Fermi Liquid Behavior of the In-Plane Resistivity in the Pseudogap

Total Page:16

File Type:pdf, Size:1020Kb

Fermi Liquid Behavior of the In-Plane Resistivity in the Pseudogap 1 Fermi liquid behavior of the in-plane resistivity in the pseudogap state of YBa 2Cu 4O8 Cyril Proust 1*, B. Vignolle 1, J. Levallois 1,2, S. Adachi 3 and N. E. Hussey 4,5* 1 Laboratoire National des Champs Magnétiques Intenses (LNCMI-EMFL), (CNRS-INSA- UGA-UPS), Toulouse 31400, France. 2 Department of Quantum Matter Physics, University of Geneva, CH-1211 Geneva 4, Switzerland. 3 Superconductivity Research Laboratory, Shinonome 1-10-13, Koto-ku, Tokyo 135-0062, Japan. 4 High Field Magnet Laboratory (HFML-EMFL), Radboud University, Toernooiveld 7, 6525ED Nijmegen, Netherlands 5 Radboud University, Institute of Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, Netherlands * To whom correspondence may be addressed. Email: [email protected] or [email protected] . 2 Our knowledge of the ground state of underdoped hole-doped cuprates has evolved considerably over the last few years. There is now compelling evidence that inside the pseudogap phase, charge order breaks translational symmetry leading to a reconstructed Fermi surface made of small pockets. Quantum oscillations, (Doiron-Leyraud N, et al. (2007) Nature 447:564-568), optical conductivity (Mirzaei SI, et al. (2013) Proc Natl Acad Sci USA 110:5774-5778) and the validity of Wiedemann-Franz law (Grissonnache G, et al. (2016) Phys. Rev. B 93:064513) point to a Fermi liquid regime at low temperature in the underdoped regime. However, the observation of a quadratic temperature dependence in the electrical resistivity at low temperatures, the hallmark of a Fermi liquid regime, is still missing. Here, we report magnetoresistance measurements in the magnetic- 2 field-induced normal state of underdoped YBa 2Cu 4O8 which are consistent with a T resistivity extending down to 1.5 K. The magnitude of the T2 coefficient, however, is much smaller than expected for a single pocket of the mass and size observed in quantum oscillations, implying that the reconstructed Fermi surface must consist of at least one additional pocket. Significance High temperature superconductivity evolves out of a metallic state that undergoes profound changes as a function of carrier concentration, changes that are often obscured by the high upper critical fields. In the more disordered cuprate families, field suppression of superconductivity has uncovered an underlying ground state that exhibits unusual localization behavior. Here, we reveal that in stoichiometric YBa 2Cu 4O8, the field-induced ground state is both metallic and Fermi-liquid like. The manuscript also demonstrates the potential for using the absolute magnitude of the electrical resistivity to constrain the Fermi surface topology of correlated metals and in the case of YBa 2Cu 4O8, reveals that the current picture of the reconstructed Fermi surface in underdoped cuprates as a single, isotropic electron-like pocket may be incomplete. Introduction The generic phase diagram of Fig. 1 summarizes the temperature and doping dependence of the 1 in-plane resistivity ρab (T) of hole-doped cuprates . Starting from the heavily overdoped side, non-superconducting La 1.67Sr 0.33CuO 4 for example shows a purely quadratic resistivity below ~ 50 K (ref. 2). Below a critical doping pSC where superconductivity sets in, ρab (T) exhibits 2 n supra-linear behaviour that can be modeled either as ρab ~ T + T or as T (1 < n < 2). When a magnetic field is applied to suppress superconductivity on the overdoped side, the limiting low- T behavior is found to be T-linear 3,4,5. Optimally doped cuprates are characterized by a linear resistivity for all T > Tc, though the slope often extrapolates to a negative intercept suggesting 1 that at the lowest temperatures, ρab (T) contains a component with an exponent larger than one . In the underdoped regime, ρab (T) varies approximately linearly with temperature at high T, but as the temperature is lowered below the pseudogap temperature T*, it deviates from linearity in a very gradual way 6. At lower temperatures, marked by the light blue area in Fig. 1, there is now compelling evidence from various experimental probes of incipient charge order 7-11 . High 12,13 14 field NMR and ultrasonic measurements indicate that a phase transition occurs below Tc. This is also confirmed by recent high field x-ray measurements which indicate that the CDW order becomes tridimensional with a coherence length that increases with increasing magnetic field strength 15,16 . This leads to a Fermi surface reconstruction that can be reconciled with quantum oscillations 17,18 as well as with the sign change of the Hall 19 and Seebeck 20 coefficients. Whether the charge order is biaxial 21 or uniaxial with orthogonal domains 22 is still 3 an open issue, but a Fermi surface reconstruction involving two perpendicular wavevectors leads to at least one electron pocket in the nodal region of the Brillouin zone 23 . Depending on the initial pseudogapped Fermi surface and on the wavevectors of the charge order, Fermi surface reconstruction can also lead to additional, smaller hole pockets24,25 . In Y123 (doping level p ≈ 0.11) the quantum oscillation spectra consist of a main frequency Fa = 540 T and a beat pattern indicative of nearby frequencies Fa2 = 450 T and Fa3 = 630 T. A smaller frequency Fh ≈ 100 T has been detected by thermopower and c-axis transport measurements and attributed 26 there to an additional small hole pocket . The presence of the three nearby frequencies Fai can be explained by a model involving a bilayer system with an electron pocket in each plane and 27,28 magnetic breakdown between the two pockets . In this scenario, the low frequency Fh could originate from quantum interference or the Stark effect 29 . However, this scenario predicts the occurrence of five nearby frequencies, and thus requires fine tuning of certain microscopic parameters such as the bilayer tunneling t⊥. Moreover, the doping dependence of the Seebeck coefficient is difficult to reconcile with a Fermi surface reconstruction scenario leading to only one electron pocket per plane. More generally, the observation of quantum oscillations is a classic signature of Landau quasiparticles. In underdoped Y123, the temperature dependence of the amplitude of the oscillations follows Fermi-Dirac statistics up to 18 K, as in the Landau-Fermi liquid theory 30 . This conclusion is supported by other observations, such as the validity of the Wiedemann- Franz law 31 in underdoped Y123 and the quadratic frequency and temperature dependence of the quasiparticle lifetime τ (ω, T) measured by optical spectroscopy32 in underdoped HgBa 2CuO 4+ δ (Hg1201). An important outstanding question is whether the in-plane resistivity of underdoped cuprates also exhibits the behavior of a canonical Landau-Fermi liquid, namely a quadratic temperature dependence at low T? In underdoped cuprates, several studies have 2 shown ρab ~ T , but always at elevated temperatures (indeed, most are above Tc) and only over a limited temperature range that never exceed a factor of 2.5 6,33 -36 . (see Table S1 for a detailed 36 list of studies). At low temperatures, either ρab (T) starts to become non metallic , suggesting that the T 2 behavior observed at intermediate temperatures could just be a crossover regime, or a quadratic behaviour has previously been hinted at19 , rather than shown explicitly. Here, we present high field in-plane magnetoresistance measurements in underdoped YBa 2Cu 4O8 (Y124) 2 that are consistent with the form ρa(T) = ρ0(T) + AT from T = Tc down to temperatures as low as 1.5 K, e.g. over almost two decades in temperature. In addition, we investigate the magnitude of the resultant A coefficient and compare it with some of the prevalent Fermi surface reconstruction scenarios. In conclusion, we find that the magnitude of A is difficult to reconcile with the existence of a single electron pocket per plane, with an isotropic mass. Results We have measured the a-axis magnetoresistance (i.e. perpendicular to the conducting CuO chains) of two underdoped Y124 (Tc = 80 K) single crystals up to 60 T at various fixed temperatures down to 1.5 K. From thermal conductivity measurements at high fields, the upper 37 critical field Hc2 of Y124 has been estimated to be ~ 45 T . Raw data for both samples are shown in Fig. 2. Above Tc, i.e. in the absence of superconductivity, the transverse magnetoresistance can be accounted for, over the entire field range measured , by a two-carrier model 35 using the formula: (1) () = (0) + where ρ(0) is the zero-field resistivity and α and β are free parameters that depend on the conductivity and the Hall coefficient of the electron and hole carriers 35 (see Fig. S1 for a comparison of the two-band and single-band, quadratic forms for the magnetoresistance.) To 4 obtain reliable values of ρ (H→0, T) = ρ(0) and corresponding error bars for each field sweep, the data were fitted to equation (1) in varying field ranges using the procedure described in detail in Figs. S2-S5 and Tables S2-S3. Precisely the same form is used to fit the high-field data at all temperatures studied below Tc. This procedure has been found to yield reliable ρ(0) values in both cuprate 5 and pnictide 38 superconductors. Extrapolation of the high-field data to the zero- field axis ρ(0), as shown by dashed lines in Fig. 2, allows one then to follow the evolution of ρa(T) down to low temperatures. The extrapolated ρ(0) values are plotted versus temperature in Fig. 3 (symbols) for both crystals, along with the zero-field temperature dependence of the resistivity (solid line). The dashed lines in Fig. 3 correspond to fits of the ρ(0, T) data to the 2 n form ρ0(T) = ρ0 + AT .
Recommended publications
  • Comparing the Superconductivity of Mgb2 and Sr2ruo4
    Comparing the superconductivity of MgB2 and Sr2RuO4 Etienne Palosa) (PHYS 232: Electronic Materials) The physical properties of two superconducting materials are compared in their normal and superconducting states. Their similarities and differences are reviewed in a systematic manner, beginning with a description of the unit cell. Structural, thermodynamic, electronic and magnetic properties are compared. In the super- conducting state, re compare the superconducting parameters of the materials and the effect on TC induced by physical or chemical changes to the systems. The sim- ilarities and differences between the conventional superconductor MgB2 and the unconventional superconductor Sr2RuO4 are discussed mainly within the context of experimental evidence reported in the literature. I. INTRODUCTION Some of the most important unresolved questions in condensed matter physics are re- lated to superconductivity. While the phenomena was observed over one-hundred years ago and an theory that explains conventional superconductivity has been established for the better half of a century, there is no unified theory of conventional and unconventional su- perconductivity. Or is there? However, through continuous theoretical, experimental and collaborative efforts, much has been learned about the physics of superconducting materi- als. The two main categories of superconductors are (i) conventional: those explained by the Bardeen{Cooper{Schrieffer (BCS) theory, and (ii) unconventional: materials whose su- perconducting mechanisms do not satisfy the conditions in BCS theory. In these materials, the superconducting mechanism is not phonon-mediated. In this work, a comparison of the physical properties of one conventional and one uncon- ventional superconductors is presented. On one hand, we have magnesium diboride, MgB2, a material whose superconductivity was discovered in 20011, decades after it's synthesis and crystal structure was first reported.
    [Show full text]
  • High Pressure Study of High-Temperature Superconductors
    High Pressure Study of High-Temperature Superconductors Von der Fakultät Mathematik und Physik der Universität Stuttgart zur Erlangung der Würde eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigte Abhandlung Vorgelegt von Sofia-Michaela Souliou aus Thessaloniki (Griechenland) Hauptberichter: Prof. Dr. Bernhard Keimer Mitberichter: Prof. Dr. Martin Dressel Tag der mündlichen Prüfung: 29 September 2014 Max-Planck-Institut für Festkörperforschung Stuttgart 2014 Contents Zusammenfassung in deutscher Sprache9 Introduction 13 1 High-Temperature Superconductors 17 1.1 Cuprate superconductors . 17 1.1.1 Crystal Structure and Carrier Doping . 17 1.1.2 Electronic Structure . 20 1.1.3 Phase diagram . 24 1.1.4 The YBa2Cu3O6+x and YBa2Cu4O8 systems . 37 1.1.5 High Pressure Effects . 43 1.2 Iron-based Superconductors . 47 1.2.1 Crystal Structure and Superconductivity . 47 1.2.2 Electronic Structure . 49 1.2.3 Phase Diagram . 52 1.2.4 The REFeAsO "1111" family . 57 1.2.5 High Pressure Effects . 59 2 Raman scattering 63 2.1 Overview of Inelastic Light Scattering . 63 2.2 Phononic Raman scattering . 65 2.2.1 Classical description of phononic Raman scattering . 65 2.2.2 Quantum mechanical description of phononic Raman scattering . 68 2.2.3 Phonon Interactions . 71 2.3 Phononic Raman scattering under high pressure . 75 2.4 The Raman spectrum of high-Tc cuprate and iron-based superconductors . 77 2.4.1 Raman modes of YBa2Cu3O6+x .................. 77 2.4.2 Raman modes of YBa2Cu4O8 ................... 84 2.4.3 Raman modes of REFeAsO1−xFx .................. 86 2.5 Analysis of the phononic Raman data . 89 5 Contents 3 Experimental Techniques 93 3.1 High Pressures and Low Temperatures .
    [Show full text]
  • Scanning Tunneling Microscopy Study on Strongly Correlated Materials
    Scanning Tunneling Microscopy Study on Strongly Correlated Materials The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation He, Yang. 2016. Scanning Tunneling Microscopy Study on Strongly Correlated Materials. Doctoral dissertation, Harvard University, Graduate School of Arts & Sciences. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:26718719 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Scanning Tunneling Microscopy Study on Strongly Correlated Materials a dissertation presented by Yang He to The Department of Physics in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Physics Harvard University Cambridge, Massachusetts June 2015 ©2014 – Yang He all rights reserved. Thesis advisor: Professor Jennifer E. Hoffman Yang He Scanning Tunneling Microscopy Study on Strongly Correlated Materials Abstract Strongly correlated electrons and spin-orbit interaction have been the two major research direc- tions of condensed matter physics in recent years. The discovery of high temperature superconduc- tors in 1986 not only brought excitement into the field but also challenged our theory on quantum materials. After almost three decades of extensive study, the underlying mechanism of high temper- ature superconductivity is still not fully understood, the reason for which is mainly a poor under- standing of strongly correlated systems. The phase diagram of cuprate superconductors has become more complicated throughout the years as multiple novel electronic phases have been discovered, while few of them are fully understood.
    [Show full text]
  • A Quantum Critical Point at the Heart of High Temperature Superconductivity
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Apollo A quantum critical point at the heart of high temperature superconductivity B. J. Ramshaw,1 S. E. Sebastian,2 R. D. McDonald,1 James Day,3 B. Tan,2 Z. Zhu,1 J.B. Betts,1 Ruixing Liang,3, 4 D. A. Bonn,3, 4 W. N. Hardy,3, 4 and N. Harrison1 1Mail Stop E536, Los Alamos National Labs, Los Alamos, NM 87545∗ 2Cavendish Laboratory, Cambridge University, JJ Thomson Avenue, Cambridge CB3 OHE, U.K 3Department of Physics and Astronomy, University of British Columbia, Vancouver V6T 1Z4, Canada 4Canadian Institute for Advanced Research, Toronto M5G 1Z8, Canada (Dated: April 27, 2014) 1 In the quest for superconductors with high transition temperatures (Tc s), one emerging motif is that unconventional superconductivity is enhanced by fluc- tuations of a broken-symmetry phase near a quantum-critical point. While re- cent experiments have suggested the existence of the requisite broken symmetry phase in the high-Tc cuprates, the signature of quantum-critical fluctuations in the electronic structure has thus far remained elusive, leaving their importance for high-Tc superconductivity in question. We use magnetic fields exceeding 90 tesla to access the underlying metallic state of the cuprate YBa2Cu3O6+δ over an unprecedented range of doping, and magnetic quantum oscillations reveal a strong enhancement in the quasiparticle effective mass toward optimal doping. This mass enhancement is a characteristic signature of quantum criticality, and identifies a quantum-critical point at pcrit ≈ 0:18. This point also represents the juncture of the vanishing pseudogap energy scale and the disappearance of Kerr rotation, the negative Hall coefficient, and the recently observed charge order, suggesting a mechanism of high-Tc that is strongest when these definitive exper- imental signatures of the underdoped cuprates converge at a quantum critical point.
    [Show full text]
  • Probing Phase Separation and Local Lattice Distortions in Cuprates by Raman Spectroscopy
    Review Probing Phase Separation and Local Lattice Distortions in Cuprates by Raman Spectroscopy Efthymios Liarokapis Department of Physics, National Technical University of Athens, 15780 Athens, Greece; [email protected]; Tel.: +30-210-7722930 Received: 25 September 2019; Accepted: 27 October 2019; Published: 1 November 2019 Abstract: It is generally accepted that high temperature superconductors emerge when extra carriers are introduced in the parent state, which looks like a Mott insulator. Competition of the order parameters drives the system into a poorly defined pseudogap state before acquiring the normal Fermi liquid behavior with further doping. Within the low doping level, the system has the tendency for mesoscopic phase separation, which seems to be a general characteristic in all high Tc compounds, but also in the materials of colossal magnetoresistance or the relaxor ferroelectrics. In all these systems, metastable phases can be created by tuning physical variables, such as doping or pressure, and the competing order parameters can drive the compound to various states. Structural instabilities are expected at critical points and Raman spectroscopy is ideal for detecting them, since it is a very sensitive technique for detecting small lattice modifications and instabilities. In this article, phase separation and lattice distortions are examined on the most characteristic family of high temperature superconductors, the cuprates. The effect of doping or atomic substitutions on cuprates is examined concerning the induced phase
    [Show full text]
  • Hole-Doped Cuprate High Temperature Superconductors
    Hole-Doped Cuprate High Temperature Superconductors C. W. Chu, L. Z. Deng and B. Lv Department of Physics and Texas Center for Superconductivity University of Houston Abstract Hole-doped cuprate high temperature superconductors have ushered in the modern era of high temperature superconductivity (HTS) and have continued to be at center stage in the field. Extensive studies have been made, many compounds discovered, voluminous data compiled, numerous models proposed, many review articles written, and various prototype devices made and tested with better performance than their nonsuperconducting counterparts. The field is indeed vast. We have therefore decided to focus on the major cuprate materials systems that have laid the foundation of HTS science and technology and present several simple scaling laws that show the systematic and universal simplicity amid the complexity of these material systems, while referring readers interested in the HTS physics and devices to the review articles. Developments in the field are mostly presented in chronological order, sometimes with anecdotes, in an attempt to share some of the moments of excitement and despair in the history of HTS with readers, especially the younger ones. 1. Introduction Hole-doped cuprate superconductors have played an indispensable role in the exciting development of high temperature superconductivity (HTS) science and technology over the last 28 years. They ushered in the era of cuprate high temperature superconductivity and helped create a subfield of physics, namely, “high temperature superconductivity” as we know it today. It all began with the observation of superconductivity up to 35 K in the Ba-doped La2CuO4 ternary compound by Alex Mueller and George Bednorz of IBM Zurich Laboratory in 1986 [1], followed immediately by the discovery of superconductivity at 93 K in the new self-doped YBa2Cu3O7 quaternary compound by C.
    [Show full text]
  • Direct Observation of Orbital Hybridisation in a Cuprate
    Direct Observation of Orbital Hybridisation in a Cuprate Superconductor C. E. Matt,1, 2 D. Sutter,1 A. M. Cook,1 Y. Sassa,3 M. M˚ansson,4 O. Tjernberg,4 L. Das,1 M. Horio,1 D. Destraz,1 C. G. Fatuzzo,5 K. Hauser,1 M. Shi,2 M. Kobayashi,2 V. N. Strocov,2 T. Schmitt,2 P. Dudin,6 M. Hoesch,6 S. Pyon,7 T. Takayama,7 H. Takagi,7 O. J. Lipscombe,8 S. M. Hayden,8 T. Kurosawa,9 N. Momono,9, 10 M. Oda,9 T. Neupert,1 and J. Chang1 1Physik-Institut, Universit¨at Z¨urich, Winterthurerstrasse 190, CH-8057 Z¨urich, Switzerland 2Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland 3Department of Physics and Astronomy, Uppsala University, SE-75121 Uppsala, Sweden 4KTH Royal Institute of Technology, Materials Physics, SE-164 40 Kista, Stockholm, Sweden 5Institute of Physics, Ecole´ Polytechnique Fed´erale de Lausanne (EPFL), Lausanne CH-1015, Switzerland 6Diamond Light Source, Harwell Campus, Didcot OX11 0DE, UK. 7Department of Advanced Materials, University of Tokyo, Kashiwa 277-8561, Japan 8H. H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, United Kingdom 9Department of Physics, Hokkaido University - Sapporo 060-0810, Japan 10Department of Applied Sciences, Muroran Institute of Technology, Muroran 050-8585, Japan The minimal ingredients to explain the es- which, in turn, suppresses superconductivity5,9. Second, sential physics of layered copper-oxide (cuprates) Fermi level dz2 -hybridisation, depending on dA, reduces materials remains heavily debated. Effective low- the pairing strength6,10. Experimental evidence, how- energy single-band models of the copper-oxygen ever, points in opposite directions.
    [Show full text]
  • Superstripes and Complexity in High-Temperature Superconductors
    J. Supercon. Nov. Mag. 2012 DOI :10.1007/s10948-012-1670-6 Superstripes and complexity in high-temperature superconductors Antonio Bianconi 1,2 and Nicola Poccia 1 1Department of Physics, Sapienza University of Rome, P. le A. Moro 2, 00185 Roma, Italy 2Rome International Center for Materials Science (RoCMat) Superstripes, Via dei Sabelli 119A, 00186 Roma, Italy Abstract: While for many years the lattice, electronic and magnetic complexity of high- temperature superconductors (HTS) has been considered responsible for hindering the search of the mechanism of HTS now the complexity of HTS is proposed to be essential for the quantum mechanism raising the superconducting critical temperature. The complexity is shown by the lattice heterogeneous architecture: a) heterostructures at atomic limit; b) electronic heterogeneity: multiple components in the normal phase; c) superconducting heterogeneity: multiple superconducting gaps in different points of the real space and of the momentum space. The complex phase separation forms an unconventional granular superconductor in a landscape of nanoscale superconducting striped droplets which is called the “superstripes” scenario. The interplay and competition between magnetic orbital charge and lattice fluctuations seems to be essential for the quantum mechanism that suppresses thermal decoherence effects at an optimum inhomogeneity. Keywords: Complexity, superconductivity, multi-component, multi-gaps, superlattice, superstripes. *web site : www.rocmat.eu E-mail: [email protected] 1. Introduction. The search for new materials with a higher superconducting critical temperature has been carried out during the last 100 years. In the early period, the material research was focusing on pure and simple pure metals made by a single element. At ambient pressure niobium has the highest superconducting critical temperature 9.3 K.
    [Show full text]
  • Direct Observation of Orbital Hybridisation in a Cuprate Superconductor
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2018 Direct observation of orbital hybridisation in a cuprate superconductor Matt, C E ; Sutter, D ; Cook, A M ; et al Abstract: The minimal ingredients to explain the essential physics of layered copper-oxide (cuprates) materials remains heavily debated. Effective low-energy single-band models of the copper–oxygen orbitals are widely used because there exists no strong experimental evidence supporting multi-band structures. Here, we report angle-resolved photoelectron spectroscopy experiments on La-based cuprates that provide direct observation of a two-band structure. This electronic structure, qualitatively consistent with density functional theory, is parametrised by a two-orbital (dx2−y2 and dz2) tight-binding model. We quantify the orbital hybridisation which provides an explanation for the Fermi surface topology and the proximity of the van-Hove singularity to the Fermi level. Our analysis leads to a unification of electronic hopping parameters for single-layer cuprates and we conclude that hybridisation, restraining d-wave pairing, is an important optimisation element for superconductivity. DOI: https://doi.org/10.1038/s41467-018-03266-0 Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-157585 Journal Article Published Version The following work is licensed under a Creative Commons: Attribution 4.0 International (CC BY 4.0) License. Originally published at: Matt, C E; Sutter, D; Cook, A M; et al (2018). Direct observation of orbital hybridisation in a cuprate superconductor. Nature Communications, 9:972.
    [Show full text]
  • Microstructure and Properties of High-Temperature Superconductors
    Microstructure and Properties of High-Temperature Superconductors Bearbeitet von Ivan Parinov 1. Auflage 2013. Buch. xxi, 779 S. Hardcover ISBN 978 3 642 34440 4 Format (B x L): 15,5 x 23,5 cm Gewicht: 1364 g Weitere Fachgebiete > Physik, Astronomie > Elektrodynakmik, Optik > Halbleiter- und Supraleiterphysik Zu Inhaltsverzeichnis schnell und portofrei erhältlich bei Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft. Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr als 8 Millionen Produkte. Chapter 2 High-Temperature Superconductors. Overview 2.1 General Remarks on Type-II Superconductors High-temperature superconductors placed in the center of our research are the type-II superconductors. Therefore, their properties and superconductivity mech- anisms are considered in more detail. The term type-II superconductors was first introduced by Abrikosov in his classical paper [4], where he assumed a detailed phenomenological theory of these materials’ behavior, based on the Ginzburg– Landau theory, and explained their magnetic properties. Initially, Abrikosov’s theory was greeted with certain skepticism: so much out of the ordinary was in its predictions. However, at the next development of physics of superconductors this theory obtained numerous experimental supports. Finally, several years later it was accepted in total, when it consequently explained the complex behavior of superconducting alloys and compounds, in particular the very high critical fields of some materials. As it has been noted for type-II superconductors, the energy of an interface between a normal and a superconducting region rns \ 0.
    [Show full text]
  • Thermodynamic Critical Field and Superconducting Fluctuation of Vortices for High Temperature Cuprate Superconductor: La-214 " (2001)
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 2001 Thermodynamic critical field nda superconducting fluctuation of vortices for high temperature cuprate superconductor: La-214 Yung Moo Huh Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Condensed Matter Physics Commons Recommended Citation Huh, Yung Moo, "Thermodynamic critical field and superconducting fluctuation of vortices for high temperature cuprate superconductor: La-214 " (2001). Retrospective Theses and Dissertations. 1047. https://lib.dr.iastate.edu/rtd/1047 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction.. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps.
    [Show full text]
  • Mechanism of High-Temperature Superconductivity in Correlated-Electron Systems
    Article Mechanism of High-Temperature Superconductivity in Correlated-Electron Systems Takashi Yanagisawa National Institute of Advanced Industrial Science and Technology 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan; [email protected] Received: 25 April 2019; Accepted: 15 June 2019; Published: 19 June 2019 Abstract: It is very important to elucidate the mechanism of superconductivity for achieving room temperature superconductivity. In the first half of this paper, we give a brief review on mechanisms of superconductivity in many-electron systems. We believe that high-temperature superconductivity may occur in a system with interaction of large-energy scale. Empirically, this is true for superconductors that have been found so far. In the second half of this paper, we discuss cuprate high-temperature superconductors. We argue that superconductivity of high temperature cuprates is induced by the strong on-site Coulomb interaction, that is, the origin of high-temperature superconductivity is the strong electron correlation. We show the results on the ground state of electronic models for high temperature cuprates on the basis of the optimization variational Monte Carlo method. A high-temperature superconducting phase will exist in the strongly correlated region. Keywords: strongly correlated electron systems; mechanisms of superconductivity; high-temperature superconductivity; kinetic driven superconductivity; optimization variational Monte Carlo method; Hubbard model; three-band d-p model 1. Introduction It is a challenging research subject to clarify the mechanism of high temperature superconductivity, and indeed it has been studied intensively for more than 30 years [1–3]. For this purpose, it is important to clarify the ground state and phase diagram of electronic models with strong correlation because high temperature cuprates are strongly correlated electron systems.
    [Show full text]