Constructor Theory Philosophy
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Quantum Biology: an Update and Perspective
quantum reports Review Quantum Biology: An Update and Perspective Youngchan Kim 1,2,3 , Federico Bertagna 1,4, Edeline M. D’Souza 1,2, Derren J. Heyes 5 , Linus O. Johannissen 5 , Eveliny T. Nery 1,2 , Antonio Pantelias 1,2 , Alejandro Sanchez-Pedreño Jimenez 1,2 , Louie Slocombe 1,6 , Michael G. Spencer 1,3 , Jim Al-Khalili 1,6 , Gregory S. Engel 7 , Sam Hay 5 , Suzanne M. Hingley-Wilson 2, Kamalan Jeevaratnam 4, Alex R. Jones 8 , Daniel R. Kattnig 9 , Rebecca Lewis 4 , Marco Sacchi 10 , Nigel S. Scrutton 5 , S. Ravi P. Silva 3 and Johnjoe McFadden 1,2,* 1 Leverhulme Quantum Biology Doctoral Training Centre, University of Surrey, Guildford GU2 7XH, UK; [email protected] (Y.K.); [email protected] (F.B.); e.d’[email protected] (E.M.D.); [email protected] (E.T.N.); [email protected] (A.P.); [email protected] (A.S.-P.J.); [email protected] (L.S.); [email protected] (M.G.S.); [email protected] (J.A.-K.) 2 Department of Microbial and Cellular Sciences, School of Bioscience and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK; [email protected] 3 Advanced Technology Institute, University of Surrey, Guildford GU2 7XH, UK; [email protected] 4 School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK; [email protected] (K.J.); [email protected] (R.L.) 5 Manchester Institute of Biotechnology, Department of Chemistry, The University of Manchester, -
Restricted Agents in Thermodynamics and Quantum Information Theory
Research Collection Doctoral Thesis Restricted agents in thermodynamics and quantum information theory Author(s): Krämer Gabriel, Lea Philomena Publication Date: 2016 Permanent Link: https://doi.org/10.3929/ethz-a-010858172 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library Diss. ETH No. 23972 Restricted agents in thermodynamics and quantum information theory A thesis submitted to attain the degree of DOCTOR OF SCIENCES of ETH ZURICH (Dr. sc. ETH Zurich) presented by Lea Philomena Kr¨amer Gabriel MPhysPhil, University of Oxford born on 18th July 1990 citizen of Germany accepted on the recommendation of Renato Renner, examiner Giulio Chiribella, co-examiner Jakob Yngvason, co-examiner 2016 To my family Acknowledgements First and foremost, I would like to thank my thesis supervisor, Prof. Renato Renner, for placing his trust in me from the beginning, and giving me the opportunity to work in his group. I am grateful for his continuous support and guidance, and I have always benefited greatly from the discussions we had | Renato without doubt has a clear vision, a powerful intuition, and a deep understanding of physics and information theory. Perhaps even more importantly, he has an exceptional gift for explaining complex subjects in a simple and understandable way. I would also like to thank my co-examiners Giulio Chiribella and Jakob Yngvason for agreeing to be part of my thesis committee, and for their input and critical questions in the discussions and conversations we had. -
Many Worlds Model Resolving the Einstein Podolsky Rosen Paradox Via a Direct Realism to Modal Realism Transition That Preserves Einstein Locality
Many Worlds Model resolving the Einstein Podolsky Rosen paradox via a Direct Realism to Modal Realism Transition that preserves Einstein Locality Sascha Vongehr †,†† †Department of Philosophy, Nanjing University †† National Laboratory of Solid-State Microstructures, Thin-film and Nano-metals Laboratory, Nanjing University Hankou Lu 22, Nanjing 210093, P. R. China The violation of Bell inequalities by quantum physical experiments disproves all relativistic micro causal, classically real models, short Local Realistic Models (LRM). Non-locality, the infamous “spooky interaction at a distance” (A. Einstein), is already sufficiently ‘unreal’ to motivate modifying the “realistic” in “local realistic”. This has led to many worlds and finally many minds interpretations. We introduce a simple many world model that resolves the Einstein Podolsky Rosen paradox. The model starts out as a classical LRM, thus clarifying that the many worlds concept alone does not imply quantum physics. Some of the desired ‘non-locality’, e.g. anti-correlation at equal measurement angles, is already present, but Bell’s inequality can of course not be violated. A single and natural step turns this LRM into a quantum model predicting the correct probabilities. Intriguingly, the crucial step does obviously not modify locality but instead reality: What before could have still been a direct realism turns into modal realism. This supports the trend away from the focus on non-locality in quantum mechanics towards a mature structural realism that preserves micro causality. Keywords: Many Worlds Interpretation; Many Minds Interpretation; Einstein Podolsky Rosen Paradox; Everett Relativity; Modal Realism; Non-Locality PACS: 03.65. Ud 1 1 Introduction: Quantum Physics and Different Realisms ............................................................... -
A Scientific Metaphysical Naturalisation of Information
1 A Scientific Metaphysical Naturalisation of Information With a indication-based semantic theory of information and an informationist statement of physicalism. Bruce Long A thesis submitted to fulfil requirements for the degree of Doctor of Philosophy Faculty of Arts and Social Sciences The University of Sydney February 2018 2 Abstract The objective of this thesis is to present a naturalised metaphysics of information, or to naturalise information, by way of deploying a scientific metaphysics according to which contingency is privileged and a-priori conceptual analysis is excluded (or at least greatly diminished) in favour of contingent and defeasible metaphysics. The ontology of information is established according to the premises and mandate of the scientific metaphysics by inference to the best explanation, and in accordance with the idea that the primacy of physics constraint accommodates defeasibility of theorising in physics. This metaphysical approach is used to establish a field ontology as a basis for an informational structural realism. This is in turn, in combination with information theory and specifically mathematical and algorithmic theories of information, becomes the foundation of what will be called a source ontology, according to which the world is the totality of information sources. Information sources are to be understood as causally induced configurations of structure that are, or else reduce to and/or supervene upon, bounded (including distributed and non-contiguous) regions of the heterogeneous quantum field (all quantum fields combined) and fluctuating vacuum, all in accordance with the above-mentioned quantum field-ontic informational structural realism (FOSIR.) Arguments are presented for realism, physicalism, and reductionism about information on the basis of the stated contingent scientific metaphysics. -
Many Worlds? an Introduction Simon Saunders
Many Worlds? An Introduction Simon Saunders Introduction to Many Worlds? Everett, quantum theory, and reality, S. Saun- ders, J. Barrett, A. Kent, D. Wallace (eds.), Oxford University Press (2010). This problem of getting the interpretation proved to be rather more difficult than just working out the equation. P.A.M. Dirac Ask not if quantum mechanics is true, ask rather what the theory implies. What does realism about the quantum state imply? What follows then, when quantum theory is applied without restriction, if need be to the whole universe? This is the question this book addresses. The answers vary widely. Ac- cording to one view, `what follows' is a detailed and realistic picture of reality that provides a unified description of micro- and macroworlds. But according to another, the result is nonsense { there is no physically meaningful theory at all, or not in the sense of a realist theory, a theory supposed to give an intel- ligible picture of a reality existing independently of our thoughts and beliefs. According to the latter view, the formalism of quantum mechanics, if applied unrestrictedly, is at best a fragment of such a theory, in need of substantive additional assumptions and equations. So sharp a division about what appears to be a reasonably well-defined question is all the more striking given how much agreement there is otherwise. For all parties to the debate in this book are agreed on realism, and on the need, or the aspiration, for a theory that unites micro- and macroworlds. They all see it as legitimate { obligatory even { to ask whether the fundamental equations of quantum mechanics, principally the Schr¨odingerequation, already constitute such a system. -
Toward a Computational Theory of Everything
International Journal of Recent Advances in Physics (IJRAP) Vol.9, No.1/2/3, August 2020 TOWARD A COMPUTATIONAL THEORY OF EVERYTHING Ediho Lokanga A faculty member of EUCLID (Euclid University). Tipton, United Kingdom HIGHLIGHTS . This paper proposes the computational theory of everything (CToE) as an alternative to string theory (ST), and loop quantum gravity (LQG) in the quest for a theory of quantum gravity and the theory of everything. A review is presented on the development of some of the fundamental ideas of quantum gravity and the ToE, with an emphasis on ST and LQG. Their strengths, successes, achievements, and open challenges are presented and summarized. The results of the investigation revealed that ST has not so far stood up to scientific experimental scrutiny. Therefore, it cannot be considered as a contender for a ToE. LQG or ST is either incomplete or simply poorly understood. Each of the theories or approaches has achieved notable successes. To achieve the dream of a theory of gravity and a ToE, we may need to develop a new approach that combines the virtues of these two theories and information. The physics of information and computation may be the missing link or paradigm as it brings new recommendations and alternate points of view to each of these theories. ABSTRACT The search for a comprehensive theory of quantum gravity (QG) and the theory of everything (ToE) is an ongoing process. Among the plethora of theories, some of the leading ones are string theory and loop quantum gravity. The present article focuses on the computational theory of everything (CToE). -
FOOTPRINTS of GENERAL SYSTEMS THEORY Aleksandar Malecic Faculty of Electronic Engineering University of Nis, Serbia Aleks.Maleci
FOOTPRINTS OF GENERAL SYSTEMS THEORY Aleksandar Malecic Faculty of Electronic Engineering University of Nis, Serbia [email protected] ABSTRACT In order to identify General Systems Theory (GST) or at least have a fuzzy idea of what it might look like, we shall look for its traces on different systems. We shall try to identify such an “animal” by its “footprints”. First we mention some natural and artificial systems relevant for our search, than note the work of other people within cybernetics and identification of systems, and after that we are focused on what unification of different systems approaches and scientific disciplines should take into account (and whether or not it is possible). Axioms and principles are mentioned as an illustration of how to look for GST*. A related but still separate section is about Len Troncale and linkage propositions. After them there is another overview of different kinds of systems (life, consciousness, and physics). The documentary film Dangerous Knowledge and ideas of its characters Georg Cantor, Ludwig Boltzmann, Kurt Gödel, and Alan Turing are analyzed through systems worldview. “Patterns all the way down” and similar ideas by different authors are elaborated and followed by a section on Daniel Dennett’s approach to real patterns. Two following sections are dedicated to Brian Josephson (a structural theory of everything) and Sunny Auyang. After that the author writes about cosmogony, archetypes, myths, and dogmas. The paper ends with a candidate for GST*. Keywords: General Systems Theory, unification, patterns, principles, linkage propositions SYSTEMS IN NATURE AND ENGINEERING The footprints manifest as phenomena and scientific disciplines. -
The Structure of the Multiverse David Deutsch
The Structure of the Multiverse David Deutsch Centre for Quantum Computation The Clarendon Laboratory University of Oxford, Oxford OX1 3PU, UK April 2001 Keywords: multiverse, parallel universes, quantum information, quantum computation, Heisenberg picture. The structure of the multiverse is determined by information flow. 1. Introduction The idea that quantum theory is a true description of physical reality led Everett (1957) and many subsequent investigators (e.g. DeWitt and Graham 1973, Deutsch 1985, 1997) to explain quantum-mechanical phenomena in terms of the simultaneous existence of parallel universes or histories. Similarly I and others have explained the power of quantum computation in terms of ‘quantum parallelism’ (many classical computations occurring in parallel). However, if reality – which in this context is called the multiverse – is indeed literally quantum-mechanical, then it must have a great deal more structure than merely a collection of entities each resembling the universe of classical physics. For one thing, elements of such a collection would indeed be ‘parallel’: they would have no effect on each other, and would therefore not exhibit quantum interference. For another, a ‘universe’ is a global construct – say, the whole of space and its contents at a given time – but since quantum interactions are local, it must in the first instance be local physical systems, such as qubits, measuring instruments and observers, that are split into multiple copies, and this multiplicity must propagate across the multiverse at subluminal speeds. And for another, the Hilbert space structure of quantum states provides an infinity of ways David Deutsch The Structure of the Multiverse of slicing up the multiverse into ‘universes’, each way corresponding to a choice of basis. -
Physics of Immortality: Death and Eternal Life in Frank Tipler and Robert Lanza’S Theories
Funes. Journal of narratives and social sciences 2018 | Vol. 2 The (meta)physics of immortality: Death and eternal life in Frank Tipler and Robert Lanza’s theories Roberto Paura Università degli Studi di Perugia Abstract In an age when the explanatory and consolatory narratives of religion about death seem to lose their appeal, referring to scientific backgrounds to develop new theories about life after death seems an effective alternative. A demonstration of this assumption is given by the success of theoretical physicist Frank J. Tipler’s books The Physics of Immortality (1994) and The Physics of Christianity (2007), and of the ones by famous physician Robert Lanza (in collaboration with the astronomer Bob Berman) Biocentrism (2009) and Beyond Biocentrism (2016). Both Tipler’s Omega Point theory and Lanza’s Biocentricism are based on particular interpretations of the concepts underlying the so-called “new physics”, in particular quantum physics, the physics of time, and the cosmological anthropic principle. These two theories attribute a decisive role to the consciousness and thus to intelligent life in the construction of reality, proposing the hypothesis that life is destined to last forever. This implies that the individual consciousness of every human being, after death, should persist in other forms and contribute to the evolution of the universe. Keywords: death, physics, immortality, Biocentrism, Omega Point theory Foreword At the very basis of the modern conception of scientific knowledge lies the separation between the domain of the knowledge acquired through the scientific method and those that pertain to metaphysical conceptions: the rise of a scientific community capable of developing theories independently from any metaphysical backgrounds marks the transition from natural philosophy to science1. -
Quantum Mechanics, Objective Reality, and the Problem of Consciousness
Quantum mechanics, objective reality, and the problem of consciousness Ranjan Mukhopadhyay Department of Physics, Clark University, Worcester, MA 01610. Email: [email protected] April 11, 2018 Abstract The hard problem in consciousness is the problem of understanding how physical processes in the brain could give rise to subjective conscious experience. In this paper, I suggest that in order to understand the relationship between consciousness and the physical world, we need to probe deeply into the nature of physical reality. This leads us to quantum physics and to a second explanatory gap: that between quantum and classical reality. I will seek a philosophical framework that can address these two gaps simultaneously. Our analysis of quantum mechanics will naturally lead us to the notion of a hidden reality and to the postulate that consciousness is an integral component of this reality. The framework proposed in the paper provides the philosophical under- pinnings for a theory of consciousness while satisfactorily resolving the interpretation problem in quantum mechanics without the need to alter its mathematical structure. I also discuss some implications for a scientific theory of consciousness. 1 Introduction At the heart of our scientific endeavor to understand the world, exist two explanatory gaps relating to the nature of reality and of consciousness. The first, better known, gap concerns the relation between subjective conscious experience and physical neurological processes in arXiv:1804.03606v1 [physics.hist-ph] 10 Apr 2018 the brain. The relationship between the quantum micro-world and the classical world that we experience constitutes the second gap. As I will discuss, these explanatory gaps appear to be fundamental and pose a barrier to our understanding of the nature of the world and our place in it. -
BEYOND REWARD and PUNISHMENT David Deutsch
The most significant developments in the sciences today (i.e., those that affect the lives of everybody on the planet) are about, informed by, or implemented through advances in software and computation. Central to the future of these developments is physicist David Deutsch, the founder of the field of quantum computation, whose 1985 paper on universal quantum computers was the first full treatment of the subject; the Deutsch-Jozsa algorithm was the first quantum algorithm to demonstrate the enormous potential power of quantum computation. When he initially proposed it, quantum computation seemed practically impossible. But the explosion in the construction of simple quantum computers and quantum communication systems never would have taken place without his worK. He has made many other important contributions in areas such as quantum cryptography and the many-worlds interpretation of quantum theory. In a philosophic paper (with Artur EKert), he appealed to the existence of a distinctive quantum theory of computation to argue that our knowledge of mathematics is derived from, and subordinate to, our knowledge of physics (even though mathematical truth is independent of physics). Because he has spent a good part of his worKing life changing people’s worldviews, his recognition among his peers as an intellectual goes well beyond his scientific achievement. He argues (following Karl Popper) that scientific theories are “bold conjectures,” not derived from evidence but only tested by it. His two main lines of research at the moment—qubit-field theory and constructor theory—may well yield important extensions of the computational idea. In the following essay, he more or less aligns himself with those who see human-level artificial intelligence as promising us a better world rather than the Apocalypse. -
Arxiv:2007.05300V2 [Physics.Hist-Ph] 13 Jul 2020
Agency in Physics Carlo Rovelli Aix Marseille University, Universit´ede Toulon, CNRS, CPT, 13288 Marseille, France. Perimeter Institute, 31 Caroline Street North, Waterloo, Ontario, Canada, N2L 2Y5. The Rotman Institute of Philosophy, 1151 Richmond St. N London, Ontario, Canada, N6A 5B7. (Dated: July 14, 2020) I discuss three aspects of the notion of agency from the standpoint of physics: (i) what makes a physical system an agent; (ii) the reason for agency’s time orientation; (iii) the source of the infor- mation generated in choosing an action. I observe that agency is the breaking of an approximation under which dynamics appears closed. I distinguish different notions of agency, and observe that the answer to the questions above differ in different cases. I notice a structural similarity between agency and memory, that allows us to model agency, trace its time asymmetry to thermodynami- cal irreversibility, and identify the source of the information generated by agency in the growth of entropy. Agency is therefore a physical mechanism that transforms low entropy into information. This may be the general mechanism at the source of the whole information on which biology builds. I. THE PROBLEM tive is to trace it to the manifest time-asymmetry of the macroscopic world. This, in turn, is accounted for by the Agency is the possibility for an agent to act on the second principle of thermodynamics, widely understood; world, and affect it. The notion of agency is used in by which I mean here the genericity assumption of statis- a variety of contexts, with variable meanings. Agents tical physics plus (the non-genericity assumption of) the play a role in areas spacing from economy to theology.