Community Based Peat Conservation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Missouri River Floodplain from River Mile (RM) 670 South of Decatur, Nebraska to RM 0 at St
Hydrogeomorphic Evaluation of Ecosystem Restoration Options For The Missouri River Floodplain From River Mile (RM) 670 South of Decatur, Nebraska to RM 0 at St. Louis, Missouri Prepared For: U. S. Fish and Wildlife Service Region 3 Minneapolis, Minnesota Greenbrier Wetland Services Report 15-02 Mickey E. Heitmeyer Joseph L. Bartletti Josh D. Eash December 2015 HYDROGEOMORPHIC EVALUATION OF ECOSYSTEM RESTORATION OPTIONS FOR THE MISSOURI RIVER FLOODPLAIN FROM RIVER MILE (RM) 670 SOUTH OF DECATUR, NEBRASKA TO RM 0 AT ST. LOUIS, MISSOURI Prepared For: U. S. Fish and Wildlife Service Region 3 Refuges and Wildlife Minneapolis, Minnesota By: Mickey E. Heitmeyer Greenbrier Wetland Services Advance, MO 63730 Joseph L. Bartletti Prairie Engineers of Illinois, P.C. Springfield, IL 62703 And Josh D. Eash U.S. Fish and Wildlife Service, Region 3 Water Resources Branch Bloomington, MN 55437 Greenbrier Wetland Services Report No. 15-02 December 2015 Mickey E. Heitmeyer, PhD Greenbrier Wetland Services Route 2, Box 2735 Advance, MO 63730 www.GreenbrierWetland.com Publication No. 15-02 Suggested citation: Heitmeyer, M. E., J. L. Bartletti, and J. D. Eash. 2015. Hydrogeomorphic evaluation of ecosystem restoration options for the Missouri River Flood- plain from River Mile (RM) 670 south of Decatur, Nebraska to RM 0 at St. Louis, Missouri. Prepared for U. S. Fish and Wildlife Service Region 3, Min- neapolis, MN. Greenbrier Wetland Services Report 15-02, Blue Heron Conservation Design and Print- ing LLC, Bloomfield, MO. Photo credits: USACE; http://statehistoricalsocietyofmissouri.org/; Karen Kyle; USFWS http://digitalmedia.fws.gov/cdm/; Cary Aloia This publication printed on recycled paper by ii Contents EXECUTIVE SUMMARY .................................................................................... -
Chapter 5 Groundwater Quality and Hydrodynamics of an Acid Sulfate Soil Backswamp
Chapter 5 Groundwater Quality and Hydrodynamics of an Acid Sulfate Soil Backswamp 5.1 Introduction Intensive drainage of coastal floodplains has been the main factor contributing to the oxidation of acid sulfate soils (ASS) (Indraratna, Blunden & Nethery 1999; Sammut, White & Melville 1996). Drainage of backswamps removes surface water, thereby increasing the effect of evapotranspiration on watertable drawdown (Blunden & Indraratna 2000) and transportation of acidic salts to the soil surface through capillary action (Lin, Melville & Hafer 1995; Rosicky et al. 2006). During high rainfall events the oxidation products (i.e. metals and acid) are mobilised into the groundwater, and acid salts at the sediment surface are dissolved directly into the surface water (Green et al. 2006). The high efficiency of drains readily transports the acidic groundwater and surface water into the estuary and can have a detrimental impact on downstream habitats (Cook et al. 2000). The quality of water discharged from a degraded ASS wetland is controlled by the water balance, which over a given time period is: P + I + Li = E + Lo + D + S (Equation 5.1) where P is precipitation, I is irrigation, Li is the lateral inflow of water, E is evapotranspiration, Lo is surface and subsurface lateral outflow of water, D is the drainage to the watertable and S is the change in soil moisture storage above the watertable (Indraratna, Tularam & Blunden 2001; Sammut, White & Melville 1996; White et al. 1997). While this equation may give a general overview of sulfidic floodplain hydrology, an understanding of site-specific details is required for effective remediation and management of degraded ASS wetlands. -
Cypress Creek National Wildlife Refuge, Illinois
Hydrogeomorphic Evaluation of Ecosystem Restoration Options for Cypress Creek National Wildlife Refuge, Illinois Prepared For: U. S. Fish and Wildlife Service Division of Refuges, Region 3 Minneapolis, Minnesota Greenbrier Wetland Services Report 12-05 Mickey E. Heitmeyer Karen E. Mangan July 2012 HYDROGEOMORPHIC EVALUATION OF ECOSYSTEM RESTORATION OPTIONS FOR CYPRESS CREEK NATIONAL WILDLIFE REFUGE, ILLINOIS Prepared For: U.S. Fish and Wildlife Service National Wildlife Refuge System, Region 3 Minneapolis, MN and Cypress Creek National Wildlife Refuge Ullin, IL By: Mickey E. Heitmeyer, PhD Greenbrier Wetland Services Rt. 2, Box 2735 Advance, MO 63730 and Karen E. Mangan U.S. Fish and Wildlife Service Cypress Creek National Wildlife Refuge 0137 Rustic Campus Drive Ullin, IL 62992 Greenbrier Wetland Services Report 12-05 July 2012 Mickey E Heitmeyer, PhD Greenbrier Wetland Services Route 2, box 2735 Advance, MO. 63730 Publication No. 12-05 Suggested citation: Heitmeyer, M. E., K. E. Mangan. 2012. Hy- drogeomorphic evaluation of ecosystem restora- tion and management options for Cypress Creek National Wildlife Refuge,Ullin Il.. Prepared for U. S. Fish and Wildlife Service, Region 3, Minne- apolis, MN and Cypress Creek National Wildlife Refuge,Ullin,Il. Greenbrier Wetland Services Report 12-05, Blue Heron Conservation Design and Printing LLC, Bloomfield, MO. Photo credits: COVER: Limekiln Slough by Michael Jeffords Michael Jeffords, Jan Sundberg, Cary Aloia (Gardners- Gallery.com), Karen Kyle This publication printed on recycled paper by ii -
Floodplain Geomorphic Processes and Environmental Impacts of Human Alteration Along Coastal Plain Rivers, Usa
WETLANDS, Vol. 29, No. 2, June 2009, pp. 413–429 ’ 2009, The Society of Wetland Scientists FLOODPLAIN GEOMORPHIC PROCESSES AND ENVIRONMENTAL IMPACTS OF HUMAN ALTERATION ALONG COASTAL PLAIN RIVERS, USA Cliff R. Hupp1, Aaron R. Pierce2, and Gregory B. Noe1 1U.S. Geological Survey 430 National Center, Reston, Virginia, USA 20192 E-mail: [email protected] 2Department of Biological Sciences, Nicholls State University Thibodaux, Louisiana, USA 70310 Abstract: Human alterations along stream channels and within catchments have affected fluvial geomorphic processes worldwide. Typically these alterations reduce the ecosystem services that functioning floodplains provide; in this paper we are concerned with the sediment and associated material trapping service. Similarly, these alterations may negatively impact the natural ecology of floodplains through reductions in suitable habitats, biodiversity, and nutrient cycling. Dams, stream channelization, and levee/canal construction are common human alterations along Coastal Plain fluvial systems. We use three case studies to illustrate these alterations and their impacts on floodplain geomorphic and ecological processes. They include: 1) dams along the lower Roanoke River, North Carolina, 2) stream channelization in west Tennessee, and 3) multiple impacts including canal and artificial levee construction in the central Atchafalaya Basin, Louisiana. Human alterations typically shift affected streams away from natural dynamic equilibrium where net sediment deposition is, approximately, in balance with net -
Fossil Peat of the Illinois Basin : a Guide to the Study of Coal Balls Of
^uA^^^^i 557 IL6ed no. 11 vol <=>&ued- // FOSSIL PEAT FROM THE ILLINOIS BASIN cn:.\/E' HM * Tom L. Phillips Matthew J. Avcin Dwain Berggren 9lUmH Stcde Qeol(Xjical SuMtey STATE OF ILLINOIS DEPARTMENT OF REGISTRATION AND EDUCATION COVER - A photograph (natural size) of a cellulose acetate peel showing the fossil peat preserved in a coal ball collected from the Herrin (No. 6) Coal Member near Carrier Mills, Illinois. Figure 2 describes its contents. 1976 ILLINOIS STATE GEOLOGICAL SURVEY Urbana, Illinois 61801 Jack A. Simon, M.S., Chief ILLINOIS STATE GEOLOGICAL SURVEY ithority of State of Illinois. Ch. 127. IRS. Par. 58 .25 3 3051 00004 8540 I FOSSIL PEAT OF THE ILLINOIS BASIN Goal QalU of PenntyUankM, Acje Tom L. Phillips Matthew J. Avcin Dwain Berggren Digitized by the Internet Archive in 2012 with funding from University of Illinois Urbana-Champaign http://archive.org/details/fossilpeatofilli11phil CONTENTS Introduction 1 Geology of the fossil peat deposits 3 The Illinois Basin 3 How the coal balls formed 3 Plants in fossil peat 7 Studies of fossil peat 9 Internal anatomy and external morphology 10 Plant taxonomy 11 Plant evolution 12 Palynology 13 Preparation of floras 14 Analyses of permineralized peat 14 Formation of coal balls 17 Preparing coal balls for study 17 Making coal-ball peels 18 Examining peels with a microscope 24 Mounting peel sections on glass slides 24 Recovering spores and other microfossils from coal balls 26 Preserving coal balls 28 Repairing and embedding coal-ball slices 29 Sources of materials 31 Finding coal balls 31 Materials needed 32 Selected references 33 Plates and explanations 34 . -
Alaska Non-Timber Forest Products Harvest Manual for Commercial Harvest on State-Owned Lands
Alaska Non-Timber Forest Products Harvest Manual For Commercial Harvest on State-Owned Lands State of Alaska Department of Natural Resources Division of Mining, Land and Water April 2, 2008 - 1 - State of Alaska Non-Timber Forest Product Commercial Harvest Manual, April 2, 2008 Table of Contents Introduction 3 Special notices, clarifications, and general rules 4 Procedure for revision 5 Products and species descriptions 6 Bark birch 7 cedar 8 various species 9 Berries and berry-like fruits 10 Branches and stems of deciduous woody species 11 Buds and tips 12 Burls and galls 13 Cones 14 Conks 15 Cuttings – willow, dogwood & poplar 16 Diamond willow 17 Evergreen boughs 18 Floral greenery 19 Leaves and flowers of woody plants 20 Lichens ground-growing 21 tree-growing 22 Mosses and liverworts 23 Mushrooms 24 Non-woody perennial plants tender edible shoots, stems, leaves, and/or flowers 25 mature stems, leaves and flowers 26 Roots edible or medicinal 27 for fiber 28 Seed heads 29 Seeds 30 Transplants plugs 31 shrubby perennial with root ball 32 sprigs 33 tree sapling with root ball 34 Appendix I: Plants never allowed for harvest 35 Appendix II: Guidelines for non over-the-counter permit products 36 Glossary 38 Selected references 39 - 2 - State of Alaska Non-Timber Forest Product Commercial Harvest Manual, April 2, 2008 Introduction Non-timber forest products are generally defined as products derived from biological resources. Examples of non-timber forest products may include mushrooms, conks, boughs, cones, leaves, burls, landscaping transplants, roots, flowers, fruits, and berries. Not included are minerals, rocks, soil, water, animals, and animal parts. -
Restoring Silvopastures with Oak Saplings: Effects of Mulch and Diameter Class on Survival, Growth, and Annual Leaf-Nutrient Patterns
Agroforest Syst (2014) 88:935–946 DOI 10.1007/s10457-014-9737-y Restoring silvopastures with oak saplings: effects of mulch and diameter class on survival, growth, and annual leaf-nutrient patterns M. N. Jime´nez • J. R. Pinto • M. A. Ripoll • A. Sa´nchez-Miranda • F. B. Navarro Received: 13 March 2014 / Accepted: 14 August 2014 / Published online: 23 August 2014 Ó Springer Science+Business Media Dordrecht 2014 Abstract In Southwestern Spain, multifunctional leaf-nutrient concentrations were analyzed. Forty silvopastoral systems consisting of pastureland and months after planting, all treatments showed high open oak woodlands are known as Dehesas. These, survival (81 %) but only straw-mulched saplings and other similar systems of the Mediterranean basin, differed significantly (94 %) from control (74 %). are currently threatened by increasing intensive land DBH increased over time but showed no significant use. As a consequence, oak regeneration is declining differences among mulch treatments. Saplings with and is in need of adequate management and active high initial DBH showed the greatest growth and restoration. Traditional restoration practices outplant change in DBH at the end of the study period. Leaf- one-year-old, nursery-produced oak seedlings grown nutrient concentrations changed significantly in the in 250–350 cm3 containers, but establishment and year following outplanting. Bi-monthly foliar nutrient growth results are typically poor. This work examines concentration data show decreases in P, K, Zn, and B holm oak (Quercus ilex L. subsp. ballota (Desf.) and sharp increases in Ca and Fe. In this work, we Samp.) grown in a non-conventional container size provide some evidence concerning the viability of (24 l) and age (6–7 years) with three mulch treatments non-conventional oak size for restoring, regenerating, (control, stone, and straw). -
The Verlot Peat Area Was Investigated by Rigg, Ac Thick
188 PEAT RESOURCES OF WASHINGTON Verlot peat area and the layer of fibrous peat and muck under it was 4 feet The Verlot peat area was investigated by Rigg, ac thick. companied by C. E. Torrence and D. Tunstall, August Lake Ketchum peat area 13 to 15, 1926. The following description is based on field The Lake Ketchum peat area (19 acres) 1s m secs. 6 notes made at that time, supplemented by some explana and 7, T. 32 N., R. 4 E., about 3 miles north of East Stan tions. wood by State Highway IE and a crooked dead-end road The peat area was estimated at 15 to 20 acres. Its loca up a steep slope. The deposit borders the north shore tion was estimated to be about 2 miles south of the old of the lake (map, fig. 193). The lake and the topography Mackie statio~ (an abandoned sawmill) on the old of the region surrounding it are shown on the Mount Monte Cristo Branch (now abandoned) of the Northern Vernon quadrangle. The elevation of the peat is about 175 Pacific Railway. The location of Mackie is shown on feet above sea level, and it is less than 2 miles from the Forest Service maps of the Snoqualmie National Forest. shore of Skagit Bay. It lies in a depression in glacial The peat is probably in sec. 25 or 36, T. 30 N., R. 8 E. It drift of the region. The lake has no surface outlet. On was reached from the station by a rather steep, rocky wet the soil map of Snohomish County (Anderson et al., 1947) trail which extended over the mountainous region and the area is mapped as Gre~nwood peat and Carbondale down to the Pilchuck River. -
Longleaf Pine: an Annotated Bibliography, 1946 Through 1967
U.S. Department of Agriculture Forest Service Research Paper SO-35 longleaf pine: an annotated bibliography, 1946 through 1967 Thomas C. Croker, Jr. SOUTHERN FOREST EXPERIMENT STATION T.C. Nelson, Director FOREST SERVICE U.S. DEPARTMENT OF AGRICULTURE 1968 Croker, Thomas C., Jr. 1968. Longleaf pine: an annotated bibliography, 1946 through 1967. Southern Forest Exp. Sta., New Orleans, Louisiana. 52 pp. (U. S. Dep. Agr. Forest Serv. Res. Pap. SO-35) Lists 665 publications appearing since W. G. Wahlenberg compiled the bibliography for his book, Longleaf Pine. Contents Page Introduction .................................................................................................................................... 1 1. Factors of the environment. Biology........................................................................................ 2 11 Site factors, climate, situation, soil ............................................................................. 2 15 Animal ecology. Game management .......................................................................... 2 16 General botany ............................................................................................................. 2 17 Systematic botany ....................................................................................................... 6 18 Plant ecology................................................................................................................. 7 2. Silviculture............................................................................................................................... -
Wine | Spirits | Beer
WINE | SPIRITS | BEER CELLAR99 In the early days of the original Ruffino’s in Baton Rouge, business people entertaining clients would often lament that they could not order many of the well-known wines due to the restrictions of their expense accounts. Ruffin’s solution, a collection of selected cabernets and red blends, all from California, for $99 that anywhere else would fetch well over $100. Frank Family Vineyards, 2018 Machete, by Orin Swift, 2017 Palermo, by Orin Swift, 2016 Papillon by Orin Swift, 2018 Faust, Napa Valley, 2017 Cyrus, Alexander Valley, 2014 Jordan, Alexander Valley, 2016 Stag’s Leap Winery, 2016 The Prisoner Wine Co., 2018 Stout Family Vineyards, 2015 Cakebread, Napa Valley, 2018 Love Hammer, by SLO Down Wines, 2016 Duckhorn, Napa Valley, 2017 SPECIALTY COCKTAILS THE MAN-TINI | Knob Creek Bourbon – Lemon & Lime – Cognac – Agave Nectar SATSUMA MULE | Bayou Satsuma – Simple Syrup & Lime – Stoli Ginger Beer - Mint BIERE SOLLEIT | St Germain–Fresh Lemon –Ragin Cajun Ale BACK PORCH | House Infused Lemon Vodka –Hibiscus Syrup –St. Germaine Liqueur BLUE BERRY LEMON DROP | House Infused Blueberry Vodka - Fresh Lemon PEAR MARTINI | Pear Vodka -St. Germaine Liqueur –Fresh Lime PINEAPPLE INFUSION | House Infused Pineapple Vodka –Orange Liqueur –Pineapple Juice POMEGRANATE MARTINI | Citrus Vodka - Pama Liquor - Gran Gala Orange Liquor - Pomegranate Juice LAFAYETTE | BATON ROUGE | DE LA RONDE HALL | RUFFINOSRESTAURANT.COM WHISKEY JAMESON, IRISH WHISKEY JACK DANIEL’S, TENNESSEE WHISKEY, “GENTLEMAN JACK” toasted wood | sherry | -
Pine Tar; History and Uses
Pine Tar; History And Uses Theodore P. Kaye Few visitors to any ship which as been rigged in a traditional manner have left the vessel without experiencing the aroma of pine tar. The aroma produces reactions that are as strong as the scent; few people are ambivalent about its distinctive smell. As professionals engaged in the restoration and maintenance of old ships, we should know not only about this product, but also some of its history. Wood tar has been used by mariners as a preservative for wood and rigging for at least the past six centuries. In the northern parts of Scandinavia, small land owners produced wood tar as a cash crop. This tar was traded for staples and made its way to larger towns and cities for further distribution. In Sweden, it was called "Peasant Tar" or was named for the district from which it came, for example, Lukea Tar or Umea Tar. At first barrels were exported directly from the regions in which they were produced with the region's name burned into the barrel. These regional tars varied in quality and in the type of barrel used to transport it to market. Wood tars from Finland and Russia were seen as inferior to even the lowest grade of Swedish tar which was Haparanda tar. In 1648, the newly formed NorrlSndska TjSrkompaniet (The Wood Tar Company of North Sweden) was granted sole export privileges for the country by the King of Sweden. As Stockholm grew in importance, pine tar trading concentrated at this port and all the barrels were marked "Stockholm Tar". -
EARTH SCIENCES RESEARCH JOURNAL Development of Tropical
EARTH SCIENCES RESEARCH JOURNAL Earth Sci. Res. J. Vol. 20, No. 1 (March, 2016): O1 - O10 GEOLOGY ENGINEERING Development of Tropical Lowland Peat Forest Phasic Community Zonations in the Kota Samarahan-Asajaya area, West Sarawak, Malaysia Mohamad Tarmizi Mohamad Zulkifley1, Ng Tham Fatt1, Zainey Konjing2, Muhammad Aqeel Ashraf3,4* 1. Department of Geology, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia 2. Biostratex Sendirian Berhad, Batu Caves, Gombak, Malaysia. 3. Department of Environmental Science and Engineering, School of Environmental Studies, China University of Geosciences, 430074 Wuhan, P. R. China 4. Faculty of Science & Natural Resources, University Malaysia Sabah88400 Kota Kinabalu, Sabah, Malaysia. Corresponding authors: Muhammad Aqeel Ashraf- Faculty of Science & Natural Resources University Malaysia Sabah, 88400, Kota Kinabalu, Sabah. ([email protected]) ABSTRACT Keywords: Lowland peat swamp, Phasic community, Logging observations of auger profiles (Tarmizi, 2014) indicate a vertical, downwards, general decrease of Mangrove swamp, Riparian environment, Pollen peat humification levels with depth in a tropical lowland peat forest in the Kota Samarahan-Asajaya área in the diagram, Vegetation Succession. región of West Sarawak (Malaysia). Based on pollen analyses and field observations, the studied peat profiles can be interpreted as part of a progradation deltaic succession. Continued regression of sea levels, gave rise Record to the development of peat in a transitional mangrove to floodplain/floodbasin environment, followed by a shallow, topogenic peat depositional environment with riparian influence at approximately 2420 ± 30 years B.P. Manuscript received: 20/10/2015 (until present time). The inferred peat vegetational succession reached Phasic Community I at approximately Accepted for publication: 12/02/2016 2380 ± 30 years B.P.