The Random Walk Formalism – Bio-Box on Carl Freidrich

Total Page:16

File Type:pdf, Size:1020Kb

The Random Walk Formalism – Bio-Box on Carl Freidrich 1 1 THE RANDOM WALK A. Chakraborti TOPICS TO BE COVERED IN THIS CHAPTER: What is a Random Walk? • – The random walk formalism – Bio-box on Carl Freidrich Gauss and L Bachelier – The Gaussian distribution – Wiener process – Langevin equation and Brownian motion Do markets follow a random walk (From Bachelier to Eu- • gene Fama & beyond) – “Stylized” facts – ARCH/GARCH processes – Efficient Market Hypothesis (EMH) Power spectral density (PSD) • – Spectral density : Energy and Power – Relation of PSD to auto-correlation – Long-time correlations : Hurst exponent and DFA ex- ponent Econophysics. Sinha, Chatterjee, Chakraborti and Chakrabarti Copyright c 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim ISBN: 3-527-XXXXX-X 2 1 THE RANDOM WALK 1.1 What is a Random Walk? 1.1.1 Definition of Random walk The mathematical formalization of a trajectory that consists of taking succes- sive “random” (e.g. decided by the flips of an unbiased coin) steps, is known as a random walk. A particularly simple random walk would be that on the integers, which starts at time zero, S = 0 and at each step moves by 1 or 1 with equal prob- 0 − ability (e.g. decided by the flips of an unbiased coin). To define this walk formally, take independent random variables xi, each of which is 1 with prob- ability 1/2 and 1 with probability 1/2, and set S = Σn x .This sequence − n i=1 i Sn is called the simple random walk on integers. This walk can be illustrated (see 1.1) as follows: Say you flip an unbiased coin. If it lands on heads H, you move one to the right on the number line, and if it lands on tails T, then you move one to the left. So after five flips, you have the possibility of landing on 1, 1,3, 3,5, 5. You can land on 1 by − − − flipping three heads and two tails in any order. There are 10 possible ways of landing on 1. Similarly, there are 10 ways of landing on -1 (by flipping three tails and two heads), 5 ways of landing on 3 (by flipping four heads and one tail), 5 ways of landing on -3 (by flipping four tails and one head), 1 way of landing on 5 (by flipping five heads), and 1 way of landing on -5 (by flipping five tails). These results are directly related to the properties of Pascal’s triangle. The number of different walks of n steps where each step is +1 or -1 is clearly 2n. For the simple random walk, each of these walks are equally likely. In order for Sn to be equal to a number k, it is necessary and sufficient that the number of +1 in the walk exceeds those of -1 by k. Thus, the number of walks which satisfy Sn = k is precisely the number of ways of choosing (n + k)/2 elements from an n element set (for this to be non-zero, it is necessary that n + k be an even number), which is an entry in Pascal’s triangle denoted by n n n C(n+k)/2. Therefore, the probability that Sn = k is equal to 2− C(n+k)/2. This relation with Pascal’s triangle (see 1.2) is easily demonstrated for small values of n. At zero turns, the only possibility will be to remain at zero. How- ever, at one turn, you can move either to the left or the right of zero, meaning there is one chance of landing on -1 or one chance of landing on 1. At two turns, you examine the turns from before. If you had been at 1, you could move to 2 or back to zero. If you had been at -1, you could move to -2 or back to zero. So there is one chance of landing on -2, two chances of landing on zero, and one chance of landing on 2. We shall study more interesting aspects of the random walk later in this chapter. 1.1 What is a Random Walk? 3 Table 1.1 Random coin flips. If there is a head H we move right on the number line (add +1), and if there is a tail T we move left on the number line (add -1). Table 1.2 Pascal’s triangle. The results of random walk analysis is central in physics, chemistry, eco- nomics and a number of other fields as a fundamental model for random (stochastic) processes in time. There are many systems for which at smaller scales, the interactions with the environment and their influence are in the form of random fluctuations, as in the case of “Brownian motion” 1. If the mo- 1) The motion of the particle is called Brownian Motion, in honor to the botanist Robert Brown who observed it for the first time in his 4 1 THE RANDOM WALK 30 20 10 0 y −10 −20 −30 −40 −50 −100 −80 −60 −40 −20 0 20 x Table 1.3 Simulated Brownian motion (5000 time steps). tion of a pollen grain in a fluid like water is observed under a microscope, it would look somewhat like what is shown in the figure 1.3. It is interesting to note that the path traced by the pollen grain as it travels in a liquid (observed by R. Brown and studied first by A. Einstein), and the price of a fluctuating stock (studied first by L. Bachelier), can both be modeled as random walks (theory of stochastic processes). It is noteworthy that the formulation of the random walk model — as well as of a stochastic process — was first done in the framework of the economic study by L. Bachelier [31, 32], even five years prior to the work of A. Einstein! There are of course other systems, that present unpredictable “chaotic” be- havior, this time due to dynamically generated internal “noise”. Noisy pro- cesses in general, either truly stochastic or chaotic in nature, represent the rule rather than the exception. In this chapter, we will concentrate only on the former theory of random or stochastic processes. ******************************************************************************* BIO- BOX ON JOHANN CARL FRIEDRICH GAUSS (from wikipedia) Johann Carl Friedrich Gauss (30 April 1777 âA¸S23˘ February 1855) was a German mathematician and scientist who contributed significantly to many fields, including number theory, statistics, analysis, differential ge- ometry, geodesy, geophysics, electrostatics, astronomy and optics. Some- times known as the Princeps mathematicorum (the Prince of Mathemati- cians) greatest mathematician since antiquity, Gauss had a remarkable in- fluence in many fields of mathematics and science and is ranked as one of history’s most influential mathematicians. studies of pollen. In 1828 he wrote “the pollen become dispersed in water in a great number of small particles which were perceived to have an irregular swarming motion”. The theory of such motion, however, was derived by A. Einstein in 1905 when he wrote: “In this paper it will be shown that ... bodies of microscopically visible size suspended in a liquid perform movements of such magnitude that they can be easily observed in a microscope on account of the molecular motions of heat ...” 1.1 What is a Random Walk? 5 Gauss was born on April 30, 1777 in Braunschweig, in the Electorate of Brunswick-LÃijneburg, now part of Lower Saxony, Germany, as the sec- ond son of poor working-class parents. There are several stories of his early genius. According to one, his gifts became very apparent at the age of three when he corrected, mentally and without fault in his calculations, an error his father had made on paper while calculating finances. Gauss attended the Collegium Carolinum (now Technische Universität Braunschweig from 1792 to 1795, and subsequently he moved to the Uni- versity of Göttingen from 1795 to 1798. His breakthrough occurred in 1796 when he was able to show that any regular polygon with a number of sides which is a Fermat prime (and, consequently, those polygons with any number of sides which is the product of distinct Fermat primes and a power of 2) can be constructed by compass and straightedge. This was a major discovery in an important field of mathematics; construction prob- lems had occupied mathematicians since the days of the Ancient Greeks, and the discovery ultimately led Gauss to choose mathematics instead of philology as a career. In his 1799 doctorate in absentia, Gauss proved the fundamental theorem of algebra which states that every non-constant single-variable polyno- mial over the complex numbers has at least one root. Gauss also made im- portant contributions to number theory with his 1801 book Disquisitiones Arithmeticae, which contained a clear presentation of modular arithmetic and the first proof of the law of quadratic reciprocity. In that same year, Italian astronomer Giuseppe Piazzi discovered the dwarf planet Ceres, but could only watch it for a few days. Gauss predicted cor- rectly the position at which it could be found again, and it was rediscov- ered by Franz Xaver von Zach on 31 December 1801 in Gotha, and one day later by Heinrich Olbers in Bremen. In 1807, Gauss was appointed Professor of Astronomy and Director of the astronomical observatory in GÃ˝uttingen, a post he held for the remainder of his life. The discovery of Ceres by Piazzi on 1 January 1801 led Gauss to his work on a theory of the motion of planetoids disturbed by large planets, eventu- ally published in 1809. It introduced the Gaussian gravitational constant, and contained an influential treatment of the method of least squares, a procedure used in all sciences to this day to minimize the impact of mea- surement error.
Recommended publications
  • A Short History of Stochastic Integration and Mathematical Finance
    A Festschrift for Herman Rubin Institute of Mathematical Statistics Lecture Notes – Monograph Series Vol. 45 (2004) 75–91 c Institute of Mathematical Statistics, 2004 A short history of stochastic integration and mathematical finance: The early years, 1880–1970 Robert Jarrow1 and Philip Protter∗1 Cornell University Abstract: We present a history of the development of the theory of Stochastic Integration, starting from its roots with Brownian motion, up to the introduc- tion of semimartingales and the independence of the theory from an underlying Markov process framework. We show how the development has influenced and in turn been influenced by the development of Mathematical Finance Theory. The calendar period is from 1880 to 1970. The history of stochastic integration and the modelling of risky asset prices both begin with Brownian motion, so let us begin there too. The earliest attempts to model Brownian motion mathematically can be traced to three sources, each of which knew nothing about the others: the first was that of T. N. Thiele of Copen- hagen, who effectively created a model of Brownian motion while studying time series in 1880 [81].2; the second was that of L. Bachelier of Paris, who created a model of Brownian motion while deriving the dynamic behavior of the Paris stock market, in 1900 (see, [1, 2, 11]); and the third was that of A. Einstein, who proposed a model of the motion of small particles suspended in a liquid, in an attempt to convince other physicists of the molecular nature of matter, in 1905 [21](See [64] for a discussion of Einstein’s model and his motivations.) Of these three models, those of Thiele and Bachelier had little impact for a long time, while that of Einstein was immediately influential.
    [Show full text]
  • Notes on Stochastic Processes
    Notes on stochastic processes Paul Keeler March 20, 2018 This work is licensed under a “CC BY-SA 3.0” license. Abstract A stochastic process is a type of mathematical object studied in mathemat- ics, particularly in probability theory, which can be used to represent some type of random evolution or change of a system. There are many types of stochastic processes with applications in various fields outside of mathematics, including the physical sciences, social sciences, finance and economics as well as engineer- ing and technology. This survey aims to give an accessible but detailed account of various stochastic processes by covering their history, various mathematical definitions, and key properties as well detailing various terminology and appli- cations of the process. An emphasis is placed on non-mathematical descriptions of key concepts, with recommendations for further reading. 1 Introduction In probability and related fields, a stochastic or random process, which is also called a random function, is a mathematical object usually defined as a collection of random variables. Historically, the random variables were indexed by some set of increasing numbers, usually viewed as time, giving the interpretation of a stochastic process representing numerical values of some random system evolv- ing over time, such as the growth of a bacterial population, an electrical current fluctuating due to thermal noise, or the movement of a gas molecule [120, page 7][51, page 46 and 47][66, page 1]. Stochastic processes are widely used as math- ematical models of systems and phenomena that appear to vary in a random manner. They have applications in many disciplines including physical sciences such as biology [67, 34], chemistry [156], ecology [16][104], neuroscience [102], and physics [63] as well as technology and engineering fields such as image and signal processing [53], computer science [15], information theory [43, page 71], and telecommunications [97][11][12].
    [Show full text]
  • Newton's Notebook
    Newton’s Notebook The Haverford School’s Math & Applied Math Journal Issue I Spring 2017 The Haverford School Newton’s Notebook Spring 2017 “To explain all nature is too difficult a task for any one man or even for any one age. ‘Tis much better to do a little with certainty & leave the rest for others that come after you.” ~Isaac Newton Table of Contents Pure Mathematics: 7 The Golden Ratio.........................................................................................Robert Chen 8 Fermat’s Last Theorem.........................................................................Michael Fairorth 9 Math in Coding............................................................................................Bram Schork 10 The Pythagoreans.........................................................................................Eusha Hasan 12 Transfinite Numbers.................................................................................Caleb Clothier 15 Sphere Equality................................................................................Matthew Baumholtz 16 Interesting Series.......................................................................................Aditya Sardesi 19 Indirect Proofs..............................................................................................Mr. Patrylak Applied Mathematics: 23 Physics in Finance....................................................................................Caleb Clothier 26 The von Bertalanffy Equation..................................................................Will
    [Show full text]
  • Brownian Motion∗
    GENERAL ARTICLE Brownian Motion∗ B V Rao This article explains the history and mathematics of Brown- ian motion. 1. Introduction Brownian Motion is a random process first observed by the Scot- tish botanist Robert Brown; later independently proposed as a B V Rao, after retiring from the Indian Statistical model for stock price fluctuations by the French stock market an- Institute, is currently at the alyst Louis Bachelier; a little later German-born Swiss/American Chennai Mathematical Albert Einstein and Polish physicist Marian Smoluchowski ar- Institute. rived at the same process from molecular considerations; and still later Norbert Wiener created it mathematically. Once the last step was taken and matters were clarified, Andrei Kolmogorov (Rus- sian) and Shizuo Kakutani (Japanese) related this to differential equations. Paul Levy (French) and a long list of mathematicians decorated this with several jewels with final crowns by Kiyoshi Ito (Japanese) in the form of Stochastic Calculus and by Paul Malliavin (French) with Stochastic Calculus of Variations. Once crowned, it started ruling both Newtonian world and Quantum world. We shall discuss some parts of this symphony. 2. Robert Brown Robert Brown was a Scottish botanist famous for classification Keywords of plants. He noticed, around 1827, that pollen particles in water Brownian motion, heat equation, suspension displayed a very rapid, highly irregular zig-zag mo- Kolmogorov’s formulation of prob- ability, random walk, Wiener inte- tion. He was persistent to find out causes of this motion:
    [Show full text]
  • Bachelier and His Times: a Conversation with Bernard Bru ∗†‡
    First appeared in FINANCE AND STOCHASTICS (2001) Appears in the book MATHEMATICAL FINANCE -- BACHELIER CONGRESS 2000 H. Geman et al. editors, 2002, Springer Verlag Bachelier and his Times: A Conversation with Bernard Bru ¤yz Murad S. Taqqu Boston University April 25, 2001 Abstract Louis Bachelier defended his thesis \Theory of Speculation" in 1900. He used Brownian motion as a model for stock exchange performance. This conversation with Bernard Bru illustrates the scienti¯c climate of his times and the conditions under which Bachelier made his discover- ies. It indicates that Bachelier was indeed the right person at the right time. He was involved with the Paris stock exchange, was self-taught but also took courses in probability and on the theory of heat. Not being a part of the \scienti¯c establishment," he had the opportunity to develop an area that was not of interest to the mathematicians of the period. He was the ¯rst to apply the trajectories of Brownian mo- tion, and his theories pre¯gure modern mathematical ¯nance. What follows is an edited and expanded version of the original conversation with Bernard Bru. Bernard Bru is the author, most recently, of Borel, L¶evy, Neyman, Pearson et les autres [38]. He is a professor at the University of Paris V where he teaches mathematics and statistics. With Marc Barbut and Ernest Coumet, he founded the seminars on the history of Probability at the EHESS (Ecole¶ des Hautes Etudes¶ en Sciences Sociales), which bring together researchers in mathematics, philosophy and the human- ities. ¤This article ¯rst appeared in Finance and Stochastics [119].
    [Show full text]
  • Mathematics and Finance
    chapter one Mathematics and Finance ‘Janice! D’ya think you can find that postcard?’ Professor Paul A. Samuelson was in his office at MIT in the Autumn of 2003 relating how, several decades earlier, he had come across the PhD thesis, dating back to 1900, in which Louis Bachelier had devel­ oped a theory of option pricing, a topic that was beginning to occupy Samuelson and other economists in the 1950s. Although no economist at the time had ever heard of Bachelier, he was known in mathematical circles for having independently invented Brownian motion and proved some results about it that appeared in contemporary texts such as J. L. Doob’s famous book Stochastic Processes, published in 1953. William Feller, whose influential two-volume treatise An Introduction to Proba­ bility Theory and Its Applications is widely regarded as a masterpiece of twentieth century mathematics, even suggested the alternative name Wiener–Bachelier process for the mathematical process we now know as Brownian motion. The story goes that L. J. (‘Jimmie’) Savage, doyen of mathematical statisticians of the post-World War II era, knew of Bache­ lier’s work and, with proselytizing zeal, thought that the economists ought to be told. So he sent postcards to his economist friends warn­ ing them that if they had not read Bachelier it was about time they did. Hence Samuelson’s appeal to Janice Murray, personal assistant extraor­ dinaire to the Emeritus Professors at MIT’s Department of Economics. ‘When do you think you received it?’ she enquired. ‘Oh, I don’t know. Maybe thirty-five years ago.’ How was Janice going to handle a request like that? For one thing, his timing was way off: it was more like forty-five years.
    [Show full text]
  • Abraham Lioui, Phd PROFESSIONAL
    Abraham Lioui, PhD Professor of Finance Co-Director, Scientific Beta Advanced Factor & ESG Investing Research Chair. Phone : +33 (0)4 93 18 78 68 [email protected] PROFESSIONAL EXPERIENCE 2019 - Co-Director, Scientific Beta Advanced Factor & ESG Investing Research Chair. 2008 - Professor, EDHEC Business School, France. 2018 - 2019 Head of Data Science, Economics and Finance Faculty, EDHEC Business School, France. 2016 - 2019 Director, Ph. D. in Finance Program, EDHEC Business School, France. 2015 - 2018 Head of Finance Faculty, EDHEC Business School, France. 2013 - 2015 Co-Chair, Admission of Internal Students Committee for the Master in Management (MiM FE track) and the Masters of Science (M. Sc. Finance, Corporate Finance, Financial Markets and International Accounting and Finance), EDHEC Business School, France. 2008 - 2016 Deputy Academic Director, Ph. D. in Finance Program, EDHEC Business School, France. 2007 - 2008 Deputy Chair, Department of Economics, Bar-Ilan University, Israel. 2005 - 2007 Academic Director, Accounting Studies, Bar-Ilan University, Israel. 2002 - 2007 Head, Departmental Financial Committee, Bar-Ilan University, Israel. 2001 - 2008 Associate Professor, Bar-Ilan University, Israel. 1996 - 2000 Assistant Professor, Bar-Ilan University, Israel. 1994 - 1995 Lecturer, ESSEC Business School, France. 1994 - 1995 ATER, University of Paris I, Pantheon Sorbonne, France. 1991 - 1994 Allocataire moniteur, University of Paris I, Pantheon Sorbonne, France. EDUCATION 1994 Doctorate in Management, ESSEC Graduate School of Business and University of Paris I Sorbonne. “Essays on the theory of portfolio delegation.” Pr. Patrice Poncet (Chair), Pr. Nicole El Karoui and Pr. Roland Portait (External Examinators). 1993 DESCF (Accounting Certification) Abraham Lioui, PhD, Professor of Finance, EDHEC Business School 1992 Master (Research) Probability and Applications, University Pierre & Marie Curie Paris VI.
    [Show full text]
  • Bachelier's Predecessors*
    Bacheliers Predecessors HansJoachim Girlich University of Leipzig Germany Abstract Recent pap ers by JeanMichel Cortault et al and Murad S Taqqu have cast new light on Bacheliers work and his times see S S In b oth articles Bernard Brus research seems to b e the most inuential In the case of Louis Bachelier and his area of activity the dominantFrench point of view is the most natural thing in the world and every b o dy is convinced by the results The aim of the present note is to add a few tesseras also from other countries to the picture which is known ab out the birth of mathematical nance and its probabilistic environment CF Gauss Under Bacheliers predecessors who have prepared to ols and rst steps to sto chastic nance Carl Friedrich Gauss should be mentioned rst Bachelier cited la loi de Gauss which was intro duced as an error distribution by Gauss in see We enlighten a fewer known side of the mathematicorum princeps his work as a successful investor Since the s in deance or b ecause of his mo dest salary Gauss invested his savings in bank sto cks and obligations and leaved an estate of more than thalers see His great exp erience with nancial op erations on a b ourse to ok eect also in public aairs He reorganized the fund for professors widows at the universityofGottingen during For this purp ose he calculated sp ecial lifeinsurance tables see GT Fechner Gustav Theo dor Fechner learned as a Physicist from Jean B Biot and Georg Simon Ohm mathematical mo delling His own work in psychology and statistics included
    [Show full text]
  • The Origins and Legacy of Kolmogorov's Grundbegriffe
    The origins and legacy of Kolmogorov’s Grundbegriffe Glenn Shafer Rutgers School of Business [email protected] Vladimir Vovk Royal Holloway, University of London [email protected] arXiv:1802.06071v1 [math.HO] 5 Feb 2018 The Game-Theoretic Probability and Finance Project Working Paper #4 First posted February 8, 2003. Last revised February 19, 2018. Project web site: http://www.probabilityandfinance.com Abstract April 25, 2003, marked the 100th anniversary of the birth of Andrei Nikolaevich Kolmogorov, the twentieth century’s foremost contributor to the mathematical and philosophical foundations of probability. The year 2003 was also the 70th anniversary of the publication of Kolmogorov’s Grundbegriffe der Wahrschein- lichkeitsrechnung. Kolmogorov’s Grundbegriffe put probability’s modern mathematical formal- ism in place. It also provided a philosophy of probabilityan explanation of how the formalism can be connected to the world of experience. In this article, we examine the sources of these two aspects of the Grundbegriffethe work of the earlier scholars whose ideas Kolmogorov synthesized. Contents 1 Introduction 1 2 The classical foundation 3 2.1 The classical calculus . 3 2.1.1 Geometric probability . 5 2.1.2 Relative probability . 5 2.2 Cournot’s principle . 7 2.2.1 The viewpoint of the French probabilists . 8 2.2.2 Strong and weak forms of Cournot’s principle . 10 2.2.3 British indifference and German skepticism . 11 2.3 Bertrand’s paradoxes . 13 2.3.1 The paradox of the three jewelry boxes . 13 2.3.2 The paradox of the great circle . 14 2.3.3 Appraisal .
    [Show full text]
  • New Elements on Jules Regnault's Calcul Des Chances Et Philosophie De La
    New elements on Jules Regnault’s Calcul des chances et philosophie de la bourse [Calculation of the Chance and Philosophy of the Stock Market]: a very well diffused book and new connections with Louis Bachelier Franck Jovanovic TELUQ University (Canada), CIRST (Canada), and LEO (France) Abstract It is nowadays well-known that the first publication about the random character of stock market prices date back to 1863 with Jules Regnault’s Calcul des chances et philosophie de la bourse [Calculation of the Chance and Philosophy of the Stock Market]. This book is the first work in modern finance we know today. Unfortunately, to date, we did not have significant information about the diffusion of this book and its influence. Recently several new elements have been discovered that change markedly what we thought we knew about Jules Regnault and about the dissemination and application of his ideas. This article presents and analyzes these new elements. It shows that this author grew up in an intellectual environment in Brussels closely associated with some of the most influent academics and mathematicians at this time. This article also shows that this book was largely diffused and more importantly it circulated among the most important French mathematicians interested in the application of the calculus of probability to finance and social issues when Louis Bachelier started his doctoral studies. This article sheds new light on the early history of financial economics and provides clear connections between Jules Regnault and Louis Bachelier. Keywords: Jules Regnault, Louis Bachelier, Calcul des chances et philosophie de la bourse, history of financial economics JEL Classification: A12, B10, B30, B40, G10, G14.
    [Show full text]
  • Louis Bachelier on the Centenary of Théorie De La Spéculation
    Louis Bachelier On the centenary of Th´eoriede la Sp´eculation Jean-Michel Courtault, Youri Kabanov, Bernard Bru, Pierre Crepel, Isabelle Lebon, Arnaud Le Marchand To cite this version: Jean-Michel Courtault, Youri Kabanov, Bernard Bru, Pierre Crepel, Isabelle Lebon, et al.. Louis Bachelier On the centenary of Th´eoriede la Sp´eculation.Mathematical Finance, Wiley- Blackwell, 2000, 10 (3), pp.339-353. <halshs-00447592> HAL Id: halshs-00447592 https://halshs.archives-ouvertes.fr/halshs-00447592 Submitted on 18 Jan 2010 HAL is a multi-disciplinary open access L'archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destin´eeau d´ep^otet `ala diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publi´esou non, lished or not. The documents may come from ´emanant des ´etablissements d'enseignement et de teaching and research institutions in France or recherche fran¸caisou ´etrangers,des laboratoires abroad, or from public or private research centers. publics ou priv´es. Louis Bachelier On the centenary of Theorie de la Speculation JM Courtault Yu Kabanov BBru P Crep el I Leb on A Le Marchand Centenary of mathematical nance The date March should be considered as the birthdate of mathematical nance on this day French p ostgraduate student Louis Bachelier successfully de fended at Sorb onne his thesis Theorie de la Speculation As a work of exceptional merit strongly supp orted by Henri Poincare Bacheliers sup ervisor it has been published in Annales
    [Show full text]
  • Bachelier and His Times: a Conversation with Bernard Bru
    Finance Stochast. 5, 3–32 (2001) c Springer-Verlag 2001 Bachelier and his times: A conversation with Bernard Bru Murad S. Taqqu Boston University, Department of Mathematics, 111 Cummington Street, Boston, MA 02215-2411, USA (e-mail: [email protected]) Abstract. Louis Bachelier defended his thesis “Theory of Speculation” in 1900. He used Brownian motion as a model for stock exchange performance. This con- versation with Bernard Bru illustrates the scientific climate of his times and the conditions under which Bachelier made his discoveries. It indicates that Bache- lier was indeed the right person at the right time. He was involved with the Paris stock exchange, was self-taught but also took courses in probability and on the theory of heat. Not being a part of the “scientific establishment,” he had the opportunity to develop an area that was not of interest to the mathematicians of the period. He was the first to apply the trajectories of Brownian motion, and his theories prefigure modern mathematical finance. What follows is an edited and expanded version of the original conversation with Bernard Bru. Bernard Bru is the author, most recently, of Borel, Levy,´ Neyman, Pearson et les autres [38]. He is a professor at the University of Paris V where he teaches mathematics and statistics. With Marc Barbut and Ernest Coumet, he founded the seminars on the history of Probability at the EHESS (Ecole´ des Hautes Etudes´ en Sciences Sociales), which bring together researchers in mathematics, philosophy and the humanities. Key words: Louis Bachelier JEL Classification: D84, G10, G12 Mathematics Subject Classification (1991): 01A55, 01A60, 01A65, 01A70, 60G05 M.T.
    [Show full text]