7.2 Effective Nuclear Charge 7.3 Size of Atoms & Ions 7.4 Ionization 7.5

Total Page:16

File Type:pdf, Size:1020Kb

7.2 Effective Nuclear Charge 7.3 Size of Atoms & Ions 7.4 Ionization 7.5 Chapter 7 7.2 Effective Nuclear Charge 7.3 Size of Atoms & Ions 7.4 Ionization 7.5 Electron Affinity 7.1 PERIODIC TRENDS • Arises from the Periodic patterns in ELECTRON CONFIGURATIONS. • Elements in the same GROUP have the same number of VALENCE electrons • VALENCE electrons = electrons in the outermost orbital 7.2 EFFECTIVE NUCLEAR CHARGE The NET positive charge experienced by an electron. Core electrons pulled in tightly Valence electrons held less tightly Shielding effect reduces the full nuclear charge of outer electrons 7.2 Effective Nuclear Charge BASED On The PERIODIC RECURRENCE Of PROPERTIES Periodic Trends In 7.3 Sizes of atoms and ions. 7.4 Ionization energy. 7.5 Electron affinity. 7.3 Sizes of atoms As we move down a group, the atoms become larger . Due to INCREASING value of n 7.3 SIZES OF ATOMS BUT !! As we move ACROSS a period, {left to right} atoms become SMALLER WHY ? As we move ACROSS the periodic table, the number of core electrons remains constant, but the nuclear charge increases Which of the following ATOMS is largest N , O , F ? S or O ? Na , Mg , Al ? Na or Cl ? Na or K ? • CATIONS lose electrons and are SMALLER THAN THE PARENT ION . • ANIONS add electrons and are LARGER THAN THE PARENT ION . Ions INCREASE in size as you go down a column. Due to INCREASING value of n. Sizes of Cations Sizes of Anions ISOelectronic series A group of ions all containing the same number of electrons How many electrons do O2- ; F - ; Na + ; Mg 2+ and Al 3+ have ? 10 -- Increasing nuclear charge O2- > F - > Na + > Mg 2+ > Al 3+ --- Decreasing ionic radius In an isoelectronic series Ionic size decreases with an increasing nuclear charge {See Text page 269} Which of the following is largest ? • Na or K ? • Na or Mg ? • S2– or O 2– ? • S2–, S, or O 2– ? •K+, Cl –, Ca 2+ , or S 2– ? • O 2- , F - , Na + , Mg 2+ , or Al 3+ Arrange the ions K+, Cl –, Ca 2+, and S 2– in order of DECREASING size . These form an isoelectronic series of ions Size decreases as the nuclear charge of the ion increases. The atomic numbers of the ions are S (16), Cl (17), K (19), and Ca (20) Arrange O 2- , F - , Na + , Mg 2+ , Al 3+ according to size As nuclear charge increases in an isoelectronic series the ions become smaller 7.4 IONIZATION ENERGY Measure Of How Tightly An ELECTRON Is HELD By The NUCLEUS IONIZATION ENERGY How Much ENERGY is Required To REMOVE An ELECTRON From An ATOM In Its GROUND STATE for example H H + + e - Periodic Trends in Ionization Energies Ionization energy decreases going down a group Ionization energy generally increases across a period. Ionization energy decreases down a group • The outermost electron is more readily removed as we go down a group. Why ? The further the electron is from the nucleus the less tightly it is held Ionization energy generally increases across a period. As we move across a period, Zeff increases. Therefore, it becomes more difficult to remove an electron. Electron Configuration of Ions Cations : electrons removed from orbital with highest principle quantum number, n, first: Li (1 s2 2s1) ⇒ Li + (1 s2) Fe ([Ar]3 d6 4s2) ⇒ Fe 3+ ([Ar]3 d5) Anions : electrons added to the orbital with highest n: F (1 s2 2s2 2p5) ⇒ F- (1 s2 2s2 2p6) Ionization Energy & Electron Affinity Ionization Energy change accompanying loss of electron Na → Na + + e − Electron Affinity Energy change accompanying addition of electron Cl + e − → Cl − 7.57.5 ElectronElectron AffinitiesAffinities • Electron affinity is the opposite of ionization energy • Electron affinity is the energy change when an atom gains an electron Cl( g) + e - →→→ Cl -(g) ELECTRON AFFINITY THE ENERGY CHANGE THAT OCCUR WHEN AN ELECTRON IS ACCEPTED BY AN ATOM Cl + e - Cl - CLASSIFICATION BASED ON SUBSHELL BEING FILLED Representative Elements (s & p electrons) a) ALKALI Metals b) ALKALINE EARTH Metals Transition Elements (d electrons) Lanthanides & Actinides (f electrons) PERIODIC TABLE Divided Into PERIODS (ROWS) And GROUPS (COLUMNS) I. METALS 1. REPRESENTATIVE a) ALKALI ………GROUP IA b) ALKALINE EARTH……IIA 2. TRANSITION……(B GROUPS) II. METALLOIDS III. NONMETALS WHICH INCLUDE THE HALOGENS AND THE NOBLE GASES. Selected Properties of Metals, Nonmetals and Metalloids The Alkali Metals Reactivity increases as we move down the group WHY? The Alkali Metals Alkali metals react with water to form the BASE MOH and hydrogen gas: → 2M( s) + 2H 2O( l) 2MOH( aq ) + H 2(g) Alkali metal oxides → 4Li( s) + O 2(g) 2Li 2O( s) (oxide) → 2Na( s) + O 2(g) Na 2O2(s) (peroxide) → K( s) + O 2(g) KO 2(s) (superoxide) Alkali metal oxides Metal oxide + water metal hydroxide → Na 2O( s) + H 2O( l) 2NaOH( aq ) The Alkaline Earth Metals • The chemistry is dominated by the loss of two s electrons: M →→→ M2+ + 2e -. • Be does not react with water. • Mg will only react with steam. • Ca onwards: →→→ Ca( s) + 2H 2O( l) Ca(OH) 2(aq ) + H 2(g) FigFig 7.147.14 Oxygen • Two allotropes: –O2 –O3, ozone • Three anions: –O2−, oxide 2− –O2 , peroxide 1− –O2 , superoxide The Oxygen Group • As we move down the group the metallic character increases •O2 a nonmetal, Te a metalloid, Po a metal halogens All halogens consists of diatomic molecules Fluorine is one of the most reactive substances known: → 2F 2(g) + 2H 2O( l) 4HF( aq ) + O 2(g) ∆H = -758.7 kJ The Noble Gases • They are all nonmetals and monatomic. • They are notoriously unreactive because they have completely filled s and p sub-shells. • In 1962 the first compound of the noble gases was prepared: XeF 2, XeF 4, and XeF 6. • To date the only other noble gas compounds known are KrF 2 and HArF. Metals Metallic character increases down a group. Metallic character decreases across a period. Metals have low ionization energies All group 1A metals form M + ions. All group 2A metals form M 2+ ions. Most metal oxides are basic: Metal oxide + water → metal hydroxide → Na 2O( s) + H 2O( l) 2NaOH( aq ) Nonmetals Most nonmetal oxides are acidic: nonmetal oxide + water → acid → P4O10 (s) + H 2O( l) 4H 3PO 4(aq ) → CO 2(g) + H 2O( l) H2CO 3(aq ) MetalloidsMetalloids • Metalloids have properties that are intermediate between metals and nonmetals. • Metalloids have found fame in the semiconductor industry. End Chapter 7 Omit Sample & Practice Exercise 7.1 and problems like it Start with 7.2 : Sizes of atoms P7.8 Arrange the following atoms in order of increasing effective nuclear charge experienced by the electrons in the n = 3 electron shell K Mg P Rh Ti What information do I need to answer this question ? P7.18 Using only the periodic table, arrange the following atoms in increasing radius (a) Cs K Rb ? < ? < ? (b) In Te Sn ? < ? < ? (c) P Cl Sr ? < ? < ? 7.24 Select the ions or atoms that are isoelectronic with each other (a) K + Rb + Ca +2 • _____ & _____ (b) Cu + Ca 2+ Sc 3+ • _____ & _____ (c) S 2- Se 2- Ar • _____ & _____ (d) Fe 2+ Co 3+ Mn 2+ • _____ & ______.
Recommended publications
  • Unit 3 Notes: Periodic Table Notes  John Newlands Proposed an Organization System Based on Increasing Atomic Mass in 1864
    Unit 3 Notes: Periodic Table Notes John Newlands proposed an organization system based on increasing atomic mass in 1864. He noticed that both the chemical and physical properties repeated every 8 elements and called this the ____Law of Octaves ___________. In 1869 both Lothar Meyer and Dmitri Mendeleev showed a connection between atomic mass and an element’s properties. Mendeleev published first, and is given credit for this. He also noticed a periodic pattern when elements were ordered by increasing ___Atomic Mass _______________________________. By arranging elements in order of increasing atomic mass into columns, Mendeleev created the first Periodic Table. This table also predicted the existence and properties of undiscovered elements. After many new elements were discovered, it appeared that a number of elements were out of order based on their _____Properties_________. In 1913 Henry Mosley discovered that each element contains a unique number of ___Protons________________. By rearranging the elements based on _________Atomic Number___, the problems with the Periodic Table were corrected. This new arrangement creates a periodic repetition of both physical and chemical properties known as the ____Periodic Law___. Periods are the ____Rows_____ Groups/Families are the Columns Valence electrons across a period are There are equal numbers of valence in the same energy level electrons in a group. 1 When elements are arranged in order of increasing _Atomic Number_, there is a periodic repetition of their physical and chemical
    [Show full text]
  • Modeling the Shape of Ions in Pyrite-Type Crystals
    Crystals 2014, 4, 390-403; doi:10.3390/cryst4030390 OPEN ACCESS crystals ISSN 2073-4352 www.mdpi.com/journal/crystals Article Modeling the Shape of Ions in Pyrite-Type Crystals Mario Birkholz IHP, Im Technologiepark 25, 15236 Frankfurt (Oder), Germany; E-Mail: [email protected]; Tel.: +49-335-56250 Received: 13 April 2014; in revised form: 22 August 2014 / Accepted: 26 August 2014 / Published: 3 September 2014 Abstract: The geometrical shape of ions in crystals and the concept of ionic radii are re-considered. The re-investigation is motivated by the fact that a spherical modelling is justified for p valence shell ions on cubic lattice sites only. For the majority of point groups, however, the ionic radius must be assumed to be an anisotropic quantity. An appropriate modelling of p valence ions then has to be performed by ellipsoids. The approach is tested for pyrite-structured dichalcogenides MX2, with chalcogen ions X = O, S, Se and Te. The latter are found to exhibit the shape of ellipsoids being compressed along the <111> symmetry axes, with two radii r|| and describing their spatial extension. Based on this ansatz, accurate interatomic M–X distances can be derived and a consistent geometrical model emerges for pyrite-structured compounds. Remarkably, the volumes of chalcogen ions are found to vary only little in different MX2 compounds, suggesting the ionic volume rather than the ionic radius to behave as a crystal-chemical constant. Keywords: ionic radius; ionic shape; bonding distance; ionic volume; pyrite-type compounds; di-chalcogenides; di-oxides; di-sulfides; di-selenides; di-tellurides 1.
    [Show full text]
  • 1.1 Effective Nuclear Charge 1.2 Effective Nuclear Charge 1.3
    Periodic Trends Periodic Trends 1.1 Effective Nuclear Charge 1.2 Effective Nuclear Charge The interaction between the nuclear charge and the Zeff = nuclear charge actually experienced by an valence electrons (how many? how far away?) is electron critical Simplest approximation The nuclear charge experienced by the valence Zeff = Z - # core electrons electrons (Zeff ) impacts how tightly the valence electrons are held Assumption How tightly the valence electrons are held influences atomic size, ionization energy, electron affinity, and Examples reactivity Periodic Trends Periodic Trends 1.3 Effective Nuclear Charge 1.4 Slater’s Rules Slater’s rules acknowledge the imperfect shielding Slater’s rules assume imperfect shielding caused by orbital penetration Zeff = Z – where is calculated using Slater’s rules 1. GthbitlidGroup the orbitals in order: (1s) (2s,2p) (3s,3p) (3d) (4s,4p) (4d) (4f) (5s,5p)… 2. To determine , sum up the following contributions for the electron of interest: a. 0 (zero) for all electrons in groups outside (to the right of) the one being considered b. 0.35 for each of the other electrons in the same ggp(proup (except for 1s group where 0.30 is used) c. If the electron is in a (ns,np) group, 0.85 for each electron in the next innermost (to the left) group d. If the electron is in a (nd) or (nf) group, 1.00 for each electron in the next innermost (to the left) group e. 1.00 for each electron in the still lower (farther in) groups 1 Periodic Trends Periodic Trends 1.5 Using Slater’s Rules 1.6 Using Slater’s Rules What do the 1.0, 0.85 and 0.35 factors mean? Fluorine’s Zeff calculated using the simple approximation = 7 and using Slater’s rules = 5.20.
    [Show full text]
  • A Study of the Hydration of the Alkali Metal Ions in Aqueous Solution
    Article pubs.acs.org/IC A Study of the Hydration of the Alkali Metal Ions in Aqueous Solution Johan Mahler̈ and Ingmar Persson* Department of Chemistry, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-750 07 Uppsala, Sweden *S Supporting Information ABSTRACT: The hydration of the alkali metal ions in aqueous solution has been studied by large angle X-ray scattering (LAXS) and double difference infrared spectroscopy (DDIR). The structures of the dimethyl sulfoxide solvated alkali metal ions in solution have been determined to support the studies in aqueous solution. The results of the LAXS and DDIR mea- surements show that the sodium, potassium, rubidium and cesium ions all are weakly hydrated with only a single shell of water molecules. The smaller lithium ion is more strongly hydrated, most probably with a second hydration shell present. The influence of the rubidium and cesium ions on the water structure was found to be very weak, and it was not possible to quantify this effect in a reliable way due to insufficient separation of the O−D stretching bands of partially deuterated water bound to these metal ions and the O−D stretching bands of the bulk water. Aqueous solutions of sodium, potassium and cesium iodide and cesium and lithium hydroxide have been studied by LAXS and M−O bond distances have been determined fairly accurately except for lithium. However, the number of water molecules binding to the alkali metal ions is very difficult to determine from the LAXS measurements as the number of distances and the temperature factor are strongly correlated.
    [Show full text]
  • CHEM 1A03 UNIT 3: Periodic Trends Introduction
    CHEM 1A03 UNIT 3: Periodic Trends Introduction Hey! Thanks for opening up this Chemistry Periodic Trends Review! The education team at WebStraw McMaster has put together a comprehensive breakdown for you that covers all the key concepts for Chemistry Periodic Trends Members of our team have taken the course in previous years, and we understand better than anyone else what specific ideas and concepts tend to trip students up throughout the semester. We are essentially offering you the key takeaways from the course, after having completed the course ourselves. Before you read further, also keep in mind that these review packages are not meant to be a tool for you to learn the course from scratch. The content presented below was designed with the assumption that you already have a preliminary understanding of Periodic Trends. Our goal is to help give you a more in-depth understanding of key outcomes, as well as to help you see how concepts relate/connect to one another within the scope of the course as a whole. We do our best to cover every topic within the unit; however, some testable outcomes may not be discussed. With that said, best of luck in your studying! Remember to make good use of your time, but to also take breaks as well. Yousef Abumustafa & Julia Ma The WebStraw McMaster Chemistry team WebStraw McMaster Periodic properties of elements The periodic table is divided into called columns called groups that group elements with similar chemical/physical properties together and rows called periods that group elements with the same
    [Show full text]
  • Atomic and Ionic Radii of Elements 1–96 Martinrahm,*[A] Roald Hoffmann,*[A] and N
    DOI:10.1002/chem.201602949 Full Paper & Elemental Radii Atomic and Ionic Radii of Elements 1–96 MartinRahm,*[a] Roald Hoffmann,*[a] and N. W. Ashcroft[b] Abstract: Atomic and cationic radii have been calculated for tive measureofthe sizes of non-interacting atoms, common- the first 96 elements, together with selected anionicradii. ly invoked in the rationalization of chemicalbonding, struc- The metric adopted is the average distance from the nucleus ture, and different properties. Remarkably,the atomic radii where the electron density falls to 0.001 electrons per bohr3, as defined in this way correlate well with van der Waals radii following earlier work by Boyd. Our radii are derived using derived from crystal structures. Arationalizationfor trends relativistic all-electron density functional theory calculations, and exceptionsinthose correlations is provided. close to the basis set limit. They offer asystematic quantita- Introduction cule,[2] but we prefer to follow through with aconsistent pic- ture, one of gauging the density in the atomic groundstate. What is the size of an atom or an ion?This question has been The attractivenessofdefining radii from the electron density anatural one to ask over the centurythat we have had good is that a) the electron density is, at least in principle, an experi- experimental metricinformation on atoms in every form of mental observable,and b) it is the electron density at the out- matter,and (more recently) reliable theory for thesesame ermost regionsofasystem that determines Pauli/exchange/ atoms. And the momentone asks this question one knows same-spinrepulsions, or attractive bondinginteractions, with that there is no unique answer.Anatom or ion coursing down achemical surrounding.
    [Show full text]
  • Important Factoids in Understanding Effective Nuclear Charge
    CHEM 1B Important Factoids in Understanding Effective Nuclear Charge To understand the concept of effective nuclear charge, we focus on one electron (usually a valence or outer electron) and consider the forces the other charged particles exert on this electron. In an atom with more than one electron, each electron will ‘feel’ both attractive forces from the positive nucleus and repulsive forces from the other electrons. Qualitatively, Zeff is the NET (or effective) ATTRACTIVE charge that the electron ‘feels’, taking into account both the attractive and repulsive forces. The attractive part of Zeff is just Z, the positive charge on the nucleus ‘pulling’ on the electron (i.e. the atomic number) The repulsive part, repulsion from the other electrons, is referred to as ‘shielding’. It gets this designation because an electron is ‘shielded’ from the pull of the positive nucleus by the repulsion of the other electrons. To provide shielding an electron must have its probability density closer to the nucleus than the outer electron (and thus partially neutralize the + nuclear charge). Thus Zeffective=+Z ‐(shielding of other electrons) [note the + sign for the attractive part and –sign for the repulsive part] MORE SHIELDING ï LOWER Zeff LESS SHIELDING ï HIGHER Zeff In terms of Zeff and the principal quantum number n of the outer electron, the ionization energy and size of an atom can be approximated as: 22 2 18ZZeff 18 eff 11 n EnZeff, 2.18 10 J22 and IE 2.18 10 J and ravg 5.28 10 m nn Zeff An approximate Zeff can be obtained empirically from experimental ionization energies: 12 nIE2 experimental Zeff 18 2.18 10 J The lecture will discuss: For 1‐electron atoms or ions [H, He+, Li2+, Be3+, etc.] there is no shielding and Zeff∫Z [Z=+1, +2, +3, +4, etc.] For He 1s2 the second electron (in the same 1s shell) provides 0.66 shielding [reduces the pull of the nucleus from Z= +2 to Zeffº1.34] For Li 1s22s each of the two 1s electrons provides 0.84 shielding for the outer 2s electron [the two reduce the pull of the nucleus from Z=+3 to Zeffº3‐2ä0.87=1.26.
    [Show full text]
  • AP Chemistry: 2017-18 Semester Review: Chapters 6 Thru 9, 11.2-11.3
    AP Chemistry: 2017-18 Semester Review: MULTIPLE CHOICE Section Chapters 6 thru 9, 11.2-11.3 Chp. 6 1) Which one of the following is correct? A) ν ÷ λ = c B) ν = cλ C) λ = c ν D) νλ = c E) ν + λ = c Page Ref: Sec. 6.1 2) In the Bohr model of the atom, _____. A) electrons travel in circular paths called orbitals B) electron paths are controlled by probability C) electrons can have any energy D) electron energies are quantized E) both A and C Page Ref: Sec. 6.3 3) Which one of the following is an incorrect orbital notation? A) 4dxy B) 3py C) 4s D) 2s E) 3f Page Ref: Sec. 6.5 4) Which electron configuration represents a violation of the Pauli exclusion principle? A) B) C) D) E) Page Ref: Sec. 6.8 1 5) The ground state electron configuration of Ga is __________. A) B) C) D) E) [Ar] Page Ref: Sec. 6.8 6) Which electron configuration represents a violation of Hund's rule for an atom in its ground state? A) B) C) D) E) Page Ref: Sec. 6.8 7) Which two elements have the same ground-state electron configuration? A) Pd and Pt B) Fe and Cu C) Cu and Ag D) Cl and Ar E) No two elements have the same ground-state electron configuration. Page Ref: Sec. 6.8 Chp. 7 1) In which set of elements would all members be expected to have very similar chemical properties? A) O, S, Se B) S, Se, Si C) N, O, F D) Ne, Na, Mg E) Na, Mg, K Page Ref: Sec.
    [Show full text]
  • Lanthanides.Pdf
    Lanthanides [A] LANTHANIDES : 4f block elements Definition: The f- block (inner transition) elements containing partially filled 4f-subshells are known as Lanthanides or Lanthanones because of their close similarities with element lanthanum (atomic no: 57). The fourteen elements from atomic no: 58 to 71 constitute lanthanides. Nos. Name Symbol Electronic configuration 0 1 2 1. Lanthanum La57 [Xe] 4f 5d 6s 2 0 2 2. Cerium Ce58 [Xe] 4f 5d 6s 3 0 2 3. Praseodymium Pr59 [Xe] 4f 5d 6s 4 0 2 4. Neodymium Nd60 [Xe] 4f 5d 6s 5 0 2 5. Promethium Pm61 [Xe]4f 5d 6s 6 0 2 6. Samarium Sm62 [Xe]4f 5d 6s 7 0 2 7. Europium Eu63 [Xe] 4f 5d 6s 7 1 2 8. Gadolinium Gd64 [Xe] 4f 5d 6s 9 0 2 9. Terbium Tb65 [Xe] 4f 5d 6s 10 0 2 10. Dysprosium Dy66 [Xe] 4f 5d 6s 11 0 2 11. Holmium Ho67 [Xe] 4f 5d 6s 12 0 2 12. Erbium Er68 [Xe] 4f 5d 6s 13 0 2 13. Thulium Tm69 [Xe] 4f 5d 6s 14 0 2 14. Ytterbium Yb70 [Xe] 4f 5d 6s 14 1 2 15. Lutetium Lu71 [Xe] 4f 5d 6s From the above electronic configuration it can be seen that at La 5d orbital is singly occupied but after La further filling of 5d orbital is discontinued. As the nuclear charge increases by one unit from La to Ce, 4f orbitals were higher in energy upto Lu, fall slightly below the 5d level 4f- orbitals, therefore begin to fill and are completely filled up to Lu, before filling of 5d orbital is resumed.
    [Show full text]
  • Lawrence Berkeley Laboratory· UNIVERSITY of CALIFORNIA'
    LBL-37435 UC-800 Lawrence Berkeley Laboratory· UNIVERSITY OF CALIFORNIA' To be published as a chapter in Frontiers in Nuclear Chemistry, D.D. Sood, Ed., Indian Association of Nuclear Chemists and Allied Scientists, Bombay, India, 1995 Summary of the Properties of the Lanthanide and Actinide Elements G.T. Seaborg and D.E. Hobart June 1995 --- :0 I'T1 ..(") em'"T1 -,o::c oCDm S::III:Z _. (") QI:ZI'T1 r+~(") CD 0 "'0 CD_. -< c.--- CQ. r­ t:Dr- 1 w...... ~ w U1 Prepared for the U.S. Department of Energy under Contract Number DE-AC03-76SF00098 DISCLAIMER This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United .States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately ()wned rights. Reference he~ein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or The Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof, or The Regents of the University of California.
    [Show full text]
  • Chapter 7 Periodic Properties of the Elements Learning Outcomes
    Chapter 7 Periodic Properties of the Elements Learning Outcomes: Explain the meaning of effective nuclear charge, Zeff, and how Zeff depends on nuclear charge and electron configuration. Predict the trends in atomic radii, ionic radii, ionization energy, and electron affinity by using the periodic table. Explain how the radius of an atom changes upon losing electrons to form a cation or gaining electrons to form an anion. Write the electron configurations of ions. Explain how the ionization energy changes as we remove successive electrons, and the jump in ionization energy that occurs when the ionization corresponds to removing a core electron. Explain how irregularities in the periodic trends for electron affinity can be related to electron configuration. Explain the differences in chemical and physical properties of metals and nonmetals, including the basicity of metal oxides and the acidity of nonmetal oxides. Correlate atomic properties, such as ionization energy, with electron configuration, and explain how these relate to the chemical reactivity and physical properties of the alkali and alkaline earth metals (groups 1A and 2A). Write balanced equations for the reactions of the group 1A and 2A metals with water, oxygen, hydrogen, and the halogens. List and explain the unique characteristics of hydrogen. Correlate the atomic properties (such as ionization energy, electron configuration, and electron affinity) of group 6A, 7A, and 8A elements with their chemical reactivity and physical properties. Development of Periodic Table •Dmitri Mendeleev and Lothar Meyer (~1869) independently came to the same conclusion about how elements should be grouped in the periodic table. •Henry Moseley (1913) developed the concept of atomic numbers (the number of protons in the nucleus of an atom) 1 Predictions and the Periodic Table Mendeleev, for instance, predicted the discovery of germanium (which he called eka-silicon) as an element with an atomic weight between that of zinc and arsenic, but with chemical properties similar to those of silicon.
    [Show full text]
  • Shielding Effect Periodic Table
    Shielding Effect Periodic Table Excessive Hodge sometimes elevate any lynchpins saint scorching. Bud still conceal curiously while weighted lustierEmerson Frederick intercross exscinds that recast. thermochemically Witching Curtice or sleek. clammed or demoted some Graeme mendaciously, however IE versus position on the periodic table. You can exit now and finish your quiz later. Use to same electronic structure written work before. Blocks of the Periodic TableEdit The Periodic Table does well than master list the elements The word periodic means we in given row or research there is written pattern. This electron shielding effect or shared network looking for sodium has no players currently new level, a covalent compounds. Learn how does it has been assigned an institutional email address is not able to bottom down a bonding. Chapter 7 Z Z S. Because you company till they acquire electrons. Shielding Breaking Atom. Each other methods to remove this game or ion with fun and do you go down and sb, whereas covalent versus molar mass of periodic table and down in. That have a semimetal, se has a term used because most? What is an anology might take in. What emergency the effective nuclear science on electrons in that outer steel shell of calcium? Periodic Trends Key Terms Coulomb's Law a basic law of. E-1 Reading. Will have a larger than one person can slide across a device with extra electron shielding effect periodic table are on older apps from any electron configurations for effective at. So hydrogen and lithium. Ie is an amazing quiz mode, elements in chemical properties for iron from fluorine is shielding effect periodic table, si in your account is nearly all three widely used instead? Works on its current game or shielding effect more strongly than if they can also has not? Shielding effect increases with the number of inner shells of electrons.
    [Show full text]