Symmetric Representation Rings Are Λ-Rings
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Complete Objects in Categories
Complete objects in categories James Richard Andrew Gray February 22, 2021 Abstract We introduce the notions of proto-complete, complete, complete˚ and strong-complete objects in pointed categories. We show under mild condi- tions on a pointed exact protomodular category that every proto-complete (respectively complete) object is the product of an abelian proto-complete (respectively complete) object and a strong-complete object. This to- gether with the observation that the trivial group is the only abelian complete group recovers a theorem of Baer classifying complete groups. In addition we generalize several theorems about groups (subgroups) with trivial center (respectively, centralizer), and provide a categorical explana- tion behind why the derivation algebra of a perfect Lie algebra with trivial center and the automorphism group of a non-abelian (characteristically) simple group are strong-complete. 1 Introduction Recall that Carmichael [19] called a group G complete if it has trivial cen- ter and each automorphism is inner. For each group G there is a canonical homomorphism cG from G to AutpGq, the automorphism group of G. This ho- momorphism assigns to each g in G the inner automorphism which sends each x in G to gxg´1. It can be readily seen that a group G is complete if and only if cG is an isomorphism. Baer [1] showed that a group G is complete if and only if every normal monomorphism with domain G is a split monomorphism. We call an object in a pointed category complete if it satisfies this latter condi- arXiv:2102.09834v1 [math.CT] 19 Feb 2021 tion. -
MATH 412 PROBLEM SET 11, SOLUTIONS Reading: • Hungerford
MATH 412 PROBLEM SET 11, SOLUTIONS Reading: • Hungerford 8.4, 9.1, 9.2 Practice Problems: These are “easier” problems critical for your understanding, but not to be turned in. Be sure you can do these! You may see them or something very similar on Quizzes and Exams. Section 8.4: 9, 19, 21, Section 9.1: 1, 2, 3, 4, 5 Section 9.2: 1, 3 Problems due Friday. Write out carefully, staple solutions to A, B and C in one pack, and stable solutions to D and E in another. Write your name and section number on each. (A) Let F be a field. Consider the group SL2(F) of 2 × 2 matrices with entries in F and determinant one. 1 (1) Show that the center of SL2(F) is Z = {±Ig, where I is the 2 × 2 identity matrix. (2) Let PSL2(F) be the quotient group SL2(F)=Z. Compute the order of PSL2(Z7) as a group. 2 (3) For each of the following, compute its order as an element of PSL2(Z7). 0 2 • A = ± 3 0 1 1 • B = ± 6 0 1 3 • C = ± 0 1 Note: PSL2(Z7) is the smallest simple group that is neither cyclic nor isomorphic to An for some n. Solution. a b 1 1 1 0 (1) Let A = be an arbitrary element of SL ( ), B = , and C = . We c d 2 F 0 1 1 1 −c a − d b 0 compute AB − BA = and AC − CA = . If A 2 Z, then AB − BA = 0 c d − a −b AC − CA = 0, so b = c = a − d = 0. -
The Number 6
The number 6 Gabriel Coutinho 2013 Abstract The number 6 has a unique and distinguished property. It is the only natural number n for which there is a construction of n isomor- phic objects on a set with n elements, invariant under all permutations of the set, but not in natural bijection with the set. I will talk about this fact and a closely related result. This is based on Chapter 6 of Cameron and Van Lint [1]. 1 A distinguished property of 6 Theorem 1. The number 6 is the only natural number n that satisfies the following property: If E is an n-set, then there is a construction of exactly n isomor- phic objects on E whose union is invariant under the permuta- tions of E, but none correspond in natural way to an element of E. Some clarification is needed here. Neither the meaning of object nor that of natural is clear. I will make it even worse, and provide a bad definition for one, and an incomplete for the other. An object on a set E is a construction that can be made using the elements of E and set-theoretical operations, such as taking the union. An object on E corresponds naturally to a point of E if the automorphism group of the object is the stabilizer of that point in Sn. Despite such abstract formulation, we will see that this theorem has a very concrete interpretation. In particular, the \shape" of such objects will arise naturally throughout the proof. The idea of the proof is to analyse the automorphism group the objects defined by 1 the automorphisms of the ground set which do not change the object. -
Ring (Mathematics) 1 Ring (Mathematics)
Ring (mathematics) 1 Ring (mathematics) In mathematics, a ring is an algebraic structure consisting of a set together with two binary operations usually called addition and multiplication, where the set is an abelian group under addition (called the additive group of the ring) and a monoid under multiplication such that multiplication distributes over addition.a[›] In other words the ring axioms require that addition is commutative, addition and multiplication are associative, multiplication distributes over addition, each element in the set has an additive inverse, and there exists an additive identity. One of the most common examples of a ring is the set of integers endowed with its natural operations of addition and multiplication. Certain variations of the definition of a ring are sometimes employed, and these are outlined later in the article. Polynomials, represented here by curves, form a ring under addition The branch of mathematics that studies rings is known and multiplication. as ring theory. Ring theorists study properties common to both familiar mathematical structures such as integers and polynomials, and to the many less well-known mathematical structures that also satisfy the axioms of ring theory. The ubiquity of rings makes them a central organizing principle of contemporary mathematics.[1] Ring theory may be used to understand fundamental physical laws, such as those underlying special relativity and symmetry phenomena in molecular chemistry. The concept of a ring first arose from attempts to prove Fermat's last theorem, starting with Richard Dedekind in the 1880s. After contributions from other fields, mainly number theory, the ring notion was generalized and firmly established during the 1920s by Emmy Noether and Wolfgang Krull.[2] Modern ring theory—a very active mathematical discipline—studies rings in their own right. -
Automorphisms of Group Extensions
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 155, Number t, March 1971 AUTOMORPHISMS OF GROUP EXTENSIONS BY CHARLES WELLS Abstract. If 1 ->■ G -í> E^-Tt -> 1 is a group extension, with i an inclusion, any automorphism <j>of E which takes G onto itself induces automorphisms t on G and a on n. However, for a pair (a, t) of automorphism of n and G, there may not be an automorphism of E inducing the pair. Let à: n —*■Out G be the homomorphism induced by the given extension. A pair (a, t) e Aut n x Aut G is called compatible if a fixes ker á, and the automorphism induced by a on Hü is the same as that induced by the inner automorphism of Out G determined by t. Let C< Aut IT x Aut G be the group of compatible pairs. Let Aut (E; G) denote the group of automorphisms of E fixing G. The main result of this paper is the construction of an exact sequence 1 -» Z&T1,ZG) -* Aut (E; G)-+C^ H*(l~l,ZG). The last map is not surjective in general. It is not even a group homomorphism, but the sequence is nevertheless "exact" at C in the obvious sense. 1. Notation. If G is a group with subgroup H, we write H<G; if H is normal in G, H<¡G. CGH and NGH are the centralizer and normalizer of H in G. Aut G, Inn G, Out G, and ZG are the automorphism group, the inner automorphism group, the outer automorphism group, and the center of G, respectively. -
Adams Operations and Symmetries of Representation Categories Arxiv
Adams operations and symmetries of representation categories Ehud Meir and Markus Szymik May 2019 Abstract: Adams operations are the natural transformations of the representation ring func- tor on the category of finite groups, and they are one way to describe the usual λ–ring structure on these rings. From the representation-theoretical point of view, they codify some of the symmetric monoidal structure of the representation category. We show that the monoidal structure on the category alone, regardless of the particular symmetry, deter- mines all the odd Adams operations. On the other hand, we give examples to show that monoidal equivalences do not have to preserve the second Adams operations and to show that monoidal equivalences that preserve the second Adams operations do not have to be symmetric. Along the way, we classify all possible symmetries and all monoidal auto- equivalences of representation categories of finite groups. MSC: 18D10, 19A22, 20C15 Keywords: Representation rings, Adams operations, λ–rings, symmetric monoidal cate- gories 1 Introduction Every finite group G can be reconstructed from the category Rep(G) of its finite-dimensional representations if one considers this category as a symmetric monoidal category. This follows from more general results of Deligne [DM82, Prop. 2.8], [Del90]. If one considers the repre- sentation category Rep(G) as a monoidal category alone, without its canonical symmetry, then it does not determine the group G. See Davydov [Dav01] and Etingof–Gelaki [EG01] for such arXiv:1704.03389v3 [math.RT] 3 Jun 2019 isocategorical groups. Examples go back to Fischer [Fis88]. The representation ring R(G) of a finite group G is a λ–ring. -
H&Uctures and Representation Rings of Compact Connected Lie Groups
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector JOURNAL OF PURE AND APPLIED ALGEBRA ELsEMER Journal of Pure and Applied Algebra 121 (1997) 69-93 h&uctures and representation rings of compact connected Lie groups Akimou Osse UniversitC de Neuchrftel I Mathkmatiques, Rue Emile Argand II, Ch-2007 Neuchatel, Switzerland Communicated by E.M. Friedlander; received 10 November 1995 Abstract We first give an intrinsic characterization of the I-rings which are representation rings of compact connected Lie groups. Then we show that the representation ring of a compact connected Lie group G, with its I-structure, determines G up to a direct factor which is a product of groups Sp(Z) or SO(21+ 1). This result is used to show that a compact connected Lie group is determined by its classifying space; different (and independent) proofs of this result have been given by Zabrodsky-Harper, Notbohm and Msller. Our technique also yields a new proof of a result of Jackowski, McClure and Oliver on self-homotopy equivalences of classifying spaces. @ 1997 Elsevier Science B.V. 1991 Math. Subj. Class.: 55R35, 55N15, 57TlO 1. Introduction Fix a compact connected Lie group G and let R(G) denote the free abelian group generated by the isomorphism classes of complex irreducible representations of G. With the multiplication induced by tensor products of representations, R(G) becomes a commutative ring with unit; it is called the (complex) representation ring of G. The correspondence G --+ R(G) is fknctorial, so that R(G) is an invariant of the Lie group G. -
On Inner Automorphisms of Finite Groups
proceedings of the american mathematical society Volume 106, Number I, May 1989 ON INNER AUTOMORPHISMS OF FINITE GROUPS MARTIN R. PETTET (Communicated by Warren J. Wong) Abstract. It is shown that in certain classes of finite groups, inner automor- phisms are characterized by an extension property and also by a dual lifting property. This is a consequence of the fact that for any finite group G and any prime p , there is a p-group P and a semidirect product H = GP such that P is characteristic in H and every automorphism of H induces an inner automorphism on H/P. Every inner automorphism of a group G possesses the property that it ex- tends to an automorphism of any group which contains G as a subgroup. P. Schupp [2] has shown that in the category of all groups, this extendibility prop- erty characterizes inner automorphisms. However, since Schupp's argument uses a free product construction, the question arises whether inner automor- phisms can be similarly characterized in classes of groups which are not closed under free products. In this note, we confirm that the extendibility property does indeed charac- terize inner automorphisms in certain classes of finite groups. As it happens, with the same stroke the dual question of whether inner automorphisms are precisely those which can be lifted to homomorphic pre-images is also settled (affirmatively) for those classes. The basis for these conclusions amounts to an observation about a remarkable construction of H. Heineken and H. Liebeck [1] (and a subsequent extension of U. H. M. Webb [3]). -
OF the AMERICAN MATHEMATICAL SOCIETY 157 Notices February 2019 of the American Mathematical Society
ISSN 0002-9920 (print) ISSN 1088-9477 (online) Notices ofof the American MathematicalMathematical Society February 2019 Volume 66, Number 2 THE NEXT INTRODUCING GENERATION FUND Photo by Steve Schneider/JMM Steve Photo by The Next Generation Fund is a new endowment at the AMS that exclusively supports programs for doctoral and postdoctoral scholars. It will assist rising mathematicians each year at modest but impactful levels, with funding for travel grants, collaboration support, mentoring, and more. Want to learn more? Visit www.ams.org/nextgen THANK YOU AMS Development Offi ce 401.455.4111 [email protected] A WORD FROM... Robin Wilson, Notices Associate Editor In this issue of the Notices, we reflect on the sacrifices and accomplishments made by generations of African Americans to the mathematical sciences. This year marks the 100th birthday of David Blackwell, who was born in Illinois in 1919 and went on to become the first Black professor at the University of California at Berkeley and one of America’s greatest statisticians. Six years after Blackwell was born, in 1925, Frank Elbert Cox was to become the first Black mathematician when he earned his PhD from Cornell University, and eighteen years later, in 1943, Euphemia Lofton Haynes would become the first Black woman to earn a mathematics PhD. By the late 1960s, there were close to 70 Black men and women with PhDs in mathematics. However, this first generation of Black mathematicians was forced to overcome many obstacles. As a Black researcher in America, segregation in the South and de facto segregation elsewhere provided little access to research universities and made it difficult to even participate in professional societies. -
Graduate Algebra, Fall 2014 Lecture 5
Graduate Algebra, Fall 2014 Lecture 5 Andrei Jorza 2014-09-05 1 Group Theory 1.9 Normal subgroups Example 1. Specific examples. 1. The alternating group An = ker " is a normal subgroup of Sn as " is a homomorphism. 2. For R = Q; R or C, SL(n; R) C GL(n; R). 3. Recall that for any group G, Z(G) C G and G=Z(G) is a group, which we'll identify later as the group × of inner automorphisms. If R = Z=pZ; Q; R or C then R In = Z(GL(n; R)) and denote the quotient PGL(n; R) = GL(n; R)=R× The case of SL(n; R) is more subtle as the center is the set of n-th roots of unity in R, which depends on 2 what R is. For example Z(SL(2; R)) = ±I2 but Z(SL(3; R)) = I3 while Z(GL(3; C)) = fI3; ζ3I3; ζ3 I3g. a b 0 1 a b c 0 4. But f g is not normal in GL(2;R). Indeed, if w = then w w = . 0 c 1 0 0 c b a 1 b a b 5. But f g is a normal subgroup of f g. 0 1 0 c Remark 1. If H; K ⊂ G are subgroups such that K is normal in G then HK is a subgroup of G. Indeed, KH = HK. Interlude on the big picture in the theory of finite groups We have seen that if G is a finite group and N is a normal subgroup then G=N is also a group. -
The Purpose of These Notes Is to Explain the Outer Automorphism Of
The Goal: The purpose of these notes is to explain the outer automorphism of the symmetric group S6 and its connection to the Steiner (5, 6, 12) design and the Mathieu group M12. In view of giving short proofs, we often appeal to a mixture of logic and direct computer-assisted enumerations. Preliminaries: It is an exercise to show that the symmetric group Sn ad- mits an outer automorphism if and only if n = 6. The basic idea is that any automorphism of Sn must map the set of transpositions bijectively to the set of conjugacy classes of a single permutation. A counting argument shows that the only possibility, for n =6 6, is that the automorphism maps the set of transpositions to the set of transpositions. From here it is not to hard to see that the automorphism must be an inner automorphism – i.e., conjugation by some element of Sn. For n = 6 there are 15 transpositions and also 15 triple transpositions, permutations of the form (ab)(cd)(ef) with all letters distinct. This leaves open the possibility of an outer automorphism. The Steiner Design: Let P1(Z/11) denote the projective line over Z/11. The group Γ = SL2(Z/11) consists of those transformations x → (ax + b)/(cx + d) with ad − bc ≡ 1 mod 11. There are 660 = (12 × 11 × 10)/2 elements in this group. Let B∞ = {1, 3, 4, 5, 9, ∞} ⊂ P1(Z/11) be the 6-element subset consisting of the squares mod 11 and the element ∞. Let Γ∞ ⊂ Γ be the stabilizer of B∞. -
19. Automorphism Group of S Definition-Lemma 19.1. Let G Be A
19. Automorphism group of Sn Definition-Lemma 19.1. Let G be a group. The automorphism group of G, denoted Aut(G), is the subgroup of A(Sn) of all automorphisms of G. Proof. We check that Aut(G) is closed under products and inverses. Suppose that φ and 2 Aut(G). Let ξ = φ ◦ . If g and h 2 G then ξ(gh) = (φ ◦ )(gh) = φ( (gh)) = φ( (g) (h)) = φ( (g))φ( (h)) = (φ ◦ )(g)(φ ◦ )(h) = ξ(g)ξ(h): Thus ξ = φ◦ is a group homomorphism. Thus Aut(G) is closed under products. Now let ξ = φ−1. If g and h 2 G then we can find g0 and h0 such that g = φ(g0) and h = φ(h0). It follows that ξ(gh) = ξ(φ(g0)φ(h0)) = ξ(φ(g0h0)) = g0h0 = ξ(g)ξ(h): Thus ξ = φ−1 is a group homomorphism. Thus Aut(G) is closed under inverses. Lemma 19.2. Let G be a group and let a 2 G. φa is the automorphism of G given by conjugation by a, φ(g) = aga−1. If a and b 2 G then φab = φaφb: Proof. Both sides are functions from G to G. We just need to check that they have the same effect on any element g of G: (φa ◦ φb)(g) = φa(φb(g)) −1 = φa(bgb ) = a(bgb−1)a−1 = (ab)g(ab)−1 = φab(g): 1 Definition-Lemma 19.3. We say that an automorphism φ of G is inner if φ = φa for some a.