Gut Microbiome in Health and Diseases: Thomas Clavel

Total Page:16

File Type:pdf, Size:1020Kb

Gut Microbiome in Health and Diseases: Thomas Clavel Thomas Clavel Microbiologist Thomas Clavel Microbiologist Gut microbiome in health and diseases: From ecosystem description to functional studies Gut microbiome in health and diseases: From ecosystem description to functional studies Habilitation - 2014 Habilitation - 2014 Gut microbiome in health and diseases: From ecosystem description to functional studies Habilitationsschrift vorgelegt von Dr. rer. nat. Thomas Clavel Nachwuchsgruppe Intestinales Mikrobiom Zentralinstitut für Ernährungs- und Lebensmittelforschung (ZIEL) Lehrstuhl für Ernährung und Immunologie Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt Freising-Weihenstephan Technische Universität München 2014 Acknowledgements For me, science is curiosity and the wish to understand and discover. But, most of all, science is made by human beings. Hence, one major driving factor in science is the exchange of knowledge, ideas, opinions, and emotions (which can be sometimes unfortunate if emotions are too negative, ignored or not under control). Many individuals in and outside scientific communities have influenced my career to date, and in many different ways. Due to space limitation and the fear to forget anyone, I will not draw here an exhaustive list. I will name just a few, knowing that all the persons who know me and have accompanied me on this journey will recognize themselves when reading these lines. Over the last twelve years, I have had the privilege to be mentored by three outstanding scientists: Dr. Joël Doré, Prof. Michael Blaut, and Prof. Dirk Haller. In my opinion, they are outstanding for different reasons, and I am very grateful to have had the chance to learn from each of them. Joël, thanks to your wise guidance and your kindness, you have been a model in early steps of my career and throughout thereafter; thank you! Michael, your unconditional support, and your sense of loyalty and accurateness are exemplary: thank you! Dirk, your exhaustless dynamism, your clarity of vision, and your determination have always been very inspiring; thank you! As already said, there are far too many names to be quoted here. I wish to express my gratitude to all professors, faculty members, colleagues and friends in Jouy, Potsdam, and Freising, who have supported me with my research and far beyond! I am also thankful to the colleagues and friends from partner institutions for fruitful exchanges and for making research so enjoyable. My life, and thus my research, finds its source in all my friends, my family, and Julia: Thanks for all the shared moments, love, energy, and for showing me ways I would not have explored. Table of contents Prelude ....................................................................................................................... 5 Curriculum vitae .......................................................................................................... 6 List of publications ...................................................................................................... 7 Summary .................................................................................................................. 11 Zusammenfassung ................................................................................................... 12 Résumé .................................................................................................................... 13 PART I .............................................................................................................. 14 Chapter 1 - Introduction ......................................................................................... 14 1 Background information ................................................................................. 14 2 Questions and objectives ............................................................................... 19 Chapter 2 - Main research activities and achievements ..................................... 20 1 Microbiota diversity ........................................................................................ 21 1.1 Culturing is worth the effort ...................................................................... 22 1.2 The need for molecular studies................................................................ 27 2 Nutrition and microbiome ............................................................................... 33 3 Microbe-host interaction: The gut-liver axis .................................................... 39 Chapter 3 - Conclusion .......................................................................................... 43 Cited literature .......................................................................................................... 44 PART II ............................................................................................................. 50 Selected publications ................................................................................................ 50 Prelude The present manuscript summarizes the outputs of my research activities in the field of gut microbial ecology since the official start of my Habilitation in May 2010. It is a cumulative work based on scientific papers published within the last 4 years. There should be no need of saying this, but as the rewards of collaborative effort in science get sometimes lost, I wish to make this clear from the start: I have been the major driver of the research outputs presented throughout the text, but I received of course intellectual, technical and infrastructural input from mentors, colleagues, team members in my junior group, and external collaborators, most of whom appear in the author lists of selected publications. Part I of this Habilitation manuscript is divided into three chapters that respectively introduces some key concepts in the field, summarizes results, and gives some perspectives. Chapter 2 (the presentation of results and my research strategy) is the core of part I and is also divided into three sections according to my main research interests: (1) Microbiota diversity; (2) Nutrition and microbiome; and (3) Microbe-Host interaction. For the sake of clarity, each page of these sections is marked with the appropriate number (1, 2 or 3) in the right margin. In each of these three sections, I not only present major findings of my research on the corresponding topic, I also explain the rationale behind the work, detail some major accomplishments, and give opinions. That is, the present manuscript can be considered as the foundation of my research in the next few years. Part II is the compilation of peer-reviewed original work published in scientific journals or as book chapters, which make up the backbone of part I. These publications are sorted as well into the three sections (1) “Microbiota diversity”, (2) “Nutrition and microbiome”, and (3) “Microbe-host interaction”. As in part I, for the sake of clarity, each page of these papers is numbered in the right margin according to the section to which the given publication belongs. 5 Curriculum vitae Dr. rer. nat Thomas Clavel Born on October 6th 1978 in Toulon (France) RESEARCH ACTIVITIES: Present Junior Research Group Leader - Intestinal Microbiome (TUM, ZIEL) 2006-2011 Postdoctoral Research Associate; Dirk Haller’s lab (TUM) 2002-2006 German-French joint PhD project; Michael Blaut’s lab (DIfE) 2002 Master project; Joël Doré’s lab (INRA) ACADEMIC QUALIFICATIONS: Present Ongoing habilitation (TUM) Feb 2006 PhD in microbiology (University of Potsdam and Châtenay-Malabry) Sept 2002 M.Sc. in Agricultural Sciences and Human Nutrition (ENSAR) May 1999 B.Sc. in biology (University of Toulouse) July 1997 French Scientific Baccalaureate (specialised in Mathematics) AWARDS: Apr 2013 Grant holder of the European Nutrition Leadership program (advanced) July 2009 Travel awards (DAAD, SMI) May 2009 Travel awards (Danone Institute and SGM) Sept 2008 Stipend for research visits (BFHZ and SGM) June 2007 1st price for excellent PhD (University of Châtenay-Malabry) Apr 2006 Travel grant (SGM) Oct 2004 Scholarship holder of the DAAD Academic Exchange Service 6 List of publications Total number published: 29; citations: ca. 1260; cumulative impact factor: ca. 140; h-index: 16 Peer-reviewed original work as principal investigator: 1. T Clavel,* C. Desmarchelier, D Haller, P Gérard, S Rohn, P Lepage, H Daniel (2014) Intestinal microbiota in metabolic diseases: from bacterial community structure and functions to species of pathophysiological relevance, Gut Microbes 5:544 (IF = 2.2); (* corresponding author) 2. H Daniel, A Moghaddas Gholami, D Berry, C Desmarchelier, H Hahne, G Loh, S Mondot, P Lepage, M Rothballer, A Walker, C Böhm, M Wenning, M Wagner, M Blaut, P Schmitt-Kopplin, B Kuster, D Haller, T Clavel (2014) High-fat diet alters gut microbiota physiology in mice, ISME J 8:295 (IF = 9.0; 14 citations) 3. K Kläring, L Hanske, N Bui, C Charrier, M Blaut, D Haller, CM Plugge, T Clavel (2013) Intestinimonas butyriciproducens gen. nov., sp. nov., a novel butyrate-producing bacterium from the mouse intestine, Int J Syst Evol Microbiol 63:4606 (IF = 2.1) 4. T Clavel,* C Charrier, M Wenning, D Haller (2013) Parvibacter caecicola gen. nov., sp. nov., a new bacterium of the family Coriobacteriaceae isolated from the caecum of a mouse, Int J Syst Evol Microbiol 63:2642 (IF = 2.1); (* corresponding author) 5. T Clavel,* C Charrier, D Haller (2013) Streptococcus danieliae sp. nov., a novel bacterium from the caecum of a mouse, Arch Microbiol 195:43 (IF = 2.1; 3 citations); (* corresponding
Recommended publications
  • WO 2018/064165 A2 (.Pdf)
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2018/064165 A2 05 April 2018 (05.04.2018) W !P O PCT (51) International Patent Classification: Published: A61K 35/74 (20 15.0 1) C12N 1/21 (2006 .01) — without international search report and to be republished (21) International Application Number: upon receipt of that report (Rule 48.2(g)) PCT/US2017/053717 — with sequence listing part of description (Rule 5.2(a)) (22) International Filing Date: 27 September 2017 (27.09.2017) (25) Filing Language: English (26) Publication Langi English (30) Priority Data: 62/400,372 27 September 2016 (27.09.2016) US 62/508,885 19 May 2017 (19.05.2017) US 62/557,566 12 September 2017 (12.09.2017) US (71) Applicant: BOARD OF REGENTS, THE UNIVERSI¬ TY OF TEXAS SYSTEM [US/US]; 210 West 7th St., Austin, TX 78701 (US). (72) Inventors: WARGO, Jennifer; 1814 Bissonnet St., Hous ton, TX 77005 (US). GOPALAKRISHNAN, Vanch- eswaran; 7900 Cambridge, Apt. 10-lb, Houston, TX 77054 (US). (74) Agent: BYRD, Marshall, P.; Parker Highlander PLLC, 1120 S. Capital Of Texas Highway, Bldg. One, Suite 200, Austin, TX 78746 (US). (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
    [Show full text]
  • Modulation of the Gut Microbiota Alters the Tumour-Suppressive Efficacy of Tim-3 Pathway Blockade in a Bacterial Species- and Host Factor-Dependent Manner
    microorganisms Article Modulation of the Gut Microbiota Alters the Tumour-Suppressive Efficacy of Tim-3 Pathway Blockade in a Bacterial Species- and Host Factor-Dependent Manner Bokyoung Lee 1,2, Jieun Lee 1,2, Min-Yeong Woo 1,2, Mi Jin Lee 1, Ho-Joon Shin 1,2, Kyongmin Kim 1,2 and Sun Park 1,2,* 1 Department of Microbiology, Ajou University School of Medicine, Youngtongku Wonchondong San 5, Suwon 442-749, Korea; [email protected] (B.L.); [email protected] (J.L.); [email protected] (M.-Y.W.); [email protected] (M.J.L.); [email protected] (H.-J.S.); [email protected] (K.K.) 2 Department of Biomedical Sciences, The Graduate School, Ajou University, Youngtongku Wonchondong San 5, Suwon 442-749, Korea * Correspondence: [email protected]; Tel.: +82-31-219-5070 Received: 22 August 2020; Accepted: 9 September 2020; Published: 11 September 2020 Abstract: T cell immunoglobulin and mucin domain-containing protein-3 (Tim-3) is an immune checkpoint molecule and a target for anti-cancer therapy. In this study, we examined whether gut microbiota manipulation altered the anti-tumour efficacy of Tim-3 blockade. The gut microbiota of mice was manipulated through the administration of antibiotics and oral gavage of bacteria. Alterations in the gut microbiome were analysed by 16S rRNA gene sequencing. Gut dysbiosis triggered by antibiotics attenuated the anti-tumour efficacy of Tim-3 blockade in both C57BL/6 and BALB/c mice. Anti-tumour efficacy was restored following oral gavage of faecal bacteria even as antibiotic administration continued. In the case of oral gavage of Enterococcus hirae or Lactobacillus johnsonii, transferred bacterial species and host mouse strain were critical determinants of the anti-tumour efficacy of Tim-3 blockade.
    [Show full text]
  • Long-Term Blackcurrant Supplementation Modified Gut
    nutrients Article Long-Term Blackcurrant Supplementation Modified Gut Microbiome Profiles in Mice in an Age-Dependent Manner: An Exploratory Study 1, 2, 3 3 4 Lei Cao y, Sang Gil Lee y, Melissa M. Melough , Junichi R. Sakaki , Kendra R. Maas , Sung I. Koo 3 and Ock K. Chun 3,* 1 Institute of Marine Life Sciences, Pukyong National University, Busan 48513, Korea; [email protected] 2 Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Korea; [email protected] 3 Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA; [email protected] (M.M.M.); [email protected] (J.R.S.); [email protected] (S.I.K.) 4 Microbial Analysis, Resources and Services (MARS), University of Connecticut, Storrs, CT 06269, USA; [email protected] * Correspondence: [email protected] These authors contributed equally to this work. y Received: 12 December 2019; Accepted: 20 January 2020; Published: 21 January 2020 Abstract: Recent studies have suggested that blackcurrant (BC) anthocyanins have promising health benefits, possibly through regulating gut microbiome. Three- and eighteen-month old female mice were fed standard mouse diets for 4 months, each with or without BC (1% w/w) supplementation (n = 3 in each treatment group, 12 in total). We then assessed gut microbiome profiles using 16S sequencing of their feces. Old mice had a less diverse microbiome community compared to young mice and there was a remarkable age-related difference in microbiome composition in the beta diversity analysis. BC supplementation did not significantly affect alpha or beta diversity. The relative abundance of several phyla, including Firmicutes, Bacteroidetes, Proteobacteria and Tenericutes, was lower in old mice.
    [Show full text]
  • EXPERIMENTAL STUDIES on FERMENTATIVE FIRMICUTES from ANOXIC ENVIRONMENTS: ISOLATION, EVOLUTION, and THEIR GEOCHEMICAL IMPACTS By
    EXPERIMENTAL STUDIES ON FERMENTATIVE FIRMICUTES FROM ANOXIC ENVIRONMENTS: ISOLATION, EVOLUTION, AND THEIR GEOCHEMICAL IMPACTS By JESSICA KEE EUN CHOI A dissertation submitted to the School of Graduate Studies Rutgers, The State University of New Jersey In partial fulfillment of the requirements For the degree of Doctor of Philosophy Graduate Program in Microbial Biology Written under the direction of Nathan Yee And approved by _______________________________________________________ _______________________________________________________ _______________________________________________________ _______________________________________________________ New Brunswick, New Jersey October 2017 ABSTRACT OF THE DISSERTATION Experimental studies on fermentative Firmicutes from anoxic environments: isolation, evolution and their geochemical impacts by JESSICA KEE EUN CHOI Dissertation director: Nathan Yee Fermentative microorganisms from the bacterial phylum Firmicutes are quite ubiquitous in subsurface environments and play an important biogeochemical role. For instance, fermenters have the ability to take complex molecules and break them into simpler compounds that serve as growth substrates for other organisms. The research presented here focuses on two groups of fermentative Firmicutes, one from the genus Clostridium and the other from the class Negativicutes. Clostridium species are well-known fermenters. Laboratory studies done so far have also displayed the capability to reduce Fe(III), yet the mechanism of this activity has not been investigated
    [Show full text]
  • 1 Supplementary Material a Major Clade of Prokaryotes with Ancient
    Supplementary Material A major clade of prokaryotes with ancient adaptations to life on land Fabia U. Battistuzzi and S. Blair Hedges Data assembly and phylogenetic analyses Protein data set: Amino acid sequences of 25 protein-coding genes (“proteins”) were concatenated in an alignment of 18,586 amino acid sites and 283 species. These proteins included: 15 ribosomal proteins (RPL1, 2, 3, 5, 6, 11, 13, 16; RPS2, 3, 4, 5, 7, 9, 11), four genes (RNA polymerase alpha, beta, and gamma subunits, Transcription antitermination factor NusG) from the functional category of Transcription, three proteins (Elongation factor G, Elongation factor Tu, Translation initiation factor IF2) of the Translation, Ribosomal Structure and Biogenesis functional category, one protein (DNA polymerase III, beta subunit) of the DNA Replication, Recombination and repair category, one protein (Preprotein translocase SecY) of the Cell Motility and Secretion category, and one protein (O-sialoglycoprotein endopeptidase) of the Posttranslational Modification, Protein Turnover, Chaperones category, as annotated in the Cluster of Orthologous Groups (COG) (Tatusov et al. 2001). After removal of multiple strains of the same species, GBlocks 0.91b (Castresana 2000) was applied to each protein in the concatenation to delete poorly aligned sites (i.e., sites with gaps in more than 50% of the species and conserved in less than 50% of the species) with the following parameters: minimum number of sequences for a conserved position: 110, minimum number of sequences for a flank position: 110, maximum number of contiguous non-conserved positions: 32000, allowed gap positions: with half. The signal-to-noise ratio was determined by altering the “minimum length of a block” parameter.
    [Show full text]
  • First Insights Into the Fecal Bacterial Microbiota of the Black–Tailed Prairie Dog (Cynomys Ludovicianus) in Janos, Mexico I
    Animal Biodiversity and Conservation 42.1 (2019) 127 First insights into the fecal bacterial microbiota of the black–tailed prairie dog (Cynomys ludovicianus) in Janos, Mexico I. Pacheco–Torres, C. García–De la Peña, D. R. Aguillón–Gutiérrez, C. A. Meza–Herrera, F. Vaca–Paniagua, C. E. Díaz–Velásquez, L. M. Valenzuela–Núñez, V. Ávila–Rodríguez Pacheco–Torres, I., García–De la Peña, C., Aguillón–Gutiérrez, D. R., Meza–Herrera, C. A., Vaca–Paniagua, F., Díaz–Velásquez, C. E., Valenzuela–Núñez, L. M., Ávila–Rodríguez, V., 2019. First insights into the fecal bacte- rial microbiota of the black–tailed prairie dog (Cynomys ludovicianus) in Janos, Mexico. Animal Biodiversity and Conservation, 42.1: 127–134, Doi: https://doi.org/10.32800/abc.2019.42.0127 Abstract First insights into the fecal bacterial microbiota of the black–tailed prairie dog (Cynomys ludovicianus) in Janos, Mexico. Intestinal bacteria are an important indicator of the health of their host. Incorporating periodic assess- ment of the taxonomic composition of these microorganisms into management and conservation plans can be a valuable tool to detect changes that may jeopardize the survival of threatened populations. Here we describe the diversity and abundance of fecal bacteria for the black–tailed prairie dog (Cynomys ludovicianus), a threat- ened species, in the Janos Biosphere Reserve, Chihuahua, Mexico. We analyzed fecal samples through next generation massive sequencing and amplified the V3–V4 region of the 16S rRNA gene using Illumina technology. The results were analyzed with QIIME based on the EzBioCloud reference. We identified 12 phyla, 22 classes, 33 orders, 54 families and 263 genera.
    [Show full text]
  • Interactions Between Host Genetics and Gut Microbiota Determine Susceptibility to CNS Autoimmunity
    Interactions between host genetics and gut microbiota determine susceptibility to CNS autoimmunity Theresa L. Montgomerya,1, Axel Künstnerb,c,1, Josephine J. Kennedya, Qian Fangd, Lori Asariand, Rachel Culp-Hille, Angelo D’Alessandroe, Cory Teuscherd, Hauke Buschb,c, and Dimitry N. Krementsova,2 aDepartment of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05401; bMedical Systems Biology Group, Lübeck Institute of Experimental Dermatology, University of Lübeck, 23562 Lübeck, Germany; cInstitute for Cardiogenetics, University of Lübeck, 23562 Lübeck, Germany; dDepartment of Medicine, Immunobiology Division, University of Vermont, Burlington, VT 05401; and eDepartment of Biochemistry and Molecular Genetics, University of Colorado, Aurora, CO 80045 Edited by Dennis L. Kasper, Harvard Medical School, Boston, MA, and approved August 26, 2020 (received for review February 23, 2020) Multiple sclerosis (MS) is an autoimmune disease of the central circulation to directly impact distal sites, including the brain (11, nervous system. The etiology of MS is multifactorial, with disease 12). With regard to MS, a number of recent case-control studies risk determined by genetics and environmental factors. An emerg- have demonstrated that the gut microbiome of MS patients differs ing risk factor for immune-mediated diseases is an imbalance from that of their healthy control counterparts. Some broad fea- in the gut microbiome. However, the identity of gut microbes as- tures, such as decreased abundance of putative short-chain fatty sociated with disease risk, their mechanisms of action, and the acid (SCFA)-producing bacteria and expansion of Akkermansia, interactions with host genetics remain obscure. To address these have been observed consistently across several studies (13–19).
    [Show full text]
  • Impact of Anaerobic Digestion and Centrifugation/Decanting Processes
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Repositorio Institucional de la Universidad de Oviedo 1 Impact of anaerobic digestion and 2 centrifugation/decanting processes in 3 bacterial communities fractions 4 Short title: “Impact of anaerobic digestion in bacterial communities” 5 Ana Isabel Díaz1, Paula Oulego1, Sergio Collado1, Adriana Laca1, J. Manuel González2 1* 6 and Mario Díaz 7 1Department of Chemical and Environmental Engineering, University of Oviedo, C/ 8 Julián Clavería, s/n, Oviedo, E-33006, Spain 9 2 R&D, COGERSA SAU, C/ La Zoreda, s/n, Gijón, E-33697, Spain 10 *E-mail: [email protected], Phone: +34 985 10 34 39, Fax: +34 985 10 34 34 1 11 ABSTRACT 12 Sewage sludge can be treated by anaerobic processes that frequently are followed by 13 physical separation processes. In this work, a high-throughput sequencing technology, 14 based on variation in the bacterial 16S rRNA gene, has been used to characterise the 15 bacterial populations present in samples taken from different points of an industrial 16 anaerobic digestion process fed with sewage sludge. Relative abundances of phyla and 17 classes throughout the biological process and the subsequent separation steps were 18 determined. Results revealed that the Bacteroidetes, Firmicutes and Proteobacteria phyla 19 were the most representative. However, significant changes in relative abundance were 20 detected along treatments, showing the influence of operational parameters on the 21 distribution of microorganisms throughout the process. After anaerobic digestion, phylum 22 Firmicutes doubled its relative abundance, which seems to indicate that the anaerobic 23 conditions and the nutrients favoured its growth, in contrast to other phyla that almost 24 disappeared.
    [Show full text]
  • Genome Diversity of Spore-Forming Firmicutes MICHAEL Y
    Genome Diversity of Spore-Forming Firmicutes MICHAEL Y. GALPERIN National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894 ABSTRACT Formation of heat-resistant endospores is a specific Vibrio subtilis (and also Vibrio bacillus), Ferdinand Cohn property of the members of the phylum Firmicutes (low-G+C assigned it to the genus Bacillus and family Bacillaceae, Gram-positive bacteria). It is found in representatives of four specifically noting the existence of heat-sensitive vegeta- different classes of Firmicutes, Bacilli, Clostridia, Erysipelotrichia, tive cells and heat-resistant endospores (see reference 1). and Negativicutes, which all encode similar sets of core sporulation fi proteins. Each of these classes also includes non-spore-forming Soon after that, Robert Koch identi ed Bacillus anthracis organisms that sometimes belong to the same genus or even as the causative agent of anthrax in cattle and the species as their spore-forming relatives. This chapter reviews the endospores as a means of the propagation of this orga- diversity of the members of phylum Firmicutes, its current taxon- nism among its hosts. In subsequent studies, the ability to omy, and the status of genome-sequencing projects for various form endospores, the specific purple staining by crystal subgroups within the phylum. It also discusses the evolution of the violet-iodine (Gram-positive staining, reflecting the pres- Firmicutes from their apparently spore-forming common ancestor ence of a thick peptidoglycan layer and the absence of and the independent loss of sporulation genes in several different lineages (staphylococci, streptococci, listeria, lactobacilli, an outer membrane), and the relatively low (typically ruminococci) in the course of their adaptation to the saprophytic less than 50%) molar fraction of guanine and cytosine lifestyle in a nutrient-rich environment.
    [Show full text]
  • Systema Naturae. the Classification of Living Organisms
    Systema Naturae. The classification of living organisms. c Alexey B. Shipunov v. 5.601 (June 26, 2007) Preface Most of researches agree that kingdom-level classification of living things needs the special rules and principles. Two approaches are possible: (a) tree- based, Hennigian approach will look for main dichotomies inside so-called “Tree of Life”; and (b) space-based, Linnaean approach will look for the key differences inside “Natural System” multidimensional “cloud”. Despite of clear advantages of tree-like approach (easy to develop rules and algorithms; trees are self-explaining), in many cases the space-based approach is still prefer- able, because it let us to summarize any kinds of taxonomically related da- ta and to compare different classifications quite easily. This approach also lead us to four-kingdom classification, but with different groups: Monera, Protista, Vegetabilia and Animalia, which represent different steps of in- creased complexity of living things, from simple prokaryotic cell to compound Nature Precedings : doi:10.1038/npre.2007.241.2 Posted 16 Aug 2007 eukaryotic cell and further to tissue/organ cell systems. The classification Only recent taxa. Viruses are not included. Abbreviations: incertae sedis (i.s.); pro parte (p.p.); sensu lato (s.l.); sedis mutabilis (sed.m.); sedis possi- bilis (sed.poss.); sensu stricto (s.str.); status mutabilis (stat.m.); quotes for “environmental” groups; asterisk for paraphyletic* taxa. 1 Regnum Monera Superphylum Archebacteria Phylum 1. Archebacteria Classis 1(1). Euryarcheota 1 2(2). Nanoarchaeota 3(3). Crenarchaeota 2 Superphylum Bacteria 3 Phylum 2. Firmicutes 4 Classis 1(4). Thermotogae sed.m. 2(5).
    [Show full text]
  • Genome-Based Taxonomic Classification Of
    ORIGINAL RESEARCH published: 20 December 2016 doi: 10.3389/fmicb.2016.02003 Genome-Based Taxonomic Classification of Bacteroidetes Richard L. Hahnke 1 †, Jan P. Meier-Kolthoff 1 †, Marina García-López 1, Supratim Mukherjee 2, Marcel Huntemann 2, Natalia N. Ivanova 2, Tanja Woyke 2, Nikos C. Kyrpides 2, 3, Hans-Peter Klenk 4 and Markus Göker 1* 1 Department of Microorganisms, Leibniz Institute DSMZ–German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany, 2 Department of Energy Joint Genome Institute (DOE JGI), Walnut Creek, CA, USA, 3 Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia, 4 School of Biology, Newcastle University, Newcastle upon Tyne, UK The bacterial phylum Bacteroidetes, characterized by a distinct gliding motility, occurs in a broad variety of ecosystems, habitats, life styles, and physiologies. Accordingly, taxonomic classification of the phylum, based on a limited number of features, proved difficult and controversial in the past, for example, when decisions were based on unresolved phylogenetic trees of the 16S rRNA gene sequence. Here we use a large collection of type-strain genomes from Bacteroidetes and closely related phyla for Edited by: assessing their taxonomy based on the principles of phylogenetic classification and Martin G. Klotz, Queens College, City University of trees inferred from genome-scale data. No significant conflict between 16S rRNA gene New York, USA and whole-genome phylogenetic analysis is found, whereas many but not all of the Reviewed by: involved taxa are supported as monophyletic groups, particularly in the genome-scale Eddie Cytryn, trees. Phenotypic and phylogenomic features support the separation of Balneolaceae Agricultural Research Organization, Israel as new phylum Balneolaeota from Rhodothermaeota and of Saprospiraceae as new John Phillip Bowman, class Saprospiria from Chitinophagia.
    [Show full text]
  • Aerobic Hydrocarbon-Degrading Microbial Communities in Oilsands Tailings Ponds
    University of Calgary PRISM: University of Calgary's Digital Repository Graduate Studies The Vault: Electronic Theses and Dissertations 2016 Aerobic Hydrocarbon-degrading Microbial Communities in Oilsands Tailings Ponds Rochman, Fauziah Rochman, F. (2016). Aerobic Hydrocarbon-degrading Microbial Communities in Oilsands Tailings Ponds (Unpublished doctoral thesis). University of Calgary, Calgary, AB. doi:10.11575/PRISM/24733 http://hdl.handle.net/11023/3508 doctoral thesis University of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission. Downloaded from PRISM: https://prism.ucalgary.ca UNIVERSITY OF CALGARY Aerobic Hydrocarbon-degrading Microbial Communities in Oilsands Tailings Ponds by Fauziah Fakhrunnisa Rochman A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY GRADUATE PROGRAM IN BIOLOGICAL SCIENCES CALGARY, ALBERTA DECEMBER, 2016 © Fauziah Fakhrunnisa Rochman 2016 Abstract Oilsands process-affected water (OSPW), produced by the surface-mining oilsands industry in Alberta, Canada, is alkaline and contains salts, various metals, and hydrocarbon compounds. In this thesis, aerobic communities involved in several key biogeochemical processes in OSPW were studied. Degradation of several key hydrocarbons was analyzed in depth. Benzene and naphthalene were used as models for aromatic hydrocarbons, in which their oxidation rates, degrading communities, and degradation pathways in OSPW were researched. The potential oxidation rates were 36.7 μmol L-1 day-1 for benzene and 85.4 μmol L-1 day-1 for naphthalene.
    [Show full text]