A Stochastic Grammar of Images Full Text Available At
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Computer Vision Stochastic Grammars for Scene Parsing
Computer Vision Stochastic Grammars for Scene Parsing Song-Chun Zhu Ying Nian Wu August 18, 2020 Contents 0.1 This Book in the Series . ix Part I Stochastic Grammars in Vision 1 Introduction 3 1.1 Vision as Joint Parsing of Objects, Scenes, and Events . .3 1.2 Unified Representation for Models, Algorithms, and Attributes . .6 1.2.1 Three Families of Probabilistic Models . .6 1.2.2 Dynamics of Three Inferential Channels . .7 1.2.3 Three Attributes associated with each Node . .7 1.3 Missing Themes in Popular Data-Driven Approaches . .8 1.3.1 Top-Down Inference in Space and Time . .8 1.3.2 Vision is to be a Continuous Computational Process . .9 1.3.3 Resolving Ambiguities and Preserving Distinct Solutions . 11 1.3.4 Vision is Driven by a Large Number of Tasks . 12 1.4 Scope of Book: Compositional Patterns in the Middle Entropy Regime . 13 1.4.1 Information Scaling and Three Entropy Regimes . 14 1.4.2 Organization of Book . 14 2 Overview of Stochastic Grammar 17 2.1 Grammar as a Universal Representation of Intelligence . 17 2.2 An Empiricist’s View of Grammars . 18 2.3 The Formalism of Grammars . 20 2.4 The Mathematical Structure of Grammars . 21 2.5 Stochastic Grammar . 23 2.6 Ambiguity and Overlapping Reusable Parts . 24 2.7 Stochastic Grammar with Context . 26 3 Spatial And-Or Graph 29 3.1 Three New Issues in Image Grammars in Contrast to Language . 29 3.2 Visual Vocabulary . 31 3.2.1 The Hierarchical Visual Vocabulary – the "Lego Land" . -
UNIVERSITY of CALIFORNIA Los Angeles Human Activity
UNIVERSITY OF CALIFORNIA Los Angeles Human Activity Understanding and Prediction with Stochastic Grammar A thesis submitted in partial satisfaction of the requirements for the degree Master of Science in Computer Science by Baoxiong Jia 2019 c Copyright by Baoxiong Jia 2019 ABSTRACT OF THE THESIS Human Activity Understanding and Prediction with Stochastic Grammar by Baoxiong Jia Master of Science in Computer Science University of California, Los Angeles, 2019 Professor Song-Chun Zhu, Chair Video understanding is a booming research problem in computer vision. With its innate fea- ture where spatial and temporal information entangles with each other, video understand- ing has been challenging mainly because of the difficulty for having a unified framework where these two aspects can be modeled jointly. Among the tasks in video understand- ing, human activity understanding and prediction serve as a good starting point where the spatial-temporal reasoning capability of learning modules can be tested. Most of the current approaches towards solving the human activity understanding and prediction problems use deep neural networks for spatial-temporal reasoning. However, this type of approach lacks the ability to reason beyond the local frames and conduct long-term temporal reasoning. On the other hand, stochastic grammar models are used to model observed sequences on a symbolic level with all history information considered, but they perform poorly on handling noisy input sequences. Given these insights and problems of current approaches, we propose the generalized Earley parser for bridging the gap between sequence inputs and symbolic grammars. By combining the advantages of these two types of methods, we show that the proposed model achieves a better performance on both human activity recognition and future prediction. -
Statistical Pattern Recognition: a Review
4 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 22, NO. 1, JANUARY 2000 Statistical Pattern Recognition: A Review Anil K. Jain, Fellow, IEEE, Robert P.W. Duin, and Jianchang Mao, Senior Member, IEEE AbstractÐThe primary goal of pattern recognition is supervised or unsupervised classification. Among the various frameworks in which pattern recognition has been traditionally formulated, the statistical approach has been most intensively studied and used in practice. More recently, neural network techniques and methods imported from statistical learning theory have been receiving increasing attention. The design of a recognition system requires careful attention to the following issues: definition of pattern classes, sensing environment, pattern representation, feature extraction and selection, cluster analysis, classifier design and learning, selection of training and test samples, and performance evaluation. In spite of almost 50 years of research and development in this field, the general problem of recognizing complex patterns with arbitrary orientation, location, and scale remains unsolved. New and emerging applications, such as data mining, web searching, retrieval of multimedia data, face recognition, and cursive handwriting recognition, require robust and efficient pattern recognition techniques. The objective of this review paper is to summarize and compare some of the well-known methods used in various stages of a pattern recognition system and identify research topics and applications which are at the forefront of this exciting and challenging field. Index TermsÐStatistical pattern recognition, classification, clustering, feature extraction, feature selection, error estimation, classifier combination, neural networks. æ 1INTRODUCTION Y the time they are five years old, most children can depend in some way on pattern recognition.. -
Using an Annotated Corpus As a Stochastic Grammar
Using an Annotated Corpus as a Stochastic Grammar Rens Bod Department of Computational Linguistics University of Amsterdam Spuistraat 134 NL-1012 VB Amsterdam [email protected] Abstract plausible parse(s) of an input string from the implausible ones. In stochastic language processing, it In Data Oriented Parsing (DOP), an annotated is assumed that the most plausible parse of an input corpus is used as a stochastic grammar. An string is its most probable parse. Most instantiations input string is parsed by combining subtrees of this idea estimate the probability of a parse by from the corpus. As a consequence, one parse assigning application probabilities to context free tree can usually be generated by several rewrite roles (Jelinek, 1990), or by assigning derivations that involve different subtrces. This combination probabilities to elementary structures leads to a statistics where the probability of a (Resnik, 1992; Schabes, 1992). parse is equal to the sum of the probabilities of all its derivations. In (Scha, 1990) an informal There is some agreement now that context free rewrite introduction to DOP is given, while (Bed, rules are not adequate for estimating the probability of 1992a) provides a formalization of the theory. a parse, since they cannot capture syntactie/lexical In this paper we compare DOP with other context, and hence cannot describe how the probability stochastic grammars in the context of Formal of syntactic structures or lexical items depends on that Language Theory. It it proved that it is not context. In stochastic tree-adjoining grammar possible to create for every DOP-model a (Schabes, 1992), this lack of context-sensitivity is strongly equivalent stochastic CFG which also overcome by assigning probabilities to larger assigns the same probabilities to the parses. -
Crash Prediction and Collision Avoidance Using Hidden
CRASH PREDICTION AND COLLISION AVOIDANCE USING HIDDEN MARKOV MODEL A Thesis Submitted to the Faculty of Purdue University by Avinash Prabu In Partial Fulfillment of the Requirements for the Degree of Master of Science in Electrical and Computer Engineering August 2019 Purdue University Indianapolis, Indiana ii THE PURDUE UNIVERSITY GRADUATE SCHOOL STATEMENT OF THESIS APPROVAL Dr. Lingxi Li, Chair Department of Electrical and Computer Engineering Dr. Yaobin Chen Department of Electrical and Computer Engineering Dr. Brian King Department of Electrical and Computer Engineering Approved by: Dr. Brian King Head of Graduate Program iii Dedicated to my family, friends and my Professors, for their support and encouragement. iv ACKNOWLEDGMENTS Firstly, I would like to thank Dr. Lingxi Li for his continuous support and en- couragement. He has been a wonderful advisor and an exceptional mentor, without whom, my academic journey will not be where it is now. I would also like to to thank Dr. Yaobin Chen, whose course on Control theory has had a great impact in shaping this thesis. I would like to extend my appreciation to Dr. Brian King, who has been a great resource of guidance throughout the course of my Master's degree. A special thanks to Dr. Renran Tian, who is my principle investigator at TASI, IUPUI, for his guidance and encouragement. I also wish to thank Sherrie Tucker, who has always been available to answer my questions, despite her busy schedule. I would like to acknowledge my parents, Mr. & Mrs. Prabhu and my sister Chathurma for their continuous belief and endless love towards me. -
GRAMMAR IS GRAMMAR and USAGE IS USAGE Frederick J
GRAMMAR IS GRAMMAR AND USAGE IS USAGE Frederick J. Newmeyer Department of Linguistics University of Washington Seattle, WA 98195-4340 [email protected] January 2003 1. Usage-based models of grammar The late 1960s was an exciting time to enter field of linguistics for someone like me, whose interests tended to syntax and semantics.1 My first year as a graduate student witnessed the birth of the approach called ‘generative semantics’. Generative semantics promised to totally revolutionize the field of transformational generative grammar, which itself was barely a decade old at the time. With each passing year, generative semanticists declared that some seemingly well-established boundary was nothing but an illusion. It all began in 1967 when George Lakoff and Haj Ross challenged the existence of the level of Deep Structure, and with it the boundary between syntax and semantics (Lakoff and Ross 1967/1976). The following year Jim McCawley argued that syntactic and lexical structures were formal objects of the same sort (McCawley 1968). Then in quick succession, the dividing line between semantics and pragmatics (Lakoff 1970/1972), grammaticality and ungrammaticality (Lakoff 1973), category membership and non-membership (Ross 1973a; b), and, finally, grammar and usage (Lakoff 1974) were all cast into doubt. At the same time, many sociolinguists were proposing models in which statistical facts about the speech community were incorporated into grammatical rules (Labov 1969; 1972). But by the late 1970s, generative semantics, for reasons I have discussed elsewhere (Newmeyer 1986), had all but disappeared. Most syntacticians had re- embraced the boundaries whose demise had been heralded only a few years earlier. -
Application of Stochastic Grammars to Understanding Action
Application of sto chastic grammars to understanding action by Yuri A Ivanov MS Computer Science State AcademyofAir and Space Instrumentation St Petersburg Russia February Submitted to the Program in Media Arts and Sciences Scho ol of Architecture and Planning in partial fulllmentofthe requirements for the degree of MASTER OF SCIENCE IN MEDIA ARTS AND SCIENCES at the Massachusetts Institute of Technology February c Massachusetts Institute of Technology All Rights Reserved Signature of Author Program in Media Arts and Sciences January Certied by Aaron F Bobick LG Electronics Inc Career Development AssistantProfessor of Computational Vision Program in Media Arts and Sciences Thesis Sup ervisor Accepted by Stephen A Benton Chairp erson Departmental Committee on Graduate Students Program in Media Arts and Sciences Application of sto chastic grammars to understanding action by Yuri A Ivanov Submitted to the Program in Media Arts and Sciences Scho ol of Architecture and Planning on January in partial fulllmentofthe requirements for the degree of Master of Science in Media Arts and Sciences Abstract This thesis addresses the problem of using probabilistic formal languages to describ e and understand actions with explicit structure The thesis explores several mechanisms of pars ing the uncertain input string aided byastochastic contextfree grammar This metho d originating in sp eechrecognition lets us combine a statistical recognition approach with a syntactical one in a unied syntacticsemantic framework for action recognition The basic -
W. G. M., a Stochastic Model of Language Change Through Social
A STOCHASTIC MODEL OF LANGUAGE CHANGE THROUGH SOCIAL STRUCTURE AND PREDICTION-DRIVEN INSTABILITY W. GARRETT MITCHENER ABSTRACT. We develop a new stochastic model of language learning and change that incorporates variable speech and age structure. Children detect correlations between age and speech, predict how the language is changing, and speak according to that prediction. Although the popu- lation tends to be dominated by one idealized grammar or another, the learning process amplifies chance correlation between age and speech, generating prediction-driven instability and spontaneous language change. The model is formulated as a Markov chain, and a stochastic differential equation. It exhibits the abrupt monotonic shifts among equilibria char- acteristic of language changes. Fundamental results are proved. 1. THE PARADOX OF LANGUAGE CHANGE One of the primary tools in the field of linguistics is the idealized gram- mar, that is, a formalism that identifies correct utterances (1, 2). Much of the research on how children acquire their native language focuses on how they might choose an idealized grammar from many innate possibilities on the basis of example sentences from the surrounding society (3–5). From the perspective of idealized grammar, language change is paradoxical: Children acquire their native language accurately and communicate with adults from preceding generations, yet over time, the language can change drastically. Some changes may be attributed to an external event, such as political up- heaval, but not every instance of language change seems to have an external cause. Despite their variability, languages do maintain considerable short- term stability, consistently accepting and rejecting large classes of sentences Key words and phrases. -
Probabilistic Sequence Models with Speech and Language Applications
Thesis for the degree of Doctor of Philosophy Probabilistic Sequence Models with Speech and Language Applications Gustav Eje Henter Communication Theory School of Electrical Engineering KTH – Royal Institute of Technology Stockholm 2013 Henter, Gustav Eje Probabilistic Sequence Models with Speech and Language Applications Copyright c 2013 Gustav Eje Henter except where otherwise stated. All rights reserved. ISBN 978-91-7501-932-1 TRITA-EE 2013:042 ISSN 1653-5146 Communication Theory School of Electrical Engineering KTH – Royal Institute of Technology SE-100 44 Stockholm, Sweden Abstract Series data, sequences of measured values, are ubiquitous. Whenever ob- servations are made along a path in space or time, a data sequence results. To comprehend nature and shape it to our will, or to make informed de- cisions based on what we know, we need methods to make sense of such data. Of particular interest are probabilistic descriptions, which enable us to represent uncertainty and random variation inherent to the world around us. This thesis presents and expands upon some tools for creating prob- abilistic models of sequences, with an eye towards applications involving speech and language. Modelling speech and language is not only of use for creating listening, reading, talking, and writing machines—for instance al- lowing human-friendly interfaces to future computational intelligences and smart devices of today—but probabilistic models may also ultimately tell us something about ourselves and the world we occupy. The central theme of the thesis is the creation of new or improved models more appropriate for our intended applications, by weakening limiting and questionable assumptions made by standard modelling techniques. -
The Plasticity of Grammar
The Plasticity of Grammar JOAN BRESNAN Stanford University & CSLI, The Center for the Study of Language and Information The plasticity of grammar A simplifying assumption of linguistic theory: knowledge of language is characterized by a static, categorical system of grammar. The plasticity of grammar A simplifying assumption of linguistic theory: knowledge of language is characterized by a static, categorical system of grammar. —A fruitful idealization, but it ultimately underestimates human language capacities. The plasticity of grammar A simplifying assumption of linguistic theory: knowledge of language is characterized by a static, categorical system of grammar. —A fruitful idealization, but it ultimately underestimates human language capacities. Language users can match the probabilities of linguistic features of the environment and they have powerful predictive capabilities that enable them to anticipate the variable linguistic choices of others. The plasticity of grammar A simplifying assumption of linguistic theory: knowledge of language is characterized by a static, categorical system of grammar. —A fruitful idealization, but it ultimately underestimates human language capacities. Language users can match the probabilities of linguistic features of the environment and they have powerful predictive capabilities that enable them to anticipate the variable linguistic choices of others. Therefore, a strongly contrasting hypothesis: grammar itself is inherently variable and stochastic in nature, rather than categorical and algebraic. Implicit knowledge of variability Low-level continuous phonetic variation is sensitive to high-level construction probabilities in speech production (Gahl & Garnsey 2004, Tily et al. 2009, Kuperman & Bresnan 2012) Construction probability is not merely a summary statistic for determinative individual factors affecting pronunciation, but has a direct effect in itself (Kuperman & Bresnan 2012) Illustrations from Victor Kuperman & Joan Bresnan (2012). -
Calibrating Generative Models: the Probabilistic Chomsky-Schutzenberger¨ Hierarchy∗
Calibrating Generative Models: The Probabilistic Chomsky-Schutzenberger¨ Hierarchy∗ Thomas F. Icard Stanford University [email protected] December 14, 2019 1 Introduction and Motivation Probabilistic computation enjoys a central place in psychological modeling and theory, ranging in application from perception (Knill and Pouget, 2004; Orban´ et al., 2016), at- tention (Vul et al., 2009), and decision making (Busemeyer and Diederich, 2002; Wilson et al., 2014) to the analysis of memory (Ratcliff, 1978; Abbott et al., 2015), categorization (Nosofsky and Palmeri, 1997; Sanborn et al., 2010), causal inference (Denison et al., 2013), and various aspects of language processing (Chater and Manning, 2006). Indeed, much of cognition and behavior is usefully modeled as stochastic, whether this is ultimately due to indeterminacy at the neural level or at some higher level (see, e.g., Glimcher 2005). Ran- dom behavior may even enhance an agent’s cognitive efficiency (see, e.g., Icard 2019). A probabilistic process can be described in two ways. On one hand we can specify a stochastic procedure, which may only implicitly define a distribution on possible out- puts of the process. Familiar examples include well known classes of generative mod- els such as finite Markov processes and probabilistic automata (Miller, 1952; Paz, 1971), Boltzmann machines (Hinton and Sejnowski, 1983), Bayesian networks (Pearl, 1988), topic models (Griffiths et al., 2007), and probabilistic programming languages (Tenenbaum et al., 2011; Goodman and Tenenbaum, 2016). On the other hand we can specify an analytical ex- pression explicitly describing the distribution over outputs. Both styles of description are commonly employed, and it is natural to ask about the relationship between them. -
Stochastic Definite Clause Grammars
Stochastic Definite Clause Grammars Christian Theil Have Research group PLIS: Programming, Logic and Intelligent Systems Department of Communication, Business and Information Technologies Roskilde University, P.O.Box 260, DK-4000 Roskilde, Denmark [email protected] Abstract where corpus annotations dictate the derivations, can This paper introduces Stochastic Definite Clause be done by counting expansions used in the annota- Grammars, a stochastic variant of the well- tions. Estimation with incomplete data can be ac- known Definite Clause Grammars. The grammar complished using the Expectation-Maximization (EM) formalism supports parameter learning from an- algorithm [8]. notated or unannotated corpora and provides a In stochastic unification grammars, the choice of mechanism for parse selection by means of sta- rules to expand is stochastic and the values assigned tistical inference. Unlike probabilistic context- free grammars, it is a context-sensitive gram- to unification variables are determined implicitly by mar formalism and it has the ability to model rule selection. This means that in some derivations, cross-serial dependencies in natural language. instances of the same logic variable may get different SDCG also provides some syntax extensions values and unification will fail as result. which makes it possible to write more compact Some of the first attempts to define stochastic uni- grammars and makes it straight-forward to add fication grammars did not address the issue of how lexicalization schemes to a grammar. they should be trained. Brew [2] and Eisele [9] tries to address this problem using EM, but their methods have problems handling cases where variables fails to 1 Introduction and background unify.