A Technique for Mutation of Java Objects

Total Page:16

File Type:pdf, Size:1020Kb

A Technique for Mutation of Java Objects TO APPEAR IN Proceedings Automated Software Engineering 2001 Conference (ASE 2001),NOV. 2001. 1 A Technique for Mutation of Java Objects James M. Bieman Sudipto Ghosh Roger T. Alexander Computer Science Department Colorado State University Fort Collins CO 80523, USA g fbieman, ghosh, rta @cs.colostate.edu Abstract to model any real fault, software fault models are hard to de- velop. Mutation of scalar values is straightforward, because Mutation analysis inserts faults into a program to create their semantics are well understood. For example, we can test sets that distinguish the mutant from the original pro- add one to an integer value. Mutating objects that are in- gram. Inserted faults must represent plausible errors. Stan- stances of user de®ned types is more dif®cult. There is no dard transformations can mutate scalar values such as in- obvious way to modify such objects in a manner consistent tegers, ¯oats, and character data. Mutating objects is an with realistic faults, without writing custom mutation meth- open problem, because object semantics are de®ned by the ods for each object class. Our approach is to inject faults into programmer and can vary widely. We develop mutation op- objects that instantiate items from common Java libraries. erators and support tools that can mutate Java library items We address the following issues in the paper: that are heavily used in commercial software. Our mutation engine can support reusable libraries of mutation compo- 1. Derivation of mutation operators for Java: Prior work nents to inject faults into objects that instantiate items from de®nes operators to mutate statements, operators, con- these common Java libraries. Our technique should be ef- stants and variables for FORTRAN [11], C [1, 2, 3], fective for evaluating real-world software testing suites. Ada [10] and Java [6]. We describe mutation faults that can be injected into Java objects. 2. Generation of mutants by applying the operators to 1. Introduction programs: Prior work focuses on compile-time or static mutation [9]. We show how to generate Java pro- gram mutants during program execution. Mutation analysis aids in the assessment of the adequacy of tests [9]. It involves the modi®cation of programs to see if existing tests can distinguish the original program from 2. Mutation Operators for Java the modi®ed program. Traditionally, syntactic modi®ca- tions have been used. A set of mutation operators gener- Mutation operators de®ned for procedural languages are ate the syntactic modi®cations, which are determined by the also applicable to Java. Java includes additional features language of the program being tested, and the mutation sys- related to the object-oriented paradigm. Offutt et al. de- tem used for testing. Mutation operators are created with ®ned mutation operators for Ada [10]; these operators ad- one of two goals: to induce simple syntax changes based dress some object-oriented features; they do not address in- on errors that programmers typically make (such as using heritance and are limited to properties within a class. the wrong variable name), or to force common testing goals Kim et al [6] propose mutation operators for Java based (such as executing each branch). on deviations of Java language constructs. The mutation op- One way to conduct program modi®cation is to change erators do not take object semantics into account. Several data values while a program is running. We are developing operators create mutants that do not compile. a mechanism to conduct mutation analysis of objects rather Objects have state and methods implement transitions than just scalar data values. We inject faults into the objects from one state to another. Doong and Frankl's [4] AS- at runtime. Others have used runtime fault injection, for ex- TOOT uses algebraic speci®cations to generate method test ample, Voas uses fault injection to measure testability [12]. sequences. Kirani and Tsai [7] describe a method sequence Injected faults must represent plausible errors. Unlike testing method: testers select sequences of methods in vary- hardware, where a combination of simple faults can be used ing orders and length. Kung et al. [8] describe testing based on state transition diagrams. Mutation operators that are ap- before it is used by inserting, just after line 3, the following plied to program code are not suf®cient to ensure that objects statement: will go through different states. Interface mutation identi®es errors that programmers f = (Foo) ObjectMutationEngine.mutate(f); may make in de®ning, implementing and using interfaces. We can also mutate an object returned by a method, as Integration mutation operators test the connections between shown in Figure 2, placing the mutate calljustpriortothe two modules by mutating module interfaces [3]. return statement. The ObjectMutationEngine implements Ghosh and Mathur [5] use interface mutation on dis- the mutate methods. Inserting calls to the ObjectMutatio- tributed object systems that use CORBA, DCOM and Java- nEngine is relatively easy using a code instrumenter that RMI. Interface mutation operators change parameter values builds a parse tree and inserts calls to mutate into certain in method calls de®ned in an interface. nodes in the tree. The ObjectMutationEngine is described The above mutation operators can be easily applied when in Section 4. the parameters are scalars. A simple object mutation is to make an object reference null. A more plausible approach 1. class C { is to modify the state of an object. State mutation operators 2. ... cannot be applied statically to a program, because the state 3. public Bar m (Foo f) { 4. ... of the object depends on program execution. Interface muta- 5. Bar b; tion operators will not reveal state errors caused by speci®c 6. ... method sequences. These errors depend on the order of op- 7. return b; eration and not the values of the arguments. 8. } 9. ... 10. } 3. Mutation Faults for Java Objects Figure 2. Mutation of Return Statement Instead of de®ning mutation operators for each class in the Java API, we de®ne operators that apply to a whole group of classes that implement a certain interface. We ex- 3.1. Default mutation operators amine mutation operators that apply to the following inter- faces: Mutating an instance of an arbitrary user-de®ned type Container types de®ned in the interfaces, Collection modi®es the ®elds of the object. The Java re¯ection API en- and List in the package java.util. ables us to identify the types of objects. If the ®eld is a scalar, Iterators de®ned in the interface Iterator in the package we apply traditional scalar mutation operators: java.util. 1. Increment the value by 1 InputStream de®ned in the abstract class InputStream 2. Decrement the value by 1 in the package java.io. 3. Set the value to a constant We also de®ne default mutation operators. Our new mutation operators apply to ®elds that are ob- 1. class C { jects. If the semantics of the objects are known, it is easier 2. ... to select the operators. Default operators apply when the se- 3. public void m (Foo f) { mantics are not known. A default operator might make an 4. ... object reference null. Such a mutation will probably raise a 5. ... 6. } NullPointerException, limiting its utility. Moreover this is 7. ... an operation that is applied to the reference, not the object. 8. } This mutation treats a variable that refers to an object as hav- ing an underlying type of ªreference to objectº and takes ad- vantage of knowledge of the semantics of variables of this Figure 1. Code of Class C sort. It can only mutate an object reference by assigning it a value, testing for equality between two such variables, and dereferencing its value. Injecting The Faults. Figure 1 shows a class C containing Another mutation operator for arbitrary object types is a method m() with parameter f which references an object one that recursively applies mutation operators to the nested of type Foo. Code inside m (not shown) uses the parame- ®elds until the scalar ®elds are reached. The following op- ter f for computation. We can mutate the object bound to f erators can also be applied: 2 1. Cloning the object referred to by the variable and as- Operators for container implementations. The speci®c signing the reference to the clone to the variable. This semantics of implementations can be used to mutate con- tests the sensitivity of a program to the object's identity tainer objects. For example, a binary tree has a notion of rather than its state. ordering. This notion can be used to implement a reorder 2. Creating a new object whose type is compatible with mutation operator. the declared type T of the object reference Ð we in- stantiate a new object whose type is a descendant of T . 3.3. Operator for the Iterator interface 3.2. Mutation operators for containers The Iterator interface in the Java API generates the next element in the iteration using the method next().Askip op- Operators for the Collection Interface. erator makes the iterator skip elements. It is implemented by a mutate method that calls the next() method one or more 1. Make the Collection empty: times. In Java every Collection needs to implement the The skip operator does not affect all instances of the mu- method clear(). The mutate method for making the tated type but just the instance held by some client. Since Collection empty just invokes the clear() method on we are only mutating one iterator and not the original con- this object. tainer, any other client using the container or a different it- erator over the container will not see a difference.
Recommended publications
  • Sound Invariant Checking Using Type Modifiers and Object Capabilities
    Sound Invariant Checking Using Type Modifiers and Object Capabilities. Isaac Oscar Gariano Victoria University of Wellington [email protected] Marco Servetto Victoria University of Wellington [email protected] Alex Potanin Victoria University of Wellington [email protected] Abstract In this paper we use pre existing language support for type modifiers and object capabilities to enable a system for sound runtime verification of invariants. Our system guarantees that class invariants hold for all objects involved in execution. Invariants are specified simply as methods whose execution is statically guaranteed to be deterministic and not access any externally mutable state. We automatically call such invariant methods only when objects are created or the state they refer to may have been mutated. Our design restricts the range of expressible invariants but improves upon the usability and performance of our system compared to prior work. In addition, we soundly support mutation, dynamic dispatch, exceptions, and non determinism, while requiring only a modest amount of annotation. We present a case study showing that our system requires a lower annotation burden compared to Spec#, and performs orders of magnitude less runtime invariant checks compared to the widely used ‘visible state semantics’ protocols of D, Eiffel. We also formalise our approach and prove that such pre existing type modifier and object capability support is sufficient to ensure its soundness. 2012 ACM Subject Classification Theory of computation → Invariants, Theory of computation → Program verification, Software and its engineering → Object oriented languages Keywords and phrases type modifiers, object capabilities, runtime verification, class invariants Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.23 1 Introduction Object oriented programming languages provide great flexibility through subtyping and arXiv:1902.10231v1 [cs.PL] 26 Feb 2019 dynamic dispatch: they allow code to be adapted and specialised to behave differently in different contexts.
    [Show full text]
  • Method Proxy-Based AOP in Scala
    Vol. 0, No. 0, Z Method Proxy-Based AOP in Scala Daniel Spiewak and Tian Zhao University of Wisconsin – Milwaukee, fdspiewak,[email protected] This paper describes a fully-functional Aspect-Oriented Programming framework in Scala – a statically typed programming language with object-oriented and func- tional features. This framework is implemented as internal domain-specific lan- guages with syntax that is both intuitive and expressive. The implementation also enforces some static type safety in aspect definitions. 1 INTRODUCTION Aspect-Oriented Programming (AOP) implementations such as AspectJ provide language extensions of pointcuts and advices to insert code of crosscutting concerns into the base program through bytecode transformation. In this paper, we describe a framework to implement an AOP extension to the Scala language [13] using higher-order functions as AOP proxies 1. This framework allows programmers to specify pointcuts and aspects using a Domain Specific Language (DSL) [5] embedded within Scala. Our technique uses Scala’s higher-order functions to intercept method calls with minimal syntactic overhead imposed on the base program. This framework allows developers to define pointcuts by specifying class types and method signatures. The framework also allows access to context variables, while aspects can insert advice code before or after the advised body. The rest of the paper is organized as follows: In Section2, we present the main idea using an example. Section3 explains the syntax of pointcuts and advices. Section4 ex- plains the implementation details. We discuss the benefits and tradeoffs of our framework in Section5. and related works are in Section6. 2 EXAMPLE AOP enables developers to write code that is modularized to a point beyond the capabil- ities of vanilla object-oriented design.
    [Show full text]
  • AP Computer Science Basic OOP — Implementing Classes
    AP Computer Science Basic OOP — Implementing Classes ORIENTATION Object-oriented programming (OOP) refers to the organization of data into classes, categories that represent a given type of “object.” An object can be a model of a real-life thing like a car, a six-sided die, or a person, or it can be a representation of something more abstract like a point in space, a menu item, or a digital clipboard. An object that belongs to a given class is called an instance of that class, and any instance of a class keeps track of its state using instance variables, or attributes. The object is created when its constructor is called, and can be interacted with by calling its methods, which may access data (accessor methods, or “getters”) or alter the object’s data (mutator methods, or “setters”). There are two important theoretical concepts in OOP: abstraction and encapsulation. Objects and the classes they belong to act as abstractions of the things they represent: a Java class called Person isn’t actually a person, of course, but a simplified representation of a person in terms of a limited number of qualities (name and age, perhaps). Other details such as hair color, nationality, and gender identity aren’t included in our abstraction of a person. Encapsulation refers to the way that a class and its methods hide away the details of a process. Someone using a QuadraticFormula class can call the hasSolutions() method to find out whether their equation has solutions without knowing what a discriminant is. The programmer and the class she has written have hidden that information away in a metaphorical “black box.” Basic OOP consists primarily of implementing classes: writing the JavaDocs, class header, constructors, attributes, and methods for an object as specified.
    [Show full text]
  • Learn Objective–C on The
    CYAN YELLOW SPOT MATTE MAGENTA BLACK PANTONE 123 C BOOKS FOR PROFESSIONALS BY PROFESSIONALS® Companion eBook Available Learn Objective-CLearn • Learn the native programming language for Mac OS X, Everything You Need to Know as well as the iPhone! to Become an Objective-C Guru • Get up and running quickly with Objective-C. We don’t waste time teaching you basic programming; instead, we focus on what makes Objective-C di!erent and cool. • Learn about sophisticated programming concepts, including object-oriented programming, the Open-Closed Principle, refactoring, key-value coding, and predicates. n this book, you’ll !nd a full exploration of the Objective-C programming Ilanguage, the primary language for creating Mac OS X and iPhone applica- tions. There are goodies here for everyone, whether you’re just starting out as a Mac developer or a grizzled programmer coming from another language. You’ll discover all of the object-oriented purity and Smalltalk heritage coolness of Objective-C—such as instantiation, protocols for multiple inheritance, dynamic typing, and message forwarding. Along the way, you’ll meet Xcode, the Mac development environment, and you’ll learn about Apple’s Cocoa toolkit. on the Nearly everyone wants to be able to develop for Mac OS X or the iPhone these days, and it’s no wonder. The Mac is a fun and powerful platform, and Objective-C is a wonderful language for writing code. You can have a great time programming the Mac in Objective-C. We do, and want you to join us! Mark Dalrymple is a longtime Mac and Unix programmer who has Mac code running all over the world.
    [Show full text]
  • An Empirical Study on Encapsulation and Refactoring in the Object-Oriented Paradigm
    Declaration of Authorship I certify that the work presented here is, to the best of my knowledge and belief, original and the result of my own investigations, except as acknowledged, and has not been submitted, either in part or whole, for a degree at this or any other University. Rajaa Najjar Date: 10 September 2008 An Empirical Study on Encapsulation and Refactoring in the Object-Oriented Paradigm by Rajaa Najjar A Thesis Submitted in Fulfilment of the Requirements for the Degree of Doctor of Philosophy in the University of London September, 2008 School of Computer Science and Information Systems Birkbeck, University of London 1 Abstract Encapsulation lies at the heart of the Object-Oriented (OO) paradigm by regulating access to classes through the private, protected and public declaration mechanisms. Refactoring is a relatively new software engineering technique that is used to improve the internal structure of software, without necessarily affecting its external behaviour, and embraces the OO paradigm, including encapsulation. In this Thesis, we empirically study encapsulation trends in five C++ and five Java systems from a refactoring perspective. These systems emanate from a variety of application domains and are used as a testbed for our investigations. Two types of refactoring related to encapsulation are investigated. The ‘Encapsulate Field’ refactoring which changes a declaration of an attribute from public to private, thus guarding the field from being accessed directly from outside, and the ‘Replace Multiple Constructors with Creation Methods’ refactoring; the latter is employed to remove code ‘bloat’ around constructors, improve encapsulation of constructors and improve class comprehension through the conversion of constructors to normal methods.
    [Show full text]
  • Pdf Merger Demo
    A-PDF MERGER DEMO Philadelphia University Faculty of Information Technology Lecturer: Dr. Nadia Y. Yousif Software Engineering Department Coordinator: Dr. Nadia Y. Yousif Examination Paper Internal Examiner: Dr. Murad Maouch ………………………………………………………………………………………………………… Object-Oriented Paradigms (721112) - Section: 3 First Exam Date: November 28, 2006 First Semester - 2006/2007 Time: 50 Minutes ………………………………………………………………………………………………………… Information for Candidates 1. This examination paper contains 3 questions totalling 15 marks 2. The marks for parts of questions are shown in square brackets: e.g. [2 marks]. Advice to Candidates 1. You should attempt ALL questions. You should write your answers clearly. ………………………………………………………………………………………………………… I. Basic Notions Objectives: The aim of the question in this part is to evaluate your required minimal knowledge and understanding skills in the fundamentals of object oriented programming. Question 1 (5 marks) This question contains 5 multiple choice questions with each question worth 1 mark. You should write the letter A, B, C, or D in your answer sheet to indicate your correct answer. 1) One of the following is NOT TRUE about Object-Oriented Paradigms (OOPs): A) OOP is a set of techniques and processes focusing on how to analyse and model a real world problem and to design a solution. B) The intended benefits of OOP are to solve the “software” crisis, break complexity into small manageable chunks, and make software maintenance easier. C) OOP allows reuse of components – plug and play D) OOP solves the entire problem in one program. 2) Which point is FALSE from the following? A) A class is an object B) A class is a template or prototype that defines the composition and the behavior of all objects of certain kinds.
    [Show full text]
  • Open Abrown Thesis May2012.Pdf
    The Pennsylvania State University The Graduate School Department of Computer Science and Engineering AN ENGINEERING APPROACH TO PERL AND RUBY OBJECT ORIENTED PROGRAMMING LANGUAGES A Thesis in Computer Science and Engineering by Angeline Brown © 2012 Angeline Brown Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science May 2012 ii The thesis of Angeline Brown was reviewed and approved* by the following: Mahmut Kandemir Professor of Computer Science and Engineering Thesis Advisor Yuan Xie Associate Professor of Computer Science and Engineering Raj Acharya Professor of Computer Science and Engineering Head of the Department of Computer Science and Engineering *Signatures are on file in the Graduate School iii ABSTRACT This study compares two object oriented programming languages, Perl and Ruby. Perl and Ruby are both extensively used scripting languages that are applied in a wide scope of modern software applications. Applications that use Perl are Amazon.com, TicketMaster.com, and Priceline.com. Applications that use Ruby are Twitter.com, YellowPages.com, and LivingSocial.com. The purpose of discussing these languages is two-fold. First, the available quantitative comparison of these languages is limited. This paper provides essential quantitative as well as qualitative analysis that can be used as a tool for future references. Secondly, this work was performed as a trade study for the implementation of a real world database application known as PennData SpecEd Application. PennData SpecEd is used to collect records of special education students from the Commonwealth of Pennsylvania student census. This comparative study focuses first on the performance and ease of programming software components using object oriented features of both Perl and Ruby.
    [Show full text]
  • Linkedlists.Mkr Page 838 Thursday, October 14, 1999 10:19 PM
    LinkedLists.mkr Page 838 Thursday, October 14, 1999 10:19 PM ¡ £ ¤ ¥ ¦ § ¨ © § ¢ list This section implements the STL list class discussed in Section 7.6. We will see lots of code, but most of the techniques were seen earlier in this chapter. // Incomplete class declarations for // the const_iterator, iterator, and list, // because all these classes refer to each other. template <class Object> class ConstListItr; template <class Object> class ListItr; template <class Object> class list; // The basic doubly-linked list node. // Everything is private, and is accessible // only by the iterators and list classes. template <class Object> class ListNode { Object data; ListNode *prev; ListNode *next; ListNode( const Object & d = Object( ), ListNode * p = NULL, ListNode * n = NULL ) : data( d ), prev( p ), next( n ) { } friend class ConstListItr<Object>; friend class ListItr<Object>; friend class list<Object>; }; ! " # $ % & ' ) * + + * , - - . ( ) * / * 0 1 2 , + 3 2 / 2 0 4 . / ( ) * + + . + ListNode ( LinkedLists.mkr Page 839 Thursday, October 14, 1999 10:19 PM ¡ < 5 6 7 6 . , 0 1 , 8 0 4 . 9 : ; ) list template <class Object> class list { public: typedef ListItr<Object> iterator; typedef ConstListItr<Object> const_iterator; list( ); ~list( ); list( const list & rhs ); const list & operator= ( const list & rhs ); iterator begin( ); const_iterator begin( ) const; iterator end( ); const_iterator end( ) const; int size( ) const; bool empty( ) const; Object
    [Show full text]
  • Arquitecturas De Microservicios Para Aplicaciones Desplegadas En Contenedores
    UNIVERSIDAD POLITÉCNICA DE MADRID Escuela Técnica Superior Ingeniería de Sistemas Informáticos TRABAJO FIN DE GRADO EN INGENIERÍA DEL SOFTWARE Arquitecturas de microservicios para aplicaciones desplegadas en contenedores Autor: Carlos Jiménez Aliaga Tutora: Ana Isabel Lías Quintero Diciembre 2018 A mis padres, por haberme guiado a lo largo de los años. A mi hermana, por estar siempre ahí y ayudarme a dar lo mejor de mí. Y a mi abuela, donde quiera que esté, que siempre estuvo orgullosa de que su nieto estudiara álgebra. i | RESUMEN El estado actual de las redes de comunicaciones y la evolución de los dispositivos electrónicos, cada vez más potentes, ligeros y portátiles, ha cambiado la forma en la se consumen los servicios en línea. Los dispositivos están siempre conectados y los clientes necesitan acceder a los datos desde cualquier lugar y de forma instantánea. Esta necesidad implica una rápida adaptación de los servicios así como replicar los datos geográficamente para que puedan estar accesibles globalmente con una latencia mínima. La cuestión es, ¿cómo se consigue desarrollar servicios que cumplan las necesidades actuales de una forma eficiente a la vez que sean capaces de adaptarse rápidamente a nuevos cambios? El propósito de este proyecto de fin de grado es presentar cómo definir arquitecturas basadas en microservicios, haciendo uso de buenas prácticas, para aplicaciones desplegadas en contenedores. Para ello se hace uso de tecnologías de código abierto y multiplataforma, en concreto .NET Core para el desarrollo y Docker como motor de los contenedores. Elegir dónde y cómo desplegar las aplicaciones es un factor determinante. Se presenta el uso los orquestadores para la gestión de los contenedores (Kubernetes específicamente, que es también de código abierto) y de las plataformas Cloud donde el orquestador, las aplicaciones y servicios adicionales (como las bases de datos) son desplegados y accesibles a nivel global.
    [Show full text]
  • Java Classes
    Java classes Savitch, ch 5 Outline n Objects, classes, and object-oriented programming q relationship between classes and objects q abstraction n Anatomy of a class q instance variables q instance methods q constructors 2 Objects and classes n object: An entity that combines state and behavior. q object-oriented programming (OOP): Writing programs that perform most of their behavior as interactions between objects. n class: 1. A program. or, 2. A blueprint of an object. q classes you may have used so far: String, Scanner, File n We will write classes to define new types of objects. 3 Abstraction n abstraction: A distancing between ideas and details. q Objects in Java provide abstraction: We can use them without knowing how they work. n You use abstraction every day. Example: Your portable music player. q You understand its external behavior (buttons, screen, etc.) q You don't understand its inner details (and you don't need to). 4 Class = blueprint, Object = instance Music player blueprint state: current song volume battery life behavior: power on/off change station/song change volume choose random song Music player #1 Music player #2 Music player #3 state: state: state: song = "Thriller" song = ”Feels like rain" song = "Code Monkey" volume = 17 volume = 9 volume = 24 battery life = 2.5 hrs battery life = 3.41 hrs battery life = 1.8 hrs behavior: behavior: behavior: power on/off power on/off power on/off change station/song change station/song change station/song change volume change volume change volume choose random song choose random
    [Show full text]
  • 5. Defining Classes and Methods Objectives Example: Automobile
    10/10/11 5. Defining Classes and Methods Harald Gall, Prof. Dr. Institut für Informatik Universität Zürich http://seal.ifi.uzh.ch/info1 Objectives ! Describe and define concepts of class and object ! Describe use of parameters in a method ! Use modifiers public, private ! Define accessor, mutator class methods ! Describe purpose of javadoc ! Describe references, variables, parameters of a class type © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano 2 Example: Automobile ! A class Automobile as a blueprint © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano 3 1 10/10/11 Class and Method Definitions Objects that are instantiations of the class Automobile © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano 4 Class and Method Definitions ! A class outline as a UML class diagram © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano 5 Example: Automobile Code © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano 6 2 10/10/11 Example: Species ! A class Species shall hold records of endangered species. ! Each object has three pieces of data: a name, a population size, and a growth rate. ! The objects have 3 behaviors: readInput, writeOutput, predictPopulation. ! Sample program class SpeciesFirstTry © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano 7 Using a Class and Its Methods ! class SpeciesFirstTryDemo © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano 8 Methods ! Two kinds of Java methods ! Return a single item, i.e. return type ! No return type: a void method ! The method main is a void method ! Invoked by the system ! Not by the program © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano 9 3 10/10/11 Defining void Methods ! Consider method writeOutput ! Method definitions inside class definition ! Can be used only with objects of that class © 2008 Pearson Education, Inc., Walter Savitch and Frank Carrano 10 Methods That Return a Value ! Consider method getPopulationIn10( ) .
    [Show full text]
  • The Development of a Method to Assist in the Transformation
    THE DEVELOPMENT OF A METHOD TO ASSIST IN THE TRANSFORMATION FROM PROCEDURAL LANGUAGES TO OBJECT ORIENTED LANGUAGES WITH SPECIFIC REFERENCE TO COBOL AND JAVA by Jeanette Wendy Wing A Research dissertation submitted in complete fulfilment for the requirements of the degree of Master of Technology in Information Technology in the Department of Computer Studies, Durban Institute of Technology, Durban, South Africa. Durban, December 2002 APPROVED FOR FINAL SUBMISSION ________________________________ __________________ Mr. D. A. Hunter, M.Sc.(UND) DATE SUPERVISOR i ABSTRACT Computer programming has been a science for approximately 50 years. It this time there have been two major paradigm shifts that have taken place. The first was from “spaghetti code” to structured programs. The second paradigm shift is from procedural programs to object oriented programs. The change in paradigm involves a change in the way in which a problem is approached, can be solved, as well as a difference in the language that is used. The languages that were chosen to be studied, are COBOL and Java. These programming languages were identified as key languages, and the languages that software development are the most reliant on. COBOL, the procedural language for existing business systems, and Java the object oriented language, the most likely to be used for future development. To complete this study, both languages were studied in detail. The similarities and differences between the programming languages are discussed. Some key issues that a COBOL programmer has to keep in mind when moving to Java were identified. A transformation method is proposed. The transformation method identifies the creation of two distinct types of Java classes from one COBOL program.
    [Show full text]