D-Morbidelli-Jewitt-Trans-Neptunian-Objects-And-Comets

Total Page:16

File Type:pdf, Size:1020Kb

D-Morbidelli-Jewitt-Trans-Neptunian-Objects-And-Comets Saas-Fee Advanced Course 35 D. Jewitt A. Morbidelli H. Rauer Trans-Neptunian Objects and Comets Saas-Fee Advanced Course 35 Swiss Society for Astrophysics and Astronomy Edited by K. Altwegg, W. Benz and N. Thomas With 132 Figures, 18 in Color David Jewitt Heike Rauer University of Hawaii DLR/Institut für Planetenforschung Institute for Astronomy Rutherfordstr. 2 2680 Woodlawn Drive 12489 Berlin, Germany Honolulu, HI 96822, USA and [email protected] TU Berlin/Zentrum für Astronomie und Astrophysik Alessandro Morbidelli Hardenbergstr. 36 10623 Berlin, Germany Observatoire de la Côte [email protected] dŠAzur/CNRS B.P. 4229 06304 Nice Cedex 4, France [email protected] Volume Editors: Kathrin Altwegg Willy Benz Nicolas Thomas Universität Bern Physikalisches Institut Sidlerstrasse 5 3012 Bern, Switzerland This series is edited on behalf of the Swiss Society for Astrophysics and Astronomy: Société Suisse d’Astrophysique et d’Astronomie Observatoire de Genève, ch. des Maillettes 51, 1290 Sauverny, Switzerland Cover picture: See chapter by D. Jewitt, Fig. 12. Library of Congress Control Number: 2007934029 ISBN 978-3-540-71957-1 Springer Berlin Heidelberg New York This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable for prosecution under the German Copyright Law. Springer is a part of Springer Science+Business Media springer.com c Springer-Verlag Berlin Heidelberg 2008 The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Typesetting: by the authors and Integra using a Springer LATEX macro package Cover design: WMXDesign GmbH, Heidelberg Printed on acid-free paper SPIN: 11808169 55/Integra 5 4 3210 Preface The 35th Saas Fee Winter School was held on 13–18 March 2005 in the skiing village of M¨urren in the Berner Oberland. In view of the excitement generated over the past 15 years by the discovery of the Kuiper Belt and Trans-Neptunian Objects and also by the ongoing Rosetta mission to comet Churyumov-Gerasimenko, it was decided to combine discussion of these prim- itive objects into one winter school under the title, “Trans-Neptunian Objects and Comets.” The aim was to provide an overview of these objects, to discuss their relationships, and to identify directions for future research. The school attracted over 60 students from all over the world. We were fortunate that not merely were the students able to hear a set of outstanding lectures but were also able to enjoy marvellous weather in one of the most beautiful parts of Switzerland. The organizers thank the lecturers, Dave Jewitt, Alessandro Morbidelli, and Heike Rauer, for the tremendous effort they made in preparing the lectures and the text for this volume. Stephan Graf, Annette J¨ackel, and Jonathan Horner provided reviews, checked the text and references, and as- sisted in the production. We also thank Frau Staehli and the staff of the Hotel Eiger in M¨urren for the warm welcome and their generosity. We also thank Ms. Kathrin Weyeneth and Ms. Edith Hertig from the Physikalisches Institut for their secretarial support for the school. Financial assistance provided by the Swiss Society for Astrophysics and Astronomy and the European Space Agency is gratefully acknowledged. Kathrin Altwegg Willy Benz Nicolas Thomas Contents Kuiper Belt and Comets: An Observational Perspective D. Jewitt ....................................................... 1 1 Preamble.................................................... 1 1.1 The Conduct of Research into the Subject . 2 2 TheModernSolarSystem..................................... 5 2.1 ProtoplanetaryDisk ..................................... 5 2.2 TheThreeDomains...................................... 9 3 CometaryNuclei............................................. 26 3.1 Mantles ................................................ 38 4 KuiperBelt.................................................. 47 4.1 KuiperBeltPhysicalProperties:ColorsandAlbedos......... 47 4.2 KuiperBeltPhysicalProperties:Spectra.................... 53 4.3 KuiperBeltPhysicalProperties:Shapes,Spins.............. 56 4.4 KuiperBeltPhysicalProperties:MultipleObjects ........... 57 4.5 KuiperBeltPhysicalProperties:Densities.................. 59 4.6 Centaurs ............................................... 62 4.7 Irregular Satellites . 63 4.8 Trojans................................................. 68 References...................................................... 72 Comets and Their Reservoirs: Current Dynamics and Primordial Evolution A. Morbidelli .................................................... 79 1 TheTrans-NeptunianPopulation............................... 80 1.1 BriefTutorialonOrbitalDynamics........................ 80 1.2 The Structure of the Trans-NeptunianPopulation............ 84 1.3 DynamicsintheKuiperBelt.............................. 93 1.4 NoteontheScatteredDisk ...............................100 2 TheDynamicsofComets......................................101 2.1 OriginandEvolutionofJupiterFamilyComets..............104 2.2 OriginandEvolutionofLong-PeriodComets................108 VIII Contents 2.3 NoteonHalley-TypeComets..............................113 2.4 TheFateofFadedComets................................115 3 TheFormationoftheOortCloud ..............................117 3.1 ProblemswiththeClassicalScenario.......................122 3.2 Oort Cloud Formation in a Dense Galactic Environment . 124 4 ThePrimordialSculptingoftheKuiperBelt.....................127 4.1 TheOriginoftheResonantPopulations....................128 4.2 TheOriginoftheHotPopulation..........................130 4.3 The Origin of the Outer Edge of the Kuiper Belt . 132 4.4 TheMassDeficitoftheColdPopulation....................134 4.5 PushingouttheKuiperBelt..............................138 5 Origin of the Late Heavy Bombardment oftheTerrestrialPlanets......................................139 6 Building a Coherent View of Solar System History: Perspectives forFutureWork..............................................151 References......................................................154 Comets H. Rauer .......................................................165 1 Introduction.................................................165 2 SublimationProcesses ........................................168 2.1 GeneralOverview........................................168 2.2 GasSublimationandNucleusDifferentiation................170 2.3 ObservationsofGasActivityEvolution.....................175 3 ComaandTailDynamics .....................................182 3.1 DynamicsoftheNeutralComa ...........................182 3.2 Dynamics in the Outer Coma and Neutral Gas Tails . 200 3.3 DynamicsofDustTails ..................................201 3.4 DynamicsofIonTails ...................................204 4 EmissionExcitationintheGasComa ..........................208 4.1 ResonanceFluorescence ..................................212 4.2 PromptEmission........................................213 4.3 OpticalDepthEffects....................................214 4.4 Excitation of Rotational and Vibrational Transitions . 214 4.5 OHMaserEmission......................................216 4.6 X-rayEmission..........................................216 5 ChemicalProcessesintheComa ...............................216 5.1 ChemistryofSomeFrequentlyObservedSpecies.............219 6 GasProductionRates ........................................224 6.1 SimpleComaModels.....................................224 6.2 Abundance Ratios and Compositional DifferencesamongComets................................226 6.3 CompositionalDifferencesAmongComets ..................230 6.4 IsotopicRatios..........................................231 Contents IX 7 DustParticles ...............................................233 7.1 Composition............................................234 7.2 SizeDistribution.........................................236 7.3 TheDustProductionRate................................238 8 Outlook.....................................................240 References......................................................242 Acknowledgments .............................................255 Index ..........................................................257 List of Previous Saas-Fee Advanced Courses !! 2005 Trans-Neptunian Objects and Comets D. Jewitt, A. Morbidelli, H. Rauer !! 2004 The Sun, Solar Analogs and the Climate J.D. Haigh, M. Lockwood, M.S. Giampapa !! 2003 Gravitation Lensing: Strong, Weak and Micro P. Schneider, C. Kochanek, J. Wambsganss !! 2002 The Cold Universe A.W. Blain, F. Combes, B.T. Draine !! 2001 Extrasolar Planets T. Guillot, P. Cassen, A. Quirrenbach !! 2000 High-Energy Spectroscopic Astrophysics S.M. Kahn, P. von Ballmoos, R.A. Sunyaev !! 1999 Physics of Star Formation in Galaxies F. Palla, H. Zinnecker !! 1998 Star Clusters B.W. Carney, W.E. Harris !! 1997 Computational Methods for Astrophysical Fluid Flow R.J. LeVeque, D. Mihalas, E.A. Dorfi, E. M¨uller !! 1996
Recommended publications
  • The Comet's Tale, and Therefore the Object As a Whole Would the Section Director Nick James Highlighted Have a Low Surface Brightness
    1 Diebold Schilling, Disaster in connection with two comets sighted in 1456, Lucerne Chronicle, 1513 (Wikimedia Commons) THE COMET’S TALE Comet Section – British Astronomical Association Journal – Number 38 2019 June britastro.org/comet Evolution of the comet C/2016 R2 (PANSTARRS) along a total of ten days on January 2018. Composition of pictures taken with a zoom lens from Teide Observatory in Canary Islands. J.J Chambó Bris 2 Table of Contents Contents Author Page 1 Director’s Welcome Nick James 3 Section Director 2 Melvyn Taylor’s Alex Pratt 6 Observations of Comet C/1995 01 (Hale-Bopp) 3 The Enigma of Neil Norman 9 Comet Encke 4 Setting up the David Swan 14 C*Hyperstar for Imaging Comets 5 Comet Software Owen Brazell 19 6 Pro-Am José Joaquín Chambó Bris 25 Astrophotography of Comets 7 Elizabeth Roemer: A Denis Buczynski 28 Consummate Comet Section Secretary Observer 8 Historical Cometary Amar A Sharma 37 Observations in India: Part 2 – Mughal Empire 16th and 17th Century 9 Dr Reginald Denis Buczynski 42 Waterfield and His Section Secretary Medals 10 Contacts 45 Picture Gallery Please note that copyright 46 of all images belongs with the Observer 3 1 From the Director – Nick James I hope you enjoy reading this issue of the We have had a couple of relatively bright Comet’s Tale. Many thanks to Janice but diffuse comets through the winter and McClean for editing this issue and to Denis there are plenty of images of Buczynski for soliciting contributions. 46P/Wirtanen and C/2018 Y1 (Iwamoto) Thanks also to the section committee for in our archive.
    [Show full text]
  • CAPTURE of TRANS-NEPTUNIAN PLANETESIMALS in the MAIN ASTEROID BELT David Vokrouhlický1, William F
    The Astronomical Journal, 152:39 (20pp), 2016 August doi:10.3847/0004-6256/152/2/39 © 2016. The American Astronomical Society. All rights reserved. CAPTURE OF TRANS-NEPTUNIAN PLANETESIMALS IN THE MAIN ASTEROID BELT David Vokrouhlický1, William F. Bottke2, and David Nesvorný2 1 Institute of Astronomy, Charles University, V Holešovičkách 2, CZ–18000 Prague 8, Czech Republic; [email protected] 2 Department of Space Studies, Southwest Research Institute, 1050 Walnut Street, Suite 300, Boulder, CO 80302; [email protected], [email protected] Received 2016 February 9; accepted 2016 April 21; published 2016 July 26 ABSTRACT The orbital evolution of the giant planets after nebular gas was eliminated from the Solar System but before the planets reached their final configuration was driven by interactions with a vast sea of leftover planetesimals. Several variants of planetary migration with this kind of system architecture have been proposed. Here, we focus on a highly successful case, which assumes that there were once five planets in the outer Solar System in a stable configuration: Jupiter, Saturn, Uranus, Neptune, and a Neptune-like body. Beyond these planets existed a primordial disk containing thousands of Pluto-sized bodies, ∼50 million D > 100 km bodies, and a multitude of smaller bodies. This system eventually went through a dynamical instability that scattered the planetesimals and allowed the planets to encounter one another. The extra Neptune-like body was ejected via a Jupiter encounter, but not before it helped to populate stable niches with disk planetesimals across the Solar System. Here, we investigate how interactions between the fifth giant planet, Jupiter, and disk planetesimals helped to capture disk planetesimals into both the asteroid belt and first-order mean-motion resonances with Jupiter.
    [Show full text]
  • The Professor Comet's Report Early Spring – April 2012
    The Professor Comet’s Report 1 Mr. Justin J McCollum (BS, MS Physics) Lab Physics Coordinator Dept. of Physics Lamar University Welcome to the comet report which is a monthly article on the observations of comets by the amateur astronomy community and comet hunters from around the world! This C/2009 P1 Garradd with article is dedicated to the latest reports of available comets for Barred Spiral Galaxy NGC 4236 observations, current state of those comets, future 14 March 2011! predictions, & projections for observations in comet astronomy! Early Spring – April 2012 The Professor Comet’s Report 2 The Current Status of the Predominant Comets for Apr 2012! Comets Designation Orbital Magnitude Trend Observation Constellations Visibility (IAU – MPC) Status Visual (Range in (Night Sky Location) Period Lat.) Garradd 2009 P1 C 7.0* - 7.5 Fading 90°N – 30°S SW region of Ursa Major moving All Night SSW towards the SE region of Lynx. Giacobini - 21P P 9 – 10 Fading Poor N/A Zinner Elongation Lost in the daytime Glare! LINEAR 2011 F1 C 11 .7* Brightening 90°N – 20°S Undergoing retrograde motion All Night between Boötes and Draco thru the late Spring. Gehrels 2 78P P 12.2* Fading 60˚N - 20˚S Moving eastwards across Taurus Early Evening and progressing along the N edge of the Hyades Star Cluster! McNaught 2011 Q2 C 12.5 Fading 70˚N – Eqn. Currently in the S central region Early Morning of Andromeda moving NE between the boundary between Andromeda & Pisces. NEAT 246P/2010 V2 P 12.3* - 13 Possible 65˚N - 60˚S Undergoing retrograde motion All Night Steadiness in the E half of the N central region of Virgo until late June.
    [Show full text]
  • The Comet's Tale
    THE COMET’S TALE Newsletter of the Comet Section of the British Astronomical Association Volume 5, No 1 (Issue 9), 1998 May A May Day in February! Comet Section Meeting, Institute of Astronomy, Cambridge, 1998 February 14 The day started early for me, or attention and there were displays to correct Guide Star magnitudes perhaps I should say the previous of the latest comet light curves in the same field. If you haven’t day finished late as I was up till and photographs of comet Hale- got access to this catalogue then nearly 3am. This wasn’t because Bopp taken by Michael Hendrie you can always give a field sketch the sky was clear or a Valentine’s and Glynn Marsh. showing the stars you have used Ball, but because I’d been reffing in the magnitude estimate and I an ice hockey match at The formal session started after will make the reduction. From Peterborough! Despite this I was lunch, and I opened the talks with these magnitude estimates I can at the IOA to welcome the first some comments on visual build up a light curve which arrivals and to get things set up observation. Detailed instructions shows the variation in activity for the day, which was more are given in the Section guide, so between different comets. Hale- reminiscent of May than here I concentrated on what is Bopp has demonstrated that February. The University now done with the observations and comets can stray up to a offers an undergraduate why it is important to be accurate magnitude from the mean curve, astronomy course and lectures are and objective when making them.
    [Show full text]
  • Ice& Stone 2020
    Ice & Stone 2020 WEEK 51: DECEMBER 13-19 Presented by The Earthrise Institute # 51 Authored by Alan Hale COMET OF THE WEEK: The Great Comet of 1680 Perihelion: 1680 December 18.49, q = 0.006 AU The Great Comet of 1680 over Rotterdam in The Netherlands, during late December 1680 as painted by the Dutch artist Lieve Verschuier. This particular comet was undoubtedly one of the brightest comets of the 17th Century, but it is also one of the most important comets in history from a scientific perspective, and perhaps even from the perspective of overall human history. While there were certainly plenty of superstitions attached to the comet’s appearance, the scientific investigations made of it were among the beginnings of the era in European history we now call The Enlightenment, and indeed, in a sense the Great Comet of 1680 can perhaps be considered as one of the sparks of that era. The significance began with the comet’s discovery, which was made on the morning of November 14, 1680, by a German astronomer residing in Coburg, Gottfried Kirch – the first comet ever to be discovered by means of a telescope. It was already around 4th magnitude at that time, and located near the star Regulus in the constellation Leo; from that point it traveled eastward and brightened rapidly, being closest to Earth (0.42 AU) on November 30. By that time it was a conspicuous naked-eye object with a tail 20 to 30 degrees long, and it remained visible for another week before disappearing into morning twilight.
    [Show full text]
  • The Minor Planet Bulletin 44 (2017) 142
    THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 44, NUMBER 2, A.D. 2017 APRIL-JUNE 87. 319 LEONA AND 341 CALIFORNIA – Lightcurves from all sessions are then composited with no TWO VERY SLOWLY ROTATING ASTEROIDS adjustment of instrumental magnitudes. A search should be made for possible tumbling behavior. This is revealed whenever Frederick Pilcher successive rotational cycles show significant variation, and Organ Mesa Observatory (G50) quantified with simultaneous 2 period software. In addition, it is 4438 Organ Mesa Loop useful to obtain a small number of all-night sessions for each Las Cruces, NM 88011 USA object near opposition to look for possible small amplitude short [email protected] period variations. Lorenzo Franco Observations to obtain the data used in this paper were made at the Balzaretto Observatory (A81) Organ Mesa Observatory with a 0.35-meter Meade LX200 GPS Rome, ITALY Schmidt-Cassegrain (SCT) and SBIG STL-1001E CCD. Exposures were 60 seconds, unguided, with a clear filter. All Petr Pravec measurements were calibrated from CMC15 r’ values to Cousins Astronomical Institute R magnitudes for solar colored field stars. Photometric Academy of Sciences of the Czech Republic measurement is with MPO Canopus software. To reduce the Fricova 1, CZ-25165 number of points on the lightcurves and make them easier to read, Ondrejov, CZECH REPUBLIC data points on all lightcurves constructed with MPO Canopus software have been binned in sets of 3 with a maximum time (Received: 2016 Dec 20) difference of 5 minutes between points in each bin.
    [Show full text]
  • Secular Light Curves of Comets, II: 133P
    1 C:\Atlas2\133Pv9.doc\060704 / Version 9.0 Icarus MS Number I09469 Accepted for publication in Icarus, 2006 07 21 “Secular Light Curves of Comets, II: 133P/Elst-Pizarro, an Asteroidal Belt Comet” Ignacio Ferrín, Center for Fundamental Physics, University of the Andes, Mérida, VENEZUELA. [email protected] Received October11th, 2005 , Accepted July 21st, 2006 No. Of Pages 44 No. Of Figures 10 No. Of Tables 5 No. Of References 163 - The observations described in this work were carried out at the National Observatory of Venezuela (ONV), managed by the Center for Research in Astronomy (CIDA), for the Ministry of Science and Technology. 2 Proposed Running Head: “ Secular Light Curve of Comet 133P/Elst-Pizarro “ Name and address for Editorial Correspondence: Dr. Ignacio Ferrín, Apartado 700, Mérida 5101-A, VENEZUELA South America Email address: [email protected] 3 Abstract We present the secular light curve (SLC) of 133P/Elst-Pizarro, and show ample and sufficient evidence to conclude that it is evolving into a dormant phase. The SLC provides a great deal of information to characterize the object, the most important being that it exhibits outburst-like activity without a corresponding detectable coma. 133P will return to perihelion in July of 2007 when some of our findings may be corroborated. The most significant findings of this investigation are: (1) We have compiled from 127 literature references, extensive databases of visual colors (37 comets), rotational periods and peak-to-valley amplitudes (64 comets). 2-Dimensional plots are created from these databases, which show that comets do not lie on a linear trend but in well defined areas of these phase spaces.
    [Show full text]
  • Cometary Impactors on the TRAPPIST-1 Planets Can Destroy All Planetary Atmospheres and Rebuild Secondary Atmospheres on Planets F, G, H
    Mon. Not. R. Astron. Soc. 000, 1{28 (2002) Printed 4 July 2018 (MN LATEX style file v2.2) Cometary impactors on the TRAPPIST-1 planets can destroy all planetary atmospheres and rebuild secondary atmospheres on planets f, g, h Quentin Kral,1? Mark C. Wyatt,1 Amaury H.M.J. Triaud,1;2 Sebastian Marino, 1 Philippe Th´ebault, 3 Oliver Shorttle, 1;4 1Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK 2School of Physics & Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK 3LESIA-Observatoire de Paris, UPMC Univ. Paris 06, Univ. Paris-Diderot, France 4Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK Accepted 1928 December 15. Received 1928 December 14; in original form 1928 October 11 ABSTRACT The TRAPPIST-1 system is unique in that it has a chain of seven terrestrial Earth-like planets located close to or in its habitable zone. In this paper, we study the effect of potential cometary impacts on the TRAPPIST-1 planets and how they would affect the primordial atmospheres of these planets. We consider both atmospheric mass loss and volatile delivery with a view to assessing whether any sort of life has a chance to develop. We ran N-body simulations to investigate the orbital evolution of potential impacting comets, to determine which planets are more likely to be impacted and the distributions of impact velocities. We consider three scenarios that could potentially throw comets into the inner region (i.e within 0.1au where the seven planets are located) from an (as yet undetected) outer belt similar to the Kuiper belt or an Oort cloud: Planet scattering, the Kozai-Lidov mechanism and Galactic tides.
    [Show full text]
  • The Minor Planet Bulletin
    THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 38, NUMBER 2, A.D. 2011 APRIL-JUNE 71. LIGHTCURVES OF 10452 ZUEV, (14657) 1998 YU27, AND (15700) 1987 QD Gary A. Vander Haagen Stonegate Observatory, 825 Stonegate Road Ann Arbor, MI 48103 [email protected] (Received: 28 October) Lightcurve observations and analysis revealed the following periods and amplitudes for three asteroids: 10452 Zuev, 9.724 ± 0.002 h, 0.38 ± 0.03 mag; (14657) 1998 YU27, 15.43 ± 0.03 h, 0.21 ± 0.05 mag; and (15700) 1987 QD, 9.71 ± 0.02 h, 0.16 ± 0.05 mag. Photometric data of three asteroids were collected using a 0.43- meter PlaneWave f/6.8 corrected Dall-Kirkham astrograph, a SBIG ST-10XME camera, and V-filter at Stonegate Observatory. The camera was binned 2x2 with a resulting image scale of 0.95 arc- seconds per pixel. Image exposures were 120 seconds at –15C. Candidates for analysis were selected using the MPO2011 Asteroid Viewing Guide and all photometric data were obtained and analyzed using MPO Canopus (Bdw Publishing, 2010). Published asteroid lightcurve data were reviewed in the Asteroid Lightcurve Database (LCDB; Warner et al., 2009). The magnitudes in the plots (Y-axis) are not sky (catalog) values but differentials from the average sky magnitude of the set of comparisons. The value in the Y-axis label, “alpha”, is the solar phase angle at the time of the first set of observations. All data were corrected to this phase angle using G = 0.15, unless otherwise stated.
    [Show full text]
  • Kuiper Belt and Comets: an Observational Perspective
    Kuiper Belt and Comets: An Observational Perspective David Jewitt1 1. Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 [email protected] Note to the Reader These notes outline a series of lectures given at the Saas Fee Winter School held in Murren, Switzerland, in March 2005. As I see it, the main aim of the Winter School is to communicate (especially) with young people in order to inflame their interests in science and to encourage them to see ways in which they can contribute and maybe do a better job than we have done so far. With this in mind, I have written up my lectures in a less than formal but hopefully informative and entertaining style, and I have taken a few detours to discuss subjects that I think are important but which are usually glossed-over in the scientific literature. 1 Preamble Almost exactly 400 years ago, planetary astronomy kick-started the era of modern science, with a series of remarkable discoveries by Galileo concerning the surfaces of the Moon and Sun, the phases of Venus, and the existence and motions of Jupiter’s large satellites. By the early 20th century, the fo- cus of astronomical attention had turned to objects at larger distances, and to questions of galactic structure and cosmological interest. At the start of the 21st century, the tide has turned again. The study of the Solar system, particularly of its newly discovered outer parts, is one of the hottest topics in modern astrophysics with great potential for revealing fundamental clues about the origin of planets and even the emergence of life.
    [Show full text]
  • ABSTRACT Title of Dissertation: WATER in the EARLY SOLAR
    ABSTRACT Title of Dissertation: WATER IN THE EARLY SOLAR SYSTEM: INFRARED STUDIES OF AQUEOUSLY ALTERED AND MINIMALLY PROCESSED ASTEROIDS Margaret M. McAdam, Doctor of Philosophy, 2017. Dissertation directed by: Professor Jessica M. Sunshine, Department of Astronomy This thesis investigates connections between low albedo asteroids and carbonaceous chondrite meteorites using spectroscopy. Meteorites and asteroids preserve information about the early solar system including accretion processes and parent body processes active on asteroids at these early times. One process of interest is aqueous alteration. This is the chemical reaction between coaccreted water and silicates producing hydrated minerals. Some carbonaceous chondrites have experienced extensive interactions with water through this process. Since these meteorites and their parent bodies formed close to the beginning of the Solar System, these asteroids and meteorites may provide clues to the distribution, abundance and timing of water in the Solar nebula at these times. Chapter 2 of this thesis investigates the relationships between extensively aqueously altered meteorites and their visible, near and mid-infrared spectral features in a coordinated spectral-mineralogical study. Aqueous alteration is a parent body process where initially accreted anhydrous minerals are converted into hydrated minerals in the presence of coaccreted water. Using samples of meteorites with known bulk properties, it is possible to directly connect changes in mineralogy caused by aqueous alteration with spectral features. Spectral features in the mid-infrared are found to change continuously with increasing amount of hydrated minerals or degree of alteration. Building on this result, the degrees of alteration of asteroids are estimated in a survey of new asteroid data obtained from SOFIA and IRTF as well as archived the Spitzer Space Telescope data.
    [Show full text]
  • Astronomical Observations of Volatiles on Asteroids
    Astronomical Observations of Volatiles on Asteroids Andrew S. Rivkin The Johns Hopkins University Applied Physics Laboratory Humberto Campins University of Central Florida Joshua P. Emery University of Tennessee Ellen S. Howell Arecibo Observatory/USRA Javier Licandro Instituto Astrofisica de Canarias Driss Takir Ithaca College and Planetary Science Institute Faith Vilas Planetary Science Institute We have long known that water and hydroxyl are important components in meteorites and asteroids. However, in the time since the publication of Asteroids III, evolution of astronomical instrumentation, laboratory capabilities, and theoretical models have led to great advances in our understanding of H2O/OH on small bodies, and spacecraft observations of the Moon and Vesta have important implications for our interpretations of the asteroidal population. We begin this chapter with the importance of water/OH in asteroids, after which we will discuss their spectral features throughout the visible and near-infrared. We continue with an overview of the findings in meteorites and asteroids, closing with a discussion of future opportunities, the results from which we can anticipate finding in Asteroids V. Because this topic is of broad importance to asteroids, we also point to relevant in-depth discussions elsewhere in this volume. 1 Water ice sublimation and processes that create, incorporate, or deliver volatiles to the asteroid belt 1.1 Accretion/Solar system formation The concept of the “snow line” (also known as “water-frost line”) is often used in discussing the water inventory of small bodies in our solar system. The snow line is the heliocentric distance at which water ice is stable enough to be accreted into planetesimals.
    [Show full text]