time. The prognosis for future collisions seems to have a varying date but perhaps the 2010 date is the most likely. We wish Dr Edwards and his LHC colleagues the best of luck in achieving an early target date. Next meeting : 09 January 2009 – Members night. The meeting will start with the Society 2009 AGM and follow on with short talks presented by members of the Society.
    [Show full text]
  • The Messier Objects
    WHAT’S IN The Messier Objects THE NIGHT SKY? Bonus Material The Messier objects are a list of 110 deep-sky objects that were catalogued by a French astronomer called Charles Messier. He created this list in the 1700’s when he was looking for comets. He wanted to keep track of the things he could see in the night sky, so he wouldn’t confuse them for comets. The Messier objects all have names that start with the letter M (for Messier), followed by a number. For example, M13 is a Messier object which can be found in the Hercules constellation. Types of Messier objects Globular Clusters – These are spherical Supernova Remnants – When a very large (round) systems of ancient stars held together star (more than 5 times the size of our Sun) by gravity. They are dense systems, which uses up all its fuel, it collapses. The collapse contain thousands or millions of stars. From happens so quickly that the outer layers of Earth, they look like small, blurry blobs in the star explode! A supernova remnant is the the night sky. The globular cluster in the hot, expanding cloud of gas that is given off in picture is M13, which is found in the Hercules this explosion. The supernova remnant in the constellation. picture is M1, which is more commonly named the Crab Nebula. Types of Messier objects continued... Galaxies – A huge collection of dust, gas, Open Cluster – An open cluster is a loose billons of stars and their solar systems group of hundreds or thousands of stars.
    [Show full text]
  • Here Is an Opportunity to Advertise Your Poster Within 1 Minute
    Logging, Laxze Hitotsuba, Front: 2nd Floor Welcome Party (27th May) Reception, 1st Floor May 28 (Mon) - June 2 (Sat), 2018, Cottage Himuka, Miyazaki, Japan http://ska-jp.org/ws/SKAJP_MAGWS2018/ #SKA_JAPAN_MAG2018 PROGRAM Talks Invited talks are 30 min + 10 min for questions. Contributed talks are 15 min + 5 min. Please check the connection to the projector before your talk. Posters Posters should be a maximum of A0 size format, in portrait orientation. There is an opportunity to advertise your poster within 1 minute. Please check the connection to the projector before your talk. Twitter If you post on Twitter about the conference, please use the hashtag #SKA_JAPAN_MAG2018 Time Table Time 28 Mon 29 Tue 30 Wed 31 Thu 1 Fri 2 Sat 09:00-09:20 Opening T. Kawashima V. Vacca B. Gaensler 09:20-09:40 H. Takahashi S. Ideguchi 09:40-10:00 H. Akamatsu Discussion 4 T. Vernstrom 10:00-10:20 C. Purcell M. Takizawa C. Van Eck 10:20-10:40 W. Raja M Hoeft Coffee/Tea AIPS 10:40-11:00 Coffee/Tea Coffee/Tea Coffee/Tea (40 min) POSSUM CASA 11:00-11:20 (40 min) (40 min) (40 min) Tutorial G. Heald 11:20-11:40 Y. Miyashita A. Hills V. Ravi 11:40-12:00 P. Arras T. Zenko J. Farnes 12:00-12:20 T. Akahori J. Bray J. West Summary & 12:20-12:40 Discussion 1 Discussion 2+3 M. Alves Discussion 12:40-13:40 Lunch (60 min) 13:40-14:00 J. Green D. Ryu S. O’Sullivan 14:00-14:20 O.
    [Show full text]
  • Messier Objects
    Messier Objects by Ken Graun he Messier Object catalogue represents the cream-of-the-crop his most notable life-long achievements was discovering about 20 deep sky objects that can be seen from the mid-latitudes of the comets, which lead to his induction into almost every European science T northern hemisphere. It was compiled at the end of the 1700s academy. by Charles Messier from Paris, France, using telescopes around 3 to Messier never would have believed that his namesake would be 4-inches in diameter. This catalogue is historically significant because it defined by his little catalogue—he would have thought it would have is the very first catalogue ever compiled of deep sky objects. And, since been his comet discoveries. He catalogued deep sky objects because he it lists the biggest and brightest objects in the sky, it realized that such a catalogue was missing in the field has become a logical “next step” for amateurs want - of astronomy (astronomy and most sciences were ing to go beyond observing the Moon and Planets. just starting to get organized during this time in his - An interesting point about this catalogue is that tory). To start the catalogue, he used a few short lists it has at least one example of every type of deep sky of deep sky objects complied by other astronomers object that exists, so it represents a good sample of and quickly added objects he found exploring the the objects that can be found in the heavens. night sky. Three editions of his catalogue were pub - There is a quirk of nature that allows viewing all lished, each growing in size, with the last published of the Messier objects in one night.
    [Show full text]