Thyroidectomy

Total Page:16

File Type:pdf, Size:1020Kb

Thyroidectomy CC-BY-NC 3.0 THYROIDECTOMY Eugenio Panieri & Johan Fagan Thyroidectomy is a very common opera- Superior Laryngeal n (Internal) tion. The most frequent indications for sur- gery are uncertainty about the nature of a Superior thyroid artery thyroid mass, or treatment of a large goitre Superior Laryngeal n (External) causing compressive symptoms, thyroid cancer, or thyrotoxicosis refractory to med- Common carotid artery ical management. Internal jugular vein Surgical Anatomy Thyroid Isthmus (R) thyroid lobe A detailed knowledge of thyroid anatomy is a prerequisite for thyroid surgery. Particu- Inferior thyroid vein lar attention needs to be paid to identifying Trachea and preserving the recurrent laryngeal Figure 2: Anatomy of thyroid gland nerve (RLN), the external branch of the su- perior laryngeal nerve (SLN) and the para- The pyramidal lobe is a superior extension thyroid glands. near the midline and is present in up to 70% of cases (Figure 1). Thyroid gland The thyroid is encased by a fine capsule of The gland consists of two lateral lobes pretracheal fascia which is part of the joined anteriorly by the isthmus which typ- middle layer of deep cervical fascia. The fas- ically overlies the 2nd and 3rd tracheal rings cial layers fuse to form Berry’s (Figures 1, 2). ligament which posteromedially firmly at- taches the thyroid to the trachea. The gland encircles the anterior and lateral aspects of the cervical trachea and is applied to the surface of the larynx. Lateral to the gland are the carotid sheath (common ca- rotid artery, internal jugular vein and va- gus/Xn) and the sternocleidomastoid (SCM) muscle (Figures 1, 2). Anterior to the thyroid are the infrahyoid strap muscles (sternohyoid and sternothyroid) (Figure 3). The deep/medial anatomical relations are the thyroid (caudad to attachment of ster- Figure 1: Anatomy of thyroid gland, pyramidal lobe nothyroid muscle to oblique line) and cri- and relations to carotid sheath and vasculature coid cartilages, trachea, inferior constrictor http://openbooks.uct.ac.za/ENTatlas 22-1 Open Access Atlas of Otolaryngology, Head & Neck Operative Surgery and cricothyroid muscles, oesophagus, su- the RLN, the inferior thyroid artery, Berry's perior and inferior thyroid arteries, and ligament and the superior RLNs (Figures 3, 4, 5). Ext Carotid artery Sup thyroid art Inf constrictor Cricothyroid Parathyroids Inf thyroid art Figure 3: The superficial relations of the thyroid are RLNs the infrahyoid strap muscles (sternohyoid and sterno- thyroid) and SCM Oesophagus Thyrocervical trunk Figure 5: Posterior view of the thyroid gland demon- strating the deep / medial anatomical relations, the RLNs and the superior and inferior thyroid arteries parathyroid gland. The tubercle usually projects lateral to the RLN. Elevating the tu- bercle allows the RLN to be readily located. Less commonly the RLN courses lateral to an enlarged tubercle; this places the nerve at Figure 4: Structures deep to thyroid gland: Note the risk of injury. The superior parathyroid oblique line to which the sternothyroid muscle inserts gland, also derived from the 4th branchial and which defines the anterosuperior limit of the thy- cleft, is commonly located close to and roid (Wikipedia) cephalad to the tubercle. The thyroid gland weighs 15-25g. The thy- roid lobes are normally cone-shaped and measure approximately 5cm in length and TZ 2-3cms in width in both transverse and an- teroposterior dimensions. Superior parathyroid RLN The Tubercle of Zukerkandl is a pyramidal enlargement of the lateral edge of the thy- roid lobe that stems from the fusion of the lateral and medial thyroid anlages (Figure Figure 6: Tubercle of Zuckerkandl (TZ) and its rela- 6). It is recognisable in up to 75% of thy- tionship to the superior parathyroid gland and RLN roids. It is anatomically closely related to http://openbooks.uct.ac.za/ENTatlas 22-2 Eugenio Panieri & Johan Fagan Blood supply pole of the thyroid (Figure 5). It provides blood supply to the thyroid, upper oesoph- The arterial supply is based on the superior agus and trachea, and is the sole arterial thyroid (STA) and inferior thyroid (ITA) supply to all the parathyroid glands, both arteries. Occasionally the thyroidea ima ar- superior and inferior. The relationship of tery is encountered inferiorly but is seldom the ITA and RLN is reviewed later. of surgical relevance. It arises from the innominate artery or aortic arch and as- Venous drainage is quite variable and oc- cends along the front of the trachea. curs via a capsular network of thin-walled, freely intercommunicating veins which The superior thyroid artery (STA) is the drain through the superior thyroid veins first branch of the external carotid artery (adjacent to the STA), the inferior thyroid (Figures 2, 5, 7). It courses over the external veins (exit the inferior pole), and the mid- surface of the inferior constrictor muscle of dle thyroid vein(s), which course laterally the pharynx, entering the gland posterome- to drain directly into the internal jugular dially just below the highest point of the up- vein (Figure 1). The middle thyroid vein is per pole where it usually is located superfi- surgically most relevant; it is encountered cial to the external branch of the SLN (Fig- early during thyroid mobilisation, and fail- ure 2). Its branches communicate with the ure to secure it causes bothersome bleeding. ITA and cross to the contralateral thyroid lobe via the thyroid isthmus. Lymphatic drainage parallels the venous drainage and occurs to the lateral deep cer- vical and pre- and paratracheal lymph nodes (Figure 8). Understanding the pattern of nodal drainage is particularly important in managing patients with thyroid cancer STA since the cervicocentral compartment is most commonly involved in metastatic thy- ITA roid cancer. Thyrocervical Subclavian a Figure 7: Superior thyroid artery (STA), subclavian artery, thyrocervical trunk and inferior thyroid artery (ITA) The inferior thyroid artery (ITA) is a branch of the thyrocervical trunk which originates from the subclavian artery (Fig- ures 5, 7). It courses superiorly along the surface of the anterior scalene muscle be- Figure 8: Posterior view of the course of the lymphatics fore it turns medially behind the carotid and RLNs sheath from where it reaches the inferior http://openbooks.uct.ac.za/ENTatlas 22-3 Open Access Atlas of Otolaryngology, Head & Neck Operative Surgery Recurrent Laryngeal Nerve (RLN) During thyroid surgery, identification and preservation of the RLN and all of its divi- sions is essential to minimise morbidity. The RLN innervates all the intrinsic mus- cles of the larynx except the cricothyroid muscle (SLN) and provides sensory inner- Xns vation to the larynx. Even minor neuro- praxia may cause dysphonia; irreversible in- RLNs jury confers permanent hoarseness. The re- Subclavian arteries ported incidence of RLN injury during thy- roidectomy is 0 - 28% and is the most com- Aortic arch mon reason for medicolegal claims follow- ing thyroidectomy. The RLNs originate from the Xn. After cir- Figure 9: Typical anatomical course of RLNs (Non-re- cling around the subclavian artery (right) current RLN in red) and aortic arch (left) the RLNs ascend supe- riorly and medially toward the trache- The RLN may be non-recurrent in approx- oesophageal groove (Figures 8, 9). The right imately 0.6% of patients i.e. does not pass RLN enters the root of the neck from a more around the subclavian artery, but branches lateral direction. Its course is less predicta- from the Xn higher in the neck, passing di- ble than that of the left RLN. The RLNs en- rectly to the larynx close to the superior thy- ter the larynx deep to the inferior constric- roid vessels (Figure 9). This aberration al- tor muscles and posterior to the cricothy- most always occurs on the right side and is roid joint. associated with a retroesophageal subcla- vian artery. Knowledge of the anatomical relationships of the RLN to the tracheoesophageal groove, ligament of Berry, and ITA is essen- tial. The course of the RLN with respect to the ITA is quite variable. Most commonly it crosses behind the branches of the artery, more predictably so on the left. However, the nerve may pass deep to, superficial to, or between the terminal branches of the ITA. Up to twenty anatomical variations have been described. In Figure 10 the RLN is seen to pass anterior to the artery. http://openbooks.uct.ac.za/ENTatlas 22-4 Eugenio Panieri & Johan Fagan Superior Laryngeal Nerve (SLN) The SLN is a branch of the Xn and has both an external and internal branch (Figures 2, 12). The internal branch is situated above and outside the normal field of dissection; it is sensory and enters the larynx through the thyrohyoid membrane. Figure 10: RLN passing over the inferior thyroid ar- The external branch innervates the crico- tery (right neck, thyroid reflected medially) thyroid muscle, a tensor of the vocal cord. Injury to the SLN causes hoarseness, de- The majority of RLNs are located within creased pitch and/or volume, and voice fa- 3mm of Berry’s ligament; rarely the nerve is tigue. These voice changes are more subtle embedded in it, and more commonly lies than those relating to a RLN injury, and are laterally to it. frequently underestimated and not re- ported. The external branch of the SLN is at Classically, the RLN is identified intra-op- risk because of its close proximity to the eratively in Simon’s triangle, which is STA (Figures 12, 13). Understanding its re- formed by the common carotid artery later- lationship to the upper pole of the thyroid ally, the oesophagus medially, and the ITA and the STA is crucial to preserving its in- superiorly (Figure 11). tegrity. XIIn SLN (internal) SLN (external) STA Figure 11: RLN crossing Simon’s triangle formed by Sup pole thy- oesophagus, inferior thyroid artery (ITA) and com- mon carotid artery (right neck, thyroid reflected me- roid dially) Figure 12: RLN crossing Simon’s triangle formed by oesophagus, inferior thyroid artery (ITA) and com- The Tubercle of Zukerkandl may also be mon carotid artery (right neck, thyroid reflected me- used as an anatomical landmark to identify dially) the nerve (Figure 6).
Recommended publications
  • Anatomy of the Thyroid, Parathyroid, Pituitary and Adrenal Glands, Surgery (2017), BASIC SCIENCE
    BASIC SCIENCE The neuroendocrine parafollicular (C) cells from neural crest Anatomy of the thyroid, tissue develop separately in the ultimobranchial body, which develops from the 4th pharyngeal pouch. These cells migrate into parathyroid, pituitary and the thyroid tissue following fusion of the ultimobranchial body with the thyroid gland. adrenal glands Glandular development is controlled by thyroid-stimulating hormone (TSH) and the thyroid becomes functional during the Sarah Hillary third month of gestation. Saba P Balasubramanian Gross anatomy The thyroid gland lies anterior to the cricoid cartilage and tra- Abstract chea, and slightly inferior to the thyroid cartilages. It comprises A detailed understanding of anatomy is essential for several reasons: two lateral lobes joined together by an isthmus. The lateral lobes to enable accurate diagnosis and plan appropriate management; to can be traced from the lateral aspect of the thyroid cartilage perform surgery in a safe and effective manner avoiding damage to down to the level of the sixth tracheal ring. The isthmus overlies adjacent structures; and to anticipate and recognize variations in the second and third tracheal rings. The entire gland is enclosed normal anatomy. This article will cover the anatomy of four major within the pretracheal fascia, a layer of deep fascia that anchors endocrine glands (thyroid, parathyroid, pituitary and adrenal). Other the gland posteriorly with the trachea and the laryngopharynx, endocrine glands (such as the hypothalamus, pineal gland, thymus, causing it to move during swallowing. The gland has a fibrous endocrine pancreas and the gonads) are beyond the scope of this outer capsule, from which septae run into the gland to separate it article.
    [Show full text]
  • Endocrine Block اللهم ال سهل اال ما جعلته سهل و أنت جتعل احلزن اذا شئت سهل
    OSPE ENDOCRINE BLOCK اللهم ﻻ سهل اﻻ ما جعلته سهل و أنت جتعل احلزن اذا شئت سهل Important Points 1. Don’t forget to mention right and left. 2. Read the questions carefully. 3. Make sure your write the FULL name of the structures with the correct spelling. Example: IVC ✕ Inferior Vena Cava ✓ Aorta ✕ Abdominal aorta ✓ 4. There is NO guarantee whether or not the exam will go out of this file. ممكن يأشرون على أجزاء مو معلمه فراح نحط بيانات إضافية حاولوا تمرون عليها كلها Good luck! Pituitary gland Identify: 1. Anterior and posterior clinoidal process of sella turcica. 2. Hypophyseal fossa (sella turcica) Theory • The pituitary gland is located in middle cranial fossa and protected in sella turcica (hypophyseal fossa) of body of sphenoid. Relations Of Pituitary Gland hypothalamus Identify: 1. Mamillary body (posteriorly) 2. Optic chiasma (anteriorly) 3. Sphenoidal air sinuses (inferior) 4. Body of sphenoid 5. Pituitary gland Theory • If pituitary gland became enlarged (e.g adenoma) it will cause pressure on optic chiasma and lead to bilateral temporal eye field blindness (bilateral hemianopia) Relations Of Pituitary Gland Important! Identify: 1. Pituitary gland. 2. Diaphragma sellae (superior) 3. Sphenoidal air sinuses (inferior) 4. Cavernous sinuses (lateral) 5. Abducent nerve 6. Oculomotor nerve 7. Trochlear nerve 8. Ophthalmic nerve 9. Trigeminal (Maxillary) nerve Structures of lateral wall 10. Internal carotid artery Note: Ophthalmic and maxillary are both branches of the trigeminal nerve Divisions of Pituitary Gland Identify: 1. Anterior lobe (Adenohypophysis) 2. Optic chiasma 3. Infundibulum 4. Posterior lobe (Neurohypophysis) Theory Anterior Lobe Posterior Lobe • Adenohypophysis • Neurohypophysis • Secretes hormones • Stores hormones • Vascular connection to • Neural connection to hypothalamus by hypothalamus by Subdivisions hypophyseal portal hypothalamo-hypophyseal system (from superior tract from supraoptic and hypophyseal artery) paraventricular nuclei.
    [Show full text]
  • Cervical Viscera and Root of Neck
    Cervical viscera & Root of neck 頸部臟器 與 頸根部 解剖學科 馮琮涵 副教授 分機 3250 E-mail: [email protected] Outline: • Position and structure of cervical viscera • Blood supply and nerve innervation of cervical viscera • Contents in root of neck Viscera of the Neck Endocrine layer – thyroid and parathyroid glands Respiratory layer – larynx and trachea Alimentary layer – pharynx and esophagus Thyroid gland Position: deep to sterno-thyroid and sterno-hyoid ms. (the level of C5 to T1) coverd by pretracheal deep cervical fascia (loose sheath) and capsule (dense connective tissue) anterolateral to the trachea arteries: superior thyroid artery – ant. & post. branches inferior thyroid artery (br. of thyrocervical trunk) thyroid ima artery (10%) Veins: superior thyroid vein IJVs (internal jugular veins) middle thyroid vein IJVs inferior thyroid vein brachiocephalic vein Thyroid gland Lymphatic drainage: prelaryngeal, pretracheal and paratracheal • lymph nodes inferior deep cervical lymph nodes Nerves: superior, middle & inferior cervical sympathetic ganglia periarterial plexuses • # thyroglossal duct cysts, pyramidal lobe (50%) # Parathyroid glands Position: external to thyroid capsule, but inside its sheath superior parathyroid glands – 1 cm sup. to the point of inf. thyroid artery into thyroid inferior parathyroid glands – 1 cm inf. to inf. thyroid artery entry point (various position) Vessels: branches of inf. thyroid artery or sup. thyroid artery parathyroid veins venous plexuses of ant. surface of thyroid Nerves: thyroid branches of the cervical sympathetic ganglia Trachea Tracheal rings (C-shape cartilage) + trachealis (smooth m.) Position: C6 (inf. end of the larynx) – T4/T5 (sternal angle) # trache`ostomy – 1st and 2nd or 2nd through 4th tracheal rings # care: inf. thyroid veins, thyroid ima artery, brachiocephalic vein, thymus and trachea Esophagus Position: from the inf.
    [Show full text]
  • Neurovascular Anatomy (1): Anterior Circulation Anatomy
    Neurovascular Anatomy (1): Anterior Circulation Anatomy Natthapon Rattanathamsakul, MD. December 14th, 2017 Contents: Neurovascular Anatomy Arterial supply of the brain . Anterior circulation . Posterior circulation Arterial supply of the spinal cord Venous system of the brain Neurovascular Anatomy (1): Anatomy of the Anterior Circulation Carotid artery system Ophthalmic artery Arterial circle of Willis Arterial territories of the cerebrum Cerebral Vasculature • Anterior circulation: Internal carotid artery • Posterior circulation: Vertebrobasilar system • All originates at the arch of aorta Flemming KD, Jones LK. Mayo Clinic neurology board review: Basic science and psychiatry for initial certification. 2015 Common Carotid Artery • Carotid bifurcation at the level of C3-4 vertebra or superior border of thyroid cartilage External carotid artery Supply the head & neck, except for the brain the eyes Internal carotid artery • Supply the brain the eyes • Enter the skull via the carotid canal Netter FH. Atlas of human anatomy, 6th ed. 2014 Angiographic Correlation Uflacker R. Atlas of vascular anatomy: an angiographic approach, 2007 External Carotid Artery External carotid artery • Superior thyroid artery • Lingual artery • Facial artery • Ascending pharyngeal artery • Posterior auricular artery • Occipital artery • Maxillary artery • Superficial temporal artery • Middle meningeal artery – epidural hemorrhage Netter FH. Atlas of human anatomy, 6th ed. 2014 Middle meningeal artery Epidural hematoma http://www.jrlawfirm.com/library/subdural-epidural-hematoma
    [Show full text]
  • Download PDF File
    ONLINE FIRST This is a provisional PDF only. Copyedited and fully formatted version will be made available soon. ISSN: 0015-5659 e-ISSN: 1644-3284 Two cases of combined anatomical variations: maxillofacial trunk, vertebral, posterior communicating and anterior cerebral atresia, linguofacial and labiomental trunks Authors: M. C. Rusu, A. M. Jianu, M. D. Monea, A. C. Ilie DOI: 10.5603/FM.a2021.0007 Article type: Case report Submitted: 2020-11-28 Accepted: 2021-01-08 Published online: 2021-01-29 This article has been peer reviewed and published immediately upon acceptance. It is an open access article, which means that it can be downloaded, printed, and distributed freely, provided the work is properly cited. Articles in "Folia Morphologica" are listed in PubMed. Powered by TCPDF (www.tcpdf.org) Two cases of combined anatomical variations: maxillofacial trunk, vertebral, posterior communicating and anterior cerebral atresia, linguofacial and labiomental trunks M.C. Rusu et al., The maxillofacial trunk M.C. Rusu1, A.M. Jianu2, M.D. Monea2, A.C. Ilie3 1Division of Anatomy, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania 2Department of Anatomy, Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy, Timişoara, Romania 3Department of Functional Sciences, Discipline of Public Health, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania Address for correspondence: M.C. Rusu, MD, PhD (Med.), PhD (Biol.), Dr. Hab., Prof., Division of Anatomy, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 8 Eroilor Sanitari Blvd., RO-76241, Bucharest, Romania, , tel: +40722363705 e-mail: [email protected] ABSTRACT Background: Commonly, arterial anatomic variants are reported as single entities.
    [Show full text]
  • Study of the Common Origin of Lingual and Facial Artery from External Carotid Artery – Research Article
    IOSR Journal of Dental and Medical Sciences (IOSR-JDMS) e-ISSN: 2279-0853, p-ISSN: 2279-0861.Volume 15, Issue 6 Ver. VIII (June. 2016), PP 58-59 www.iosrjournals.org Study of the Common Origin of Lingual And Facial Artery from External Carotid Artery – Research Article Dr. K. Asha Latha1, Raju Sugavasi2 1MD Anatomy, Professor, Department Of Anatomy, Fathima Institute Of Medical Sciences (FIMS), Kadapa, Andhra Pradesh, India. 2M.Sc Medical Anatomy, Assistant Professor, Department Of Anatomy, Fathima Institute Of Medical Sciences (FIMS) ,Kadapa, Andhra Pradesh, India. Abstract: Anatomical knowledge of variations in the branching pattern of the external carotid artery will be helpful in surgical procedures of the head and neck region and also in angiographic studies. Material And Methods: Present study was conducted in the neck region of 25 embalmed human cadavers to find out the variations in the branching pattern of the external carotid artery. Results: Common origin of linguo facial trunk variations was found in 2 cases unilaterally out of 50 cases. Conclusion: Present study concluded the incidence of common linguo facial trunk was 4%. Keywords: linguo facial trunk, External carotid artery, Common carotid artery I. Introduction The common carotid artery (CCA), internal carotid artery (ICA) and External carotid arteries (ECA) are provides the major resource of blood to the head and neck region. The CCA bifurcates into an internal carotid artery and an external carotid artery in the carotid triangle at upper border of thyroid cartilage, disc between the C3 and C4 cervical vertebra. The external carotid artery runs antero medial to the internal carotid artery at its origin then becomes anterior and lateral as it ascends.
    [Show full text]
  • Downhill Varices Resulting from Giant Intrathoracic Goiter
    E40 UCTN – Unusual cases and technical notes Downhill varices resulting from giant intrathoracic goiter Fig. 2 Sagittal com- puted tomography of the chest. The goiter was immense, reaching the aortic arch, sur- rounding the trachea and partially compres- sing the upper esopha- gus. The esophagus was additionally com- pressed by anterior spinal spondylophytes. Fig. 1 Multiple submucosal veins in the upper esophagus, consistent with downhill varices. An 82-year-old man was admitted to the hospital because of substernal chest pain, dyspnea, and occasional dysphagia to sol- ids. His past medical history was remark- geal varices are called “downhill varices”, References able for diabetes mellitus type II, hyper- as they are located in the upper esophagus 1 Kotfila R, Trudeau W. Extraesophageal vari- – lipidemia, and Parkinson’s disease. On and project downwards. Downhill varices ces. Dig Dis 1998; 16: 232 241 2 Basaranoglu M, Ozdemir S, Celik AF et al. A occur as a result of shunting in cases of up- physical examination he appeared frail case of fibrosing mediastinitis with obstruc- but with no apparent distress. Examina- per systemic venous obstruction from tion of superior vena cava and downhill tion of the neck showed no masses, stri- space-occupying lesions in the medias- esophageal varices: a rare cause of upper dor or jugular venous distension. Heart tinum [2,3]. Downhill varices as a result of gastrointestinal hemorrhage. J Clin Gastro- – examination disclosed a regular rate and mediastinal processes are reported to enterol 1999; 28: 268 270 3 Calderwood AH, Mishkin DS. Downhill rhythm; however a 2/6 systolic ejection occur in up to 50% of patients [3,4].
    [Show full text]
  • Transverse Cervical Vascular Pedicle
    Published online: 2019-07-26 Original Article Transverse cervical vascular pedicle: It’s extended use as ‘second‑line’ recipient vessels in thoracic and upper arm reconstructions in addition to head‑and‑neck reconstructions Srijana Muppireddy, Parvathi Ravula, Srikanth Rangachari, Najma Shaik, Sushma Maaturu Department of Plastic and Reconstructive Surgery, Nizams Institute of Medical Sciences, Hyderabad, Telangana, India Address for correspondence: Dr. Parvathi Ravula, Dr. Parvathi Ravula Addl. Professor, Department of Plastic and Reconstructive Surgery, Nizams Institute of Medical Sciences, Panjagutta, Hyderabad, Telangana ‑ 500 082, India. E‑mail: [email protected] ABSTRACT Background: Selection of recipient vessels is one of the key factors for a successful microvascular reconstruction. Non‑availability of primary recipient vessels in the vicinity necessitates surgeon to approach a remote second‑line vascular access. Transverse cervical vessels (TCV) have been described as second-line vascular access for head-and-neck reconstructions. Due to its location, their use can be extended to the proximal chest and upper arm reconstructions. Aim: The aim of the study is to analyse the reliability of TCV as second‑line recipient vessels for the upper arm and chest reconstructions in addition to the head-and-neck reconstructions. Materials and Methods: During 2010–2017, 14 TCV were explored as the choice of second-line recipient pedicle for specific indications. Clinical experience with different reconstructions discussed. Results: Out of 14 transverse cervical arteries, 13 were of adequate size for anastomosis. About 12 successful reconstructions were performed involving the head and neck (7), proximal thorax (3) and upper arm (2) for indications such as scarring from different aetiology (8), previous free flaps (2) and sacrificed vessels (2).
    [Show full text]
  • Selective Venous Sampling for Primary Hyperparathyroidism: How to Perform an Examination and Interpret the Results with Reference to Thyroid Vein Anatomy
    Jpn J Radiol DOI 10.1007/s11604-017-0658-3 INVITED REVIEW Selective venous sampling for primary hyperparathyroidism: how to perform an examination and interpret the results with reference to thyroid vein anatomy Takayuki Yamada1 · Masaya Ikuno1 · Yasumoto Shinjo1 · Atsushi Hiroishi1 · Shoichiro Matsushita1 · Tsuyoshi Morimoto1 · Reiko Kumano1 · Kunihiro Yagihashi1 · Takuyuki Katabami2 Received: 11 April 2017 / Accepted: 28 May 2017 © Japan Radiological Society 2017 Abstract Primary hyperparathyroidism (pHPT) causes and brachiocephalic veins for catheterization of the thyroid hypercalcemia. The treatment for pHPT is surgical dis- veins and venous anastomoses. section of the hyperfunctioning parathyroid gland. Lower rates of hypocalcemia and recurrent laryngeal nerve injury Keywords Primary hyperparathyroidism · Localization · imply that minimally invasive parathyroidectomy (MIP) is Thyroid vein · Venous sampling safer than bilateral neck resection. Current trends in MIP use can be inferred only by reference to preoperative locali- zation studies. Noninvasive imaging studies (typically pre- Introduction operative localization studies) show good detection rates of hyperfunctioning glands; however, there have also been Primary hyperparathyroidism (pHPT) is a common endocrine cases of nonlocalization or discordant results. Selective disease. Most patients have one adenoma, but double adeno- venous sampling (SVS) is an invasive localization method mas have been reported in up to 15% of cases [1]. Approxi- for detecting elevated intact parathyroid
    [Show full text]
  • Axis Scientific Human Circulatory System 1/2 Life Size A-105864
    Axis Scientific Human Circulatory System 1/2 Life Size A-105864 05. Superior Vena Cava 13. Ascending Aorta 21. Hepatic Vein 28. Celiac Trunk II. Lung 09. Pulmonary Trunk 19. Common III. Spleen Hepatic Artery 10. Pulmonary 15. Pulmonary Artery 17. Splenic Artery (Semilunar) Valve 20. Portal Vein 03. Left Atrium 18. Splenic Vein 01. Right Atrium 16. Pulmonary Vein 26. Superior 24. Superior 02. Right Ventricle Mesenteric Vein Mesenteric Artery 11. Supraventricular Crest 07. Interatrial Septum 22. Renal Artery 27. Inferior 14. Aortic (Semilunar) Valve Mesenteric Vein 08. Tricuspid (Right 23. Renal Vein 12. Mitral (Left Atrioventricular) Valve VI. Large Intestine Atrioventricular) Valve 29. Testicular / 30. Common Iliac Artery Ovarian Artery 32. Internal Iliac Artery 25. Inferior 31. External Iliac Artery Mesenteric Artery 33. Median Sacral Artery 41. Posterior Auricular Artery 57. Deep Palmar Arch 40. Occipital Artery 43. Superficial Temporal Artery 58. Dorsal Venous Arch 36. External Carotid Artery 42. Maxillary Artery 56. Superficial Palmar Arch 35. Internal Carotid Artery 44. Internal Jugular Vein 39. Facial Artery 45. External Jugular Vein 38. Lingual Artery and Vein 63. Deep Femoral Artery 34. Common Carotid Artery 37. Superior Thyroid Artery 62. Femoral Artery 48. Thyrocervical Trunk 49. Inferior Thyroid Artery 47. Subclavian Artery 69. Great Saphenous Vein 46. Subclavian Vein I. Heart 51. Thoracoacromial II. Lung Artery 64. Popliteal Artery 50. Axillary Artery 03. Left Atrium 01. Right Atrium 04. Left Ventricle 02. Right Ventricle 65. Posterior Tibial Artery 52. Brachial Artery 66. Anterior Tibial Artery 53. Deep Brachial VII. Descending Artery Aorta 70. Small Saphenous Vein IV. Liver 59.
    [Show full text]
  • Anatomy & Embryology of Thyroid & Parathyroid
    ANATOMY & EMBRYOLOGY OF THYROID & PARATHYROID By Prof . Saeed Abuel Makarem & Associate Prof. Sanaa Alshaarawy 1 OBJECTIVES Ò By the end of the lecture, the student should be able to: Ò Describe the shape, position, relations and structure of the thyroid gland. Ò List the blood supply & lymphatic drainage of the thyroid gland. Ò List the nerves endanger with thyroidectomy operation. Ò Describe the shape, position, blood supply & lymphatic drainage of the parathyroid glands. Ò Describe the development of the thyroid & parathyroid glands. Ò Describe the most common congenital anomalies of the thyroid gland. 2 Before we go to the thyroid What are the parts of the deep fascia or deep cervical fascia of the neck? It is divided mainly into 3 layers: 1- Investing layer. 2- Pretracheal layer. 3- Prevertebral layer. 3 Ò Endocrine, butterfly Thyroid gland shaped gland. Ò Consists of right & left lobes. Ò The 2 lobes are connected to each other by a narrow isthmus, which overlies the 2nd ,3rd & 4th tracheal rings. Ò It is surrounded by a facial sheath derived from the pretracheal layer of the deep cervical fascia. 4 Thyroid gland Ò Each lobe is pear- shaped, with its apex reaches up to the oblique line of thyroid cartilage. Ò Its base lies at the level of 4th or 5th tracheal rings. Ò Inside the pretracheal facial capsule, there is another C.T capsule. Ò So, it s surrounded by 2 membranes. 5 Each lobe is pear shape, with its apex directed upward as far as the Anterior oblique line of the thyroid cartilage; its base lies at the 4th or 5th tracheal ring.
    [Show full text]
  • Bilateral Variations in the Divisions of Common Carotid Artery – a Case Report
    eISSN 1308-4038 International Journal of Anatomical Variations (2012) 5: 116–119 Case Report Bilateral variations in the divisions of common carotid artery – a case report Published online December 20th, 2012 © http://www.ijav.org Bheemshetty S. PATIL Abstract Shankarappa D. DESAI During routine dissection, we found bilateral variation in the division of common carotid artery in a 48-year-old male cadaver. The right carotid, originated from the brachiocephalic trunk Ishwar B. BAGOJI behind the right sternoclavicular joint. The left carotid, originated directly from the aortic arch. Gavishiddappa A. HADIMANI Division of common carotid artery occured at higher level; i.e., above the level of superior lamina of thyroid cartilage. On the right side 4.2 cm and on left side 3.5 cm above the superior lamina of thyroid cartilage and just behind the angle of mandible. The arteries did not have any branches; Department of Anatomy, Shri B. M. Patil Medical College, except on the right side the superior thyroidal artery arose from the 2.5 cm below the bifurcation. Blde University, Bijapur, Karnataka, INDIA. Knowledge of origin and bifurcation of common carotid artery is very important to the ENT surgeons, general surgeons, endocrinologist and vascular surgeons. Bheemshetty S. Patil © Int J Anat Var (IJAV). 2012; 5: 116–119. Lecturer Department of Anatomy Shri B. M. Patil Medical College Blde University Bijapur-586103 Karnataka, INDIA. +91 8352-262770/ext. 2211 [email protected] Received October 10th, 2011; accepted August 26th, 2012 Key words [common carotid artery] [thyroid cartilage] [angle of mandible] [bifurcation of common carotid artery] Introduction gives off no branches in the neck, whereas the external does The right common carotid artery arises from the [2].
    [Show full text]