Lesson 6 Massage Techniques

Total Page:16

File Type:pdf, Size:1020Kb

Lesson 6 Massage Techniques Week 11 Palpation of Landmarks (Upper Body) Saturday 30 April 2016 09:00-12:00 Bones to Palpate • Scapula • Clavicle • Humerus • Radius • Ulna • Carpals Scapula 1 Scapula • Spine – From AC joint palpate across the upper part of the posterior surface of the scapula. It is a long (3”) thin projection, which runs medial to lateral, at T3 level. • Acromion process – Located on the lateral part of the shoulder, right above the shoulder joint. • Coracoid process – Palpate under the lateral part of the clavicle (about one inch below the anterior edge of the clavicle). • Medial (vertebral) border – The edge of the scapula closest to the vertebral column (about 2 inches from the spinous processes). The medial border runs in a superior-inferior direction. • Lateral (axillary) border – The lateral (or outer) edge of the scapula located between the inferior angle and the shoulder joint. • Superior medial angle – Located above the vertebral border or medial aspect of scapula, level T2. • Inferior angle – Located between vertebral and axillary borders. The “point” at the bottom of scapula, level T7. Clavicle Collar bone – anterior from sternum to acromion Humerus 2 Humerus • Greater tuberosity – Located just below acromion when arm is resting by the side. (proximal end of humerus) • Lesser tuberosity – Easiest to palpate with arm in shoulder external rotation. located medial to greater tuberosity on proximal end of humerus. • Intertubercular (Bicipital) Grove – Located between greater and lesser tuberosity; easiest to palpate with arm in external rotation. • Medial and lateral epicondyles – Palpated on medial and lateral sides, respectively, of distal end of humerus (2 “bumps” on distal end). • Medial and lateral supracondylar ridge – above the medial and lateral epicondyles on distal end of humerus • Olecxranon fossa – indentation on posterior of elbow Radius & Ulna Radius • Head – From lateral epicondyle of humerus move distally about 1 inch. Head of radius palpated easiest as you pronate and supinate. • Anterior border – Ridge just above wrist on lateral aspect of lower forearm. • Styloid process – In the anatomic position, styloid is lateral just above wrist joint. • Dorsal tubercle – On distal end of radius on posterolateral aspect of wrist. Feels like a small longitudinal bony prominence or module. 3 Ulna • Olecranon – “Funny bone” – long protuberance on posterior of elbow. • Styloid process – In the anatomic position, styloid process is on medial aspect of wrist, also slightly posterior. Is more proximal than radial styloid process. • Head – On distal end of ulna. In supination, it can be palpated on medial-anterior aspect of wrist (just proximal to wrist). In pronation, head is the projection on posterior aspect (ulnar side) of wrist. Carpals Carpals • Pisiform – “Pea-shaped” bone on ulnar side of hand (palmar surface) • Scaphoid – On radial side of wrist – easiest to palpate in “floor” of anatomical snuffbox (proximal to thumb) as you move hand into ulnar deviation. • Trapezium – On radial side of wrist where it articulates with 1st metacarpal to form saddle joint. Easiest to palpate as you flex and extend the thumb. • Hamate (hook) – Located slightly distal and radial to the pisiform. • Capitate – Proximal to the base of the third metacarpal between the dorsal tubercle of the radius and the third metacarpal. Most easily palpated as you flex the wrist. • Triquetral – Located just distal to the ulnar styloid process. To palpate, radially deviate the hand. • Base, body, head of metacarpals and phalanges 4.
Recommended publications
  • Body Mechanics As the Rotator Cuff Gether in a Cuff-Shape Across the Greater and Lesser Tubercles the on Head of the Humerus
    EXPerT CONTENT Body Mechanics by Joseph E. Muscolino | Artwork Giovanni Rimasti | Photography Yanik Chauvin Rotator Cuff Injury www.amtamassage.org/mtj WORKING WITH CLieNTS AFFecTED BY THIS COmmON CONDITION ROTATOR CUFF GROUP as the rotator cuff group because their distal tendons blend and attach to- The four rotator cuff muscles are gether in a cuff-shape across the greater and lesser tubercles on the head of the supraspinatus, infraspinatus, the humerus. Although all four rotator cuff muscles have specific concen- teres minor, and subscapularis (Fig- tric mover actions at the glenohumeral (GH) joint, their primary functional ure 1). These muscles are described importance is to contract isometrically for GH joint stabilization. Because 17 Before practicing any new modality or technique, check with your state’s or province’s massage therapy regulatory authority to ensure that it is within the defined scope of practice for massage therapy. the rotator cuff group has both mover and stabilization roles, it is extremely functionally active and therefore often physically stressed and injured. In fact, after neck and low back conditions, the shoulder is the most com- Supraspinatus monly injured joint of the human body. ROTATOR CUFF PATHOLOGY The three most common types of rotator cuff pathology are tendinitis, tendinosus, and tearing. Excessive physi- cal stress placed on the rotator cuff tendon can cause ir- ritation and inflammation of the tendon, in other words, tendinitis. If the physical stress is chronic, the inflam- matory process often subsides and degeneration of the fascial tendinous tissue occurs; this is referred to as tendinosus. The degeneration of tendinosus results in weakness of the tendon’s structure, and with continued Teres minor physical stress, whether it is overuse microtrauma or a macrotrauma, a rotator cuff tendon tear might occur.
    [Show full text]
  • Scapular Motion Tracking Using Acromion Skin Marker Cluster: in Vitro Accuracy Assessment
    Scapular Motion Tracking Using Acromion Skin Marker Cluster: In Vitro Accuracy Assessment Andrea Cereatti, Claudio Rosso, Ara Nazarian, Joseph P. DeAngelis, Arun J. Ramappa & Ugo Della Croce Journal of Medical and Biological Engineering ISSN 1609-0985 J. Med. Biol. Eng. DOI 10.1007/s40846-015-0010-2 1 23 Your article is protected by copyright and all rights are held exclusively by Taiwanese Society of Biomedical Engineering. This e- offprint is for personal use only and shall not be self-archived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com”. 1 23 Author's personal copy J. Med. Biol. Eng. DOI 10.1007/s40846-015-0010-2 ORIGINAL ARTICLE Scapular Motion Tracking Using Acromion Skin Marker Cluster: In Vitro Accuracy Assessment Andrea Cereatti • Claudio Rosso • Ara Nazarian • Joseph P. DeAngelis • Arun J. Ramappa • Ugo Della Croce Received: 11 October 2013 / Accepted: 20 March 2014 Ó Taiwanese Society of Biomedical Engineering 2015 Abstract Several studies have recently investigated how estimated using an AMC combined with a single anatom- the implementations of acromion marker clusters (AMCs) ical calibration, the accuracy was highly dependent on the method and stereo-photogrammetry affect the estimates of specimen and the type of motion (maximum errors between scapula kinematics.
    [Show full text]
  • Spontaneous Fracture of the Scapula Spines in Association with Severe Rotator Cuff Disease and Osteoporosis
    Central Annals of Musculoskeletal Disorders Case Report *Corresponding author Hans Van der Wall, CNI Molecular Imaging & University of Notre Dame, Sydney, Australia, Tel: +61 2 9736 1040; Spontaneous Fracture of the FAX: +61 2 9736 2095; Email: [email protected] Submitted: 25 March 2020 Scapula Spines in Association Accepted: 07 April 2020 Published: 10 April 2020 ISSN: 2578-3599 with Severe Rotator Cuff Copyright © 2020 Robert B, et al. Disease and Osteoporosis OPEN ACCESS 1 2 3 Breit Robert , Strokon Andrew , Burton Leticia , Van der Wall Keywords H3* and Bruce Warwick3 • Scapular fracture • Rotator cuff arthropathy 1CNI Molecular Imaging, Australia • Osteoporosis 2Sydney Private Hospital, Australia • Scintigraphy 3CNI Molecular Imaging & University of Notre Dame, Sydney, Australia • SPECT/ CT 4Concord Hospital, Australia Abstract We present the case of a 74 year-old woman with diabetes mellitus and established osteoporosis who initially presented with increasing pain and disability of the shoulders. Investigations showed severe rotator cuff disease. This was treated conservatively with physiotherapy and corticosteroid injection into both joints with good pain relief but no improvement in function. She subsequently presented with increasing posterior thoracic pain with plain films reporting no evidence of rib fracture. Bone scintigraphy showed severe rotator cuff disease and degenerative joint disease at multiple sites. The single photon emission computed tomography (SPECT)/ x-ray Computed Tomography (CT) showed bilateral scapula spine fractures of long standing with a probable non-union on the left side. These fractures are rare and difficult to treat when associated with rotator cuff disease. INTRODUCTION Fractures of the scapula spine are rare, with a reported level of dysfunction remained significant with marked restriction frequency of less than twenty cases in the literature [1-8].
    [Show full text]
  • Distal Clavicle Resection
    www.ashevilleortho.com Distal Clavicle Resection Impingement syndrome and associated rotator cuff tears are commonly encountered shoulder problems. This condition is caused when the rotator cuff tendons rub the underside of the acromion bone. Chronic rubbing can lead to a weakening and even tearing of the rotator cuff. Symptoms include pain, weakness and loss of motion. Whether this procedure is done using a scope or through a small incision is dependent on the severity of the tear and the doctor’s preference. The method shown in these animations is with a scope. This content is for informational purposes only. It is not intended to represent actual surgical technique or results. The information is not intended to be a substitute for professional medical advice, diagnosis, treatment or care. Always seek the advice of a medical professional when you have a medical condition. Do not disregard professional medical advice or delay in seeking advice if you have read something in this printout. Copyright © 2013, Understand.com, LLC, All Rights Reserved. Asheville Orthopaedic Associates • (828) 252-7331 www.ashevilleortho.com Distal Clavicle Resection Introduction Impingement syndrome and associated rotator cuff tears are commonly encountered shoulder problems. This condition is caused when the rotator cuff tendons rub the underside of the acromion bone. Chronic rubbing can lead to a weakening and even tearing of the rotator cuff. Symptoms include pain, weakness and loss of motion. Whether this procedure is done using a scope or through a small incision is dependent on the severity of the tear and the doctor’s preference. The method shown in these animations is with a scope.
    [Show full text]
  • Altered Alignment of the Shoulder Girdle and Cervical Spine in Patients with Insidious Onset Neck Pain and Whiplash- Associated Disorder
    Journal of Applied Biomechanics, 2011, 27, 181-191 © 2011 Human Kinetics, Inc. Altered Alignment of the Shoulder Girdle and Cervical Spine in Patients With Insidious Onset Neck Pain and Whiplash- Associated Disorder Harpa Helgadottir, Eythor Kristjansson, Sarah Mottram, Andrew Karduna, and Halldor Jonsson, Jr. Clinical theory suggests that altered alignment of the shoulder girdle has the potential to create or sustain symptomatic mechanical dysfunction in the cervical and thoracic spine. The alignment of the shoulder girdle is described by two clavicle rotations, i.e, elevation and retraction, and by three scapular rotations, i.e., upward rotation, internal rotation, and anterior tilt. Elevation and retraction have until now been assessed only in patients with neck pain. The aim of the study was to determine whether there is a pattern of altered alignment of the shoulder girdle and the cervical and thoracic spine in patients with neck pain. A three-dimensional device measured clavicle and scapular orientation, and cervical and thoracic alignment in patients with insidious onset neck pain (IONP) and whiplash-associated disorder (WAD). An asymptomatic control group was selected for baseline measurements. The symptomatic groups revealed a significantly reduced clavicle retraction and scapular upward rotation as well as decreased cranial angle. A difference was found between the symptomatic groups on the left side, whereas the WAD group revealed an increased scapular anterior tilt and the IONP group a decreased clavicle elevation. These changes may be an important mechanism for maintenance and recurrence or exacerbation of symptoms in patients with neck pain. Keywords: neck pain, whiplash, scapula, posture Clinical theory suggests that altered alignment of of Biomechanics.
    [Show full text]
  • Subacromial Decompression in the Shoulder
    Subacromial Decompression Geoffrey S. Van Thiel, Matthew T. Provencher, Shane J. Nho, and Anthony A. Romeo PROCEDURE 2 22 Indications P ITFALLS ■ Impingement symptoms refractory to at least • There are numerous possible 3 months of nonoperative management causes of shoulder pain that can ■ In conjunction with arthroscopic treatment of a mimic impingement symptoms. All potential causes should be rotator cuff tear thoroughly evaluated prior to ■ Relative indication: type II or III acromion with undertaking operative treatment clinical fi ndings of impingement of isolated impingement syndrome. Examination/Imaging Subacromial Decompression PHYSICAL EXAMINATION ■ Assess the patient for Controversies • Complete shoulder examination with range of • Subacromial decompression in motion and strength the treatment of rotator cuff • Tenderness with palpation over anterolateral pathology has been continually acromion and supraspinatus debated. Prospective studies • Classic Neer sign with anterolateral shoulder have suggested that there is no difference in outcomes with and pain on forward elevation above 90° when without subacromial the greater tuberosity impacts the anterior decompression. acromion (and made worse with internal rotation) • Subacromial decompression • Positive Hawkins sign: pain with internal rotation, performed in association with a forward elevation to 90°, and adduction, which superior labrum anterior- causes impingement against the coracoacromial posterior (SLAP) repair can potentially increase ligament postoperative stiffness. ■ The impingement test is positive if the patient experiences pain relief with a subacromial injection of lidocaine. ■ Be certain to evaluate for acromioclavicular (AC) joint pathology, and keep in mind that there are several causes of shoulder pain that can mimic impingement syndrome. P ITFALLS IMAGING • Ensure that an axillary lateral ■ Standard radiographs should be ordered, view is obtained to rule out an os acromiale.
    [Show full text]
  • The Appendicular Skeleton Appendicular Skeleton
    THE SKELETAL SYSTEM: THE APPENDICULAR SKELETON APPENDICULAR SKELETON The primary function is movement It includes bones of the upper and lower limbs Girdles attach the limbs to the axial skeleton SKELETON OF THE UPPER LIMB Each upper limb has 32 bones Two separate regions 1. The pectoral (shoulder) girdle (2 bones) 2. The free part (30 bones) THE PECTORAL (OR SHOULDER) GIRDLE UPPER LIMB The pectoral girdle consists of two bones, the scapula and the clavicle The free part has 30 bones 1 humerus (arm) 1 ulna (forearm) 1 radius (forearm) 8 carpals (wrist) 19 metacarpal and phalanges (hand) PECTORAL GIRDLE - CLAVICLE The clavicle is “S” shaped The medial end articulates with the manubrium of the sternum forming the sternoclavicular joint The lateral end articulates with the acromion forming the acromioclavicular joint THE CLAVICLE PECTORAL GIRDLE - CLAVICLE The clavicle is convex in shape anteriorly near the sternal junction The clavicle is concave anteriorly on its lateral edge near the acromion CLINICAL CONNECTION - FRACTURED CLAVICLE A fall on an outstretched arm (F.O.O.S.H.) injury can lead to a fractured clavicle The clavicle is weakest at the junction of the two curves Forces are generated through the upper limb to the trunk during a fall Therefore, most breaks occur approximately in the middle of the clavicle PECTORAL GIRDLE - SCAPULA Also called the shoulder blade Triangular in shape Most notable features include the spine, acromion, coracoid process and the glenoid cavity FEATURES ON THE SCAPULA Spine -
    [Show full text]
  • Bone Limb Upper
    Shoulder Pectoral girdle (shoulder girdle) Scapula Acromioclavicular joint proximal end of Humerus Clavicle Sternoclavicular joint Bone: Upper limb - 1 Scapula Coracoid proc. 3 angles Superior Inferior Lateral 3 borders Lateral angle Medial Lateral Superior 2 surfaces 3 processes Posterior view: Acromion Right Scapula Spine Coracoid Bone: Upper limb - 2 Scapula 2 surfaces: Costal (Anterior), Posterior Posterior view: Costal (Anterior) view: Right Scapula Right Scapula Bone: Upper limb - 3 Scapula Glenoid cavity: Glenohumeral joint Lateral view: Infraglenoid tubercle Right Scapula Supraglenoid tubercle posterior anterior Bone: Upper limb - 4 Scapula Supraglenoid tubercle: long head of biceps Anterior view: brachii Right Scapula Bone: Upper limb - 5 Scapula Infraglenoid tubercle: long head of triceps brachii Anterior view: Right Scapula (with biceps brachii removed) Bone: Upper limb - 6 Posterior surface of Scapula, Right Acromion; Spine; Spinoglenoid notch Suprspinatous fossa, Infraspinatous fossa Bone: Upper limb - 7 Costal (Anterior) surface of Scapula, Right Subscapular fossa: Shallow concave surface for subscapularis Bone: Upper limb - 8 Superior border Coracoid process Suprascapular notch Suprascapular nerve Posterior view: Right Scapula Bone: Upper limb - 9 Acromial Clavicle end Sternal end S-shaped Acromial end: smaller, oval facet Sternal end: larger,quadrangular facet, with manubrium, 1st rib Conoid tubercle Trapezoid line Right Clavicle Bone: Upper limb - 10 Clavicle Conoid tubercle: inferior
    [Show full text]
  • Trapezius Origin: Occipital Bone, Ligamentum Nuchae & Spinous Processes of Thoracic Vertebrae Insertion: Clavicle and Scapul
    Origin: occipital bone, ligamentum nuchae & spinous processes of thoracic vertebrae Insertion: clavicle and scapula (acromion Trapezius and scapular spine) Action: elevate, retract, depress, or rotate scapula upward and/or elevate clavicle; extend neck Origin: spinous process of vertebrae C7-T1 Rhomboideus Insertion: vertebral border of scapula Minor Action: adducts & performs downward rotation of scapula Origin: spinous process of superior thoracic vertebrae Rhomboideus Insertion: vertebral border of scapula from Major spine to inferior angle Action: adducts and downward rotation of scapula Origin: transverse precesses of C1-C4 vertebrae Levator Scapulae Insertion: vertebral border of scapula near superior angle Action: elevates scapula Origin: anterior and superior margins of ribs 1-8 or 1-9 Insertion: anterior surface of vertebral Serratus Anterior border of scapula Action: protracts shoulder: rotates scapula so glenoid cavity moves upward rotation Origin: anterior surfaces and superior margins of ribs 3-5 Insertion: coracoid process of scapula Pectoralis Minor Action: depresses & protracts shoulder, rotates scapula (glenoid cavity rotates downward), elevates ribs Origin: supraspinous fossa of scapula Supraspinatus Insertion: greater tuberacle of humerus Action: abduction at the shoulder Origin: infraspinous fossa of scapula Infraspinatus Insertion: greater tubercle of humerus Action: lateral rotation at shoulder Origin: clavicle and scapula (acromion and adjacent scapular spine) Insertion: deltoid tuberosity of humerus Deltoid Action:
    [Show full text]
  • Lag Screw Fixation for Treatment of an Ulnar Styloid Process Fracture with Antebrachiocarpal Joint Luxation in a Cat
    Published online: 2019-06-04 THIEME e32 Case Report Lag Screw Fixation for Treatment of an Ulnar Styloid Process Fracture with Antebrachiocarpal Joint Luxation in a Cat Lindsay A. Parker1 Amy S. Kapatkin2 Mark C. Fuller3 1 Department of Companion Animals, Atlantic Veterinary College, Address for correspondence Lindsay A. Parker, DVM, Atlantic University of Prince Edward Island, Charlottetown, Canada Veterinary College, University of Prince Edward Island, 550 University 2 Department of Surgical and Radiological Sciences, University of Avenue, Charlottetown, PEI, C1A 4P3, Canada California, Davis, CA, United States (e-mail: [email protected]). 3 Fuller Animal Specialty Surgery, Airdrie, AB, Canada VCOT Open 2019;2:e32–e35. Abstract Fracture of the ulnar styloid process can result in clinically debilitating antebrachio- carpal instability. Previously described repair methods include Kirschner wire and figure Keywords of eight tension band wire and/or intramedullary pinning. This case report describes ► feline ulnar styloid surgical repair of a short oblique ulnar styloid process fracture in a cat using two fracture cortical screws placed in lag fashion. Recheck evaluation confirmed lameness-free full ► osteosynthesis return to function with anatomical fracture healing. Introduction acic limb and, on examination under sedation, was found to Lateral styloid process fractures generally require surgical have a marked soft tissue swelling associated with the distal stabilization to avoid carpal instability and to act as a right antebrachium and increased lateral carpal laxity. physical buttress to provide normal joint function.1 Due to Radiographs revealed an antebrachiocarpal joint luxa- the small diameter of the feline distal ulna, these types of tion with an oblique ulnar styloid process fracture (►Fig.
    [Show full text]
  • Complications Associated with Clavicular Fracture
    NOR200061.qxd 9/11/09 1:23 PM Page 217 Complications Associated With Clavicular Fracture George Mouzopoulos ▼ Emmanuil Morakis ▼ Michalis Stamatakos ▼ Mathaios Tzurbakis The objective of our literature review was to inform or- subclavian vein, due to its stable connection with the thopaedic nurses about the complications of clavicular frac- clavicle via the cervical fascia, can also be subjected to ture, which are easily misdiagnosed. For this purpose, we injuries (Casbas et al., 2005). Damage to the internal searched MEDLINE (1965–2005) using the key words clavicle, jugular vein, the suprascapular artery, the axillary, and fracture, and complications. Fractures of the clavicle are usu- carotid artery after a clavicular fracture has also been ally thought to be easily managed by symptomatic treatment reported (Katras et al., 2001). About 50% of injuries to the subclavian arteries are in a broad arm sling. However, it is well recognized that not due to fractures of the clavicle because the proximal all clavicular fractures have a good outcome. Displaced or part is dislocated superiorly by the sternocleidomas- comminuted clavicle fractures are associated with complica- toid, causing damage to the vessel (Sodhi, Arora, & tions such as subclavian vessels injury, hemopneumothorax, Khandelwal, 2007). If no injury happens during the ini- brachial plexus paresis, nonunion, malunion, posttraumatic tial displacement of the fractured part, then it is un- arthritis, refracture, and other complications related to os- likely to happen later, because the distal segment is dis- teosynthesis. Herein, we describe what the orthopaedic nurse placed downward and forward due to shoulder weight, should know about the complications of clavicular fractures.
    [Show full text]
  • Evaluation of Humeral and Glenoid Bone Deformity in Glenohumeral Arthritis 5
    Evaluation of Humeral and Glenoid Bone Deformity 1 in Glenohumeral Arthritis Brian F. Grogan and Charles M. Jobin Introduction glenoid bone wear helps the surgeon formulate a successful treatment plan and surgical goals Glenohumeral arthritis is the sequela of a vari- to address the pathoanatomy and improve the ety of pathologic shoulder processes, most durability of shoulder arthroplasty. The evalu- commonly degenerative osteoarthritis, but may ation of humeral and glenoid bone deformity also be secondary to post-traumatic conditions, in glenohumeral arthritis has profound surgical inflammatory arthritis, rotator cuff tear arthrop- implications and is fundamental to successful athy, and postsurgical conditions most com- shoulder arthroplasty. monly post-capsulorrhaphy arthritis. Patients with glenohumeral arthritis commonly demon- strate patterns of bony deformity on the glenoid Glenoid Deformity in Osteoarthritis and humerus that are caused by the etiology of the arthritis. For example, osteoarthritis com- Glenoid deformity and glenohumeral subluxation monly presents with posterior glenoid wear, are commonly seen in the setting of primary osteo- secondary glenoid retroversion, and posterior arthritis of the glenohumeral joint. The glenoid humeral head subluxation, while inflammatory wear tends to occur posteriorly and may be best arthritis routinely causes concentric glenoid viewed on axial radiographs or computed tomog- wear with central glenoid erosion. A thorough raphy (CT) axial images. Glenoid erosion, as first history and physical, as well as laboratory and characterized by Walch, is noted to be either central radiographic workup, are keys to understanding or posterior, with varying degrees of wear and pos- the etiology of arthritis and understanding the terior subluxation of the humerus [1, 2] (Fig.
    [Show full text]