Toward a Metabolic Theory of Ecology

Total Page:16

File Type:pdf, Size:1020Kb

Toward a Metabolic Theory of Ecology Ecology, 85(7), 2004, pp. 1771±1789 q 2004 by the Ecological Society of America TOWARD A METABOLIC THEORY OF ECOLOGY JAMES H. BROWN,1,2,4 with JAMES F. G ILLOOLY,1 ANDREW P. A LLEN,1 VAN M. SAVAGE,2,3 AND GEOFFREY B. WEST2,3 1Department of Biology, University of New Mexico, Albuquerque, New Mexico 87131 USA 2Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico 87501 USA 3Theoretical Division, MS B285, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 USA JAMES H. BROWN, MacArthur Award Recipient, 2002 Abstract. Metabolism provides a basis for using ®rst principles of physics, chemistry, and biology to link the biology of individual organisms to the ecology of populations, communities, and ecosystems. Metabolic rate, the rate at which organisms take up, transform, and expend energy and materials, is the most fundamental biological rate. We have developed a quantitative theory for how metabolic rate varies with body size and temperature. Metabolic theory predicts how metabolic rate, by setting the rates of resource uptake from the environment and resource allocation to survival, growth, and reproduction, controls ecological processes at all levels of organization from individuals to the biosphere. Examples include: (1) life history attributes, including devel- opment rate, mortality rate, age at maturity, life span, and population growth rate; (2) population interactions, including carrying capacity, rates of competition and predation, and patterns of species diversity; and (3) ecosystem processes, including rates of biomass production and respiration and patterns of trophic dynamics. Data compiled from the ecological literature strongly support the theoretical predictions. Even- tually, metabolic theory may provide a conceptual foundation for much of ecology, just as genetic theory provides a foundation for much of evolutionary biology. Key words: allometry; biogeochemical cycles; body size; development; ecological interactions; ecological theory; metabolism; population growth; production; stoichiometry; temperature; trophic dynamics. 4 E-mail: [email protected] 1771 1772 JAMES H. BROWN ET AL. Ecology, Vol. 85, No. 7 INTRODUCTION of basic principles of biology, chemistry, and physics (e.g., Peters 1983, Sterner 1990, Elser et al. 1996, The complex, spatially and temporally varying struc- 2000a, West et al. 1997, 1999a, b, 2001, Enquist et al. tures and dynamics of ecological systems are largely 1999, Gillooly et al. 2001, 2002). Together, the older consequences of biological metabolism. Wherever they conceptual and empirical foundations and the more re- occur, organisms transform energy to power their own cent theoretical advances provide the basis for a met- activities, convert materials into uniquely organic abolic theory of ecology. This theory explicitly shows forms, and thereby create a distinctive biological, how many ecological structures and dynamics can be chemical, and physical environment. explained in terms of how body size, chemical kinetics, Metabolism is the biological processing of energy and resource supply affect metabolism. Through var- and materials. Organisms take up energetic and ma- iation in the rates and biochemical pathways of me- terial resources from the environment, convert them tabolism among different kinds of organisms and en- into other forms within their bodies, allocate them to vironmental settings, metabolic theory links the per- the ®tness-enhancing processes of survival, growth, formance of individual organisms to the ecology of and reproduction, and excrete altered forms back into populations, communities, and ecosystems. the environment. Metabolism therefore determines the demands that organisms place on their environment for Metabolism and metabolic rate all resources, and simultaneously sets powerful con- Metabolism is a complex network of biochemical straints on allocation of resources to all components of reactions that are catalyzed by enzymes, allowing the ®tness. The overall rate of these processes, the meta- concentrations of substrates and products and the rates bolic rate, sets the pace of life. It determines the rates of reactions to be regulated. A chart of the chemical of almost all biological activities. reactions of metabolism shows a bewildering number Recent progress in understanding how body size, of substrates, enzymes, and pathways. Nevertheless, temperature, and stoichiometry affect biological struc- the core of metabolism consists of a small number of ture and function at the molecular, cellular, and whole- reactions that form the basis of the TCA (tricarboxylic organism levels of organization raises the prospect of acid) cycle (Morowitz et al. 2000). The vast majority developing a metabolic theory of ecology. Metabolism of organisms use the same basic biochemistry, but the is a uniquely biological process, but it obeys the phys- rates of resource uptake, transformation, and allocation ical and chemical principles that govern the transfor- vary. mations of energy and materials; most relevant are the When we speak of energy and energetics, we refer laws of mass and energy balance, and thermodynamics. to potential energy: the energy contained in photons or Much of the variation among ecosystems, including chemical bonds. Some fraction of this energy is con- Perspectives their biological structures, chemical compositions, en- verted by the reactions of photosynthesis and respira- ergy and material ¯uxes, population processes, and spe- tion into biologically useful forms that are used to per- cies diversities, depends on the metabolic character- form the work of biosynthesis, membrane transport, istics of the organisms that are present. Much of the muscle contraction, nerve conduction, and so on. We variation among organisms, including their life history use the term kinetics to refer to kinetic energy, the characteristics and ecological roles, is constrained by energy of molecular motion. Kinetics affect biological their body sizes, operating temperatures, and chemical processes largely through the in¯uence of temperature compositions. These constraints of allometry, bio- on metabolic rate. chemical kinetics, and chemical stoichiometry lead to The metabolic rate is the fundamental biological rate, metabolic scaling relations that, on the one hand, can because it is the rate of energy uptake, transformation, be explained in terms of well-established principles of and allocation. For a heterotroph, the metabolic rate is biology, chemistry, and physics and, on the other hand, equal to the rate of respiration because heterotrophs can explain many emergent features of biological struc- obtain energy by oxidizing carbon compounds as de- ture and dynamics at all levels of organization. → scribed by the reaction: CH2O 1 O2 energy 1 CO2 1 H O. For an autotroph, the metabolic rate is equal THEORETICAL FOUNDATIONS 2 to the rate of photosynthesis because this same reaction Virtually all characteristics of organisms vary pre- is run in reverse using energy (i.e., photons) provided dictably with their body size, temperature, and chem- by the sun to ®x carbon (Farquhar et al. 1980). It has ical composition (e.g., Bartholomew 1981, Peters 1983, proven challenging to measure metabolic rate accu- Calder 1984, Schmidt-Nielsen 1984, Niklas 1994, Gil- rately and consistently. Ideally, it would be measured looly et al. 2001, 2002, Sterner and Elser 2002). For as heat loss by direct calorimetry, which would quan- more than a century, biologists have been investigating tify the energy dissipated in all biological activities. the mechanistic processes that underlie these relation- However, because of the ®xed stoichiometry of respi- ships. Recent theoretical advances have shown more ratory gas exchange, it is nearly as accurate and much explicitly how these biological characteristics can be more practical to measure the rate of carbon dioxide quanti®ed, related to each other, and explained in terms uptake in plants or the rate of oxygen consumption in July 2004 MACARTHUR AWARD LECTURE 1773 aerobic prokaryotes and eukaryotes (Withers 1992). free-living organism in nature, which ideally would Physiologists typically measure the basal or standard include allocation to growth and reproduction suf®cient metabolic rate, the minimal rate of an inactive organism to maintain a stable population; and perhaps also (3) in the laboratory. Basal rates are invariably less than maximal metabolic rate, the rate of energy ¯ux during the actual or ®eld metabolic rates of free-living organ- maximal sustained activity (Savage et al., in press b). isms, which must expend additional energy for for- Recently, West et al. (1997, 1999a, b) showed that aging, predator avoidance, physiological regulation, the distinctively biological quarter-power allometric and other maintenance processes, and still more energy scaling could be explained by models in which whole- for growth and reproduction. In most organisms, how- organism metabolic rate is limited by rates of uptake ever, the average daily energy expenditure or the long- of resources across surfaces and rates of distribution term sustained rate of biological activity is some fairly of materials through branching networks. The fractal- constant multiple, typically about two to three, of the like designs of these surfaces and networks cause their basal metabolic rate (Taylor et al. 1982, Schmidt-Niel- properties to scale as ¼ powers of body mass or vol- son 1984, Nagy 2001; Savage et al., in press b). ume, rather than the Ä powers that would be
Recommended publications
  • Functional Ecology's Non-Selectionist Understanding of Function
    Studies in History and Philosophy of Biol & Biomed Sci xxx (xxxx) xxx–xxx Contents lists available at ScienceDirect Studies in History and Philosophy of Biol & Biomed Sci journal homepage: www.elsevier.com/locate/shpsc Functional ecology's non-selectionist understanding of function ∗ Antoine C. Dussaulta,b, a Collège Lionel-Groulx, 100, Rue Duquet, Sainte-Thérèse, Québec, J7E 3G6, Canada b Centre Interuniversitaire de Recherche sur la Science et la Technologie (CIRST), Université du Québec à Montréal, C.P. 8888, Succ. Centre-ville, Montréal, Québec, H3C 3P8, Canada ARTICLE INFO ABSTRACT Keywords: This paper reinforces the current consensus against the applicability of the selected effect theory of function in Functional biodiversity ecology. It does so by presenting an argument which, in contrast with the usual argument invoked in support of Function this consensus, is not based on claims about whether ecosystems are customary units of natural selection. Biodiversity Instead, the argument developed here is based on observations about the use of the function concept in func- Ecosystem function tional ecology, and more specifically, research into the relationship between biodiversity and ecosystem func- Biological individuality tioning. It is argued that a selected effect account of ecological functions is made implausible by the fact that it Superorganism would conflict with important aspects of the understanding of function and ecosystem functional organization which underpins functional ecology's research program. Specifically, it would conflict with (1) Functional ecology's adoption of a context-based understanding of function and its aim to study the functional equivalence between phylogenetically-divergent organisms; (2) Functional ecology's attribution to ecosystems of a lower degree of part-whole integration than the one found in paradigm individual organisms; and (3) Functional ecology's adoption of a physiological or metabolic perspective on ecosystems rather than an evolutionary one.
    [Show full text]
  • Response of Marine Food Webs to Climate-Induced Changes in Temperature and Inflow of Allochthonous Organic Matter
    Response of marine food webs to climate-induced changes in temperature and inflow of allochthonous organic matter Rickard Degerman Department of Ecology and Environmental Science 901 87 Umeå Umeå 2015 1 Copyright©Rickard Degerman ISBN: 978-91-7601-266-6 Front cover illustration by Mats Minnhagen Printed by: KBC Service Center, Umeå University Umeå, Sweden 2015 2 Tillägnad Maria, Emma och Isak 3 Table of Contents Abstract 5 List of papers 6 Introduction 7 Aquatic food webs – different pathways Food web efficiency – a measure of ecosystem function Top predators cause cascade effects on lower trophic levels The Baltic Sea – a semi-enclosed sea exposed to multiple stressors Varying food web structures Climate-induced changes in the marine ecosystem Food web responses to increased temperature Responses to inputs of allochthonous organic matter Objectives 14 Material and Methods 14 Paper I Paper II and III Paper IV Results and Discussion 18 Effect of temperature and nutrient availability on heterotrophic bacteria Influence of food web length and labile DOC on pelagic productivity and FWE Consequences of changes in inputs of ADOM and temperature for pelagic productivity and FWE Control of pelagic productivity, FWE and ecosystem trophic balance by colored DOC Conclusion and future perspectives 21 Author contributions 23 Acknowledgements 23 Thanks 24 References 25 4 Abstract Global records of temperature show a warming trend both in the atmosphere and in the oceans. Current climate change scenarios indicate that global temperature will continue to increase in the future. The effects will however be very different in different geographic regions. In northern Europe precipitation is projected to increase along with temperature.
    [Show full text]
  • Competitive Exclusion Principle
    Competitive exclusion principle In ecology, the competitive exclusion principle,[1] sometimes referred to as Gause's law,[2] is a proposition named for Georgy Gause that two species competing for the same limited resource cannot coexist at constant population values. When one species has even the slightest advantage over another, the one with the advantage will dominate in the long term. This leads either to the extinction of the weaker competitor or to an evolutionary or behavioral shift toward a different ecological niche. The principle has been paraphrased in the maxim "complete competitors can not coexist".[1] 1: A smaller (yellow) species of bird forages Contents across the whole tree. 2: A larger (red) species competes for resources. History 3: Red dominates in the middle for the more abundant resources. Yellow adapts to a new Experimental basis niche restricted to the top and bottom of the tree, Prediction avoiding competition. Paradoxical traits Redefinition Phylogenetic context Application to humans See also References History The competitive exclusion principle is classically attributed to Georgii Gause,[3] although he actually never formulated it.[1] The principle is already present in Darwin's theory of natural selection.[2][4] Throughout its history, the status of the principle has oscillated between a priori ('two species coexisting must have different niches') and experimental truth ('we find that species coexisting do have different niches').[2] Experimental basis Based on field observations, Joseph Grinnell formulated the principle of competitive exclusion in 1904: "Two species of approximately the same food habits are not likely to remain long evenly balanced in numbers in the same region.
    [Show full text]
  • Energetics of Life on the Deep Seafloor
    Energetics of life on the deep seafloor Craig R. McClaina,1, Andrew P. Allenb, Derek P. Tittensorc,d, and Michael A. Rexe aNational Evolutionary Synthesis Center, Durham, NC 27705-4667; bDepartment of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia; cUnited Nations Environment Programme World Conservation Monitoring Centre, Cambridge CB3 0DL, United Kingdom; dMicrosoft Research Computational Science Laboratory, Cambridge CB3 0FB, United Kingdom; and eDepartment of Biology, University of Massachusetts, Boston, MA 02125-3393 Edited* by James H. Brown, University of New Mexico, Albuquerque, NM, and approved August 3, 2012 (received for review May 26, 2012) With frigid temperatures and virtually no in situ productivity, the vary with depth (13, 14), which is inversely related to POC flux deep oceans, Earth’s largest ecosystem, are especially energy-de- (16, 17). The influence of energy availability on individual growth prived systems. Our knowledge of the effects of this energy lim- rates and lifespans is unknown. At the community level, biomass itation on all levels of biological organization is very incomplete. and abundance generally decline with depth. Direct tests for the fl Here, we use the Metabolic Theory of Ecology to examine the in uences of POC and temperature on these community attrib- relative roles of carbon flux and temperature in influencing met- utes are rare, but they suggest only weak effects for temperature (16, 18). Although broad-scale patterns of deep-sea biodiversity abolic rate, growth rate, lifespan, body size, abundance, biomass, fi and biodiversity for life on the deep seafloor. We show that the are well-established and presumably linked to POC, speci c tests of this relationship remain limited (reviewed in ref.
    [Show full text]
  • Occupational Exposure to Heat and Hot Environments
    Criteria for a Recommended Standard Occupational Exposure to Heat and Hot Environments DEPARTMENT OF HEALTH AND HUMAN SERVICES Centers for Disease Control and Prevention National Institute for Occupational Safety and Health Cover photo by Thinkstock© Criteria for a Recommended Standard Occupational Exposure to Heat and Hot Environments Revised Criteria 2016 Brenda Jacklitsch, MS; W. Jon Williams, PhD; Kristin Musolin, DO, MS; Aitor Coca, PhD; Jung-Hyun Kim, PhD; Nina Turner, PhD DEPARTMENT OF HEALTH AND HUMAN SERVICES Centers for Disease Control and Prevention National Institute for Occupational Safety and Health This document is in the public domain and may be freely copied or reprinted. Disclaimer Mention of any company or product does not constitute endorsement by the National Institute for Occupational Safety and Health (NIOSH). In addition, citations of websites external to NIOSH do not constitute NIOSH endorsement of the sponsoring organizations or their programs or products. Furthermore, NIOSH is not responsible for the content of these websites. Ordering Information This document is in the public domain and may be freely copied or reprinted. To receive NIOSH documents or other information about occupational safety and health topics, contact NIOSH at Telephone: 1-800-CDC-INFO (1-800-232-4636) TTY: 1-888-232-6348 E-mail: [email protected] or visit the NIOSH website at www.cdc.gov/niosh. For a monthly update on news at NIOSH, subscribe to NIOSH eNews by visiting www.cdc.gov/ niosh/eNews. Suggested Citation NIOSH [2016]. NIOSH criteria for a recommended standard: occupational exposure to heat and hot environments. By Jacklitsch B, Williams WJ, Musolin K, Coca A, Kim J-H, Turner N.
    [Show full text]
  • Stoichiometric Constraints Modulate the Effects of Temperature and Nutrients on Biomass Distribution And
    bioRxiv preprint doi: https://doi.org/10.1101/589895; this version posted January 28, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. RESEARCH ARTICLE Stoichiometric constraints modulate the effects of temperature and nutrients on biomass distribution and community stability Cite as: Sentis A, Haegeman B and Montoya J.M. (2020) Stoichiometric Arnaud Sentis1,2*, Bart Haegeman1, and José M. Montoya1 constraints modulate the effects of 1 temperature and nutrients on Centre for Biodiversity Theory and Modelling, Theoretical and Experimental biomass distribution and community Ecology Station, CNRS and Paul Sabatier University, Moulis, France. stability. bioRxiv 589895, ver. 7 peer- 2 reviewed and recommended by PCI INRAE, Aix Marseille Univ., UMR RECOVER, 3275 route Cézanne, 13182 Aix-en- Ecology. Provence, France. Posted: 28th January 2020 This article has been peer-reviewed and recommended by Recommender: Peer Community in Ecology Elisa Thébault ABSTRACT Temperature and nutrients are two of the most important drivers of global change. Reviewers: Two anonymous reviewers Both can modify the elemental composition (i.e. stoichiometry) of primary producers and consumers. Yet their combined effect on the stoichiometry, Correspondence: [email protected] dynamics, and stability of ecological communities remains largely unexplored. To fill this gap, we extended the Rosenzweig-MacArthur consumer-resource model by including thermal dependencies, nutrient dynamics, and stoichiometric constraints on both the primary producer and the consumer. We found that stoichiometric constraints dampen the paradox of enrichment and increased persistence at high nutrient levels.
    [Show full text]
  • Towards an Integration of Ecological Stoichiometry and the Metabolic Theory of Ecology to Better Understand Nutrient Cycling
    Ecology Letters, (2009) 12: 369–384 doi: 10.1111/j.1461-0248.2009.01302.x IDEA AND PERSPECTIVE Towards an integration of ecological stoichiometry and the metabolic theory of ecology to better understand nutrient cycling Abstract Andrew P. Allen1* and James Ecologists have long recognized that species are sustained by the flux, storage and F. Gillooly2 turnover of two biological currencies: energy, which fuels biological metabolism and 1Department of Biological materials (i.e. chemical elements), which are used to construct biomass. Ecological Sciences, Macquarie University, theories often describe the dynamics of populations, communities and ecosystems in Sydney, NSW 2109, Australia terms of either energy (e.g. population-dynamics theory) or materials (e.g. resource- 2 Department of Zoology, competition theory). These two classes of theory have been formulated using different University of Florida, 223 assumptions, and yield distinct, but often complementary predictions for the same or Bartram Hall, P.O. Box 118525, similar phenomena. For example, the energy-based equation of von Bertalanffy and the Gainesville, FL 32611, USA *Correspondence: E-mail: nutrient-based equation of Droop both describe growth. Yet, there is relatively little [email protected] theoretical understanding of how these two distinct classes of theory, and the currencies they use, are interrelated. Here, we begin to address this issue by integrating models and concepts from two rapidly developing theories, the metabolic theory of ecology and ecological stoichiometry theory. We show how combining these theories, using recently published theory and data along with new theoretical formulations, leads to novel predictions on the flux, storage and turnover of energy and materials that apply to animals, plants and unicells.
    [Show full text]
  • Demographic History and the Low Genetic Diversity in Dipteryx Alata (Fabaceae) from Brazilian Neotropical Savannas
    Heredity (2013) 111, 97–105 & 2013 Macmillan Publishers Limited All rights reserved 0018-067X/13 www.nature.com/hdy ORIGINAL ARTICLE Demographic history and the low genetic diversity in Dipteryx alata (Fabaceae) from Brazilian Neotropical savannas RG Collevatti1, MPC Telles1, JC Nabout2, LJ Chaves3 and TN Soares1 Genetic effects of habitat fragmentation may be undetectable because they are generally a recent event in evolutionary time or because of confounding effects such as historical bottlenecks and historical changes in species’ distribution. To assess the effects of demographic history on the genetic diversity and population structure in the Neotropical tree Dipteryx alata (Fabaceae), we used coalescence analyses coupled with ecological niche modeling to hindcast its distribution over the last 21 000 years. Twenty-five populations (644 individuals) were sampled and all individuals were genotyped using eight microsatellite loci. All populations presented low allelic richness and genetic diversity. The estimated effective population size was small in all populations and gene flow was negligible among most. We also found a significant signal of demographic reduction in most cases. Genetic differentiation among populations was significantly correlated with geographical distance. Allelic richness showed a spatial cline pattern in relation to the species’ paleodistribution 21 kyr BP (thousand years before present), as expected under a range expansion model. Our results show strong evidences that genetic diversity in D. alata is the outcome of the historical changes in species distribution during the late Pleistocene. Because of this historically low effective population size and the low genetic diversity, recent fragmentation of the Cerrado biome may increase population differentiation, causing population decline and compromising long-term persistence.
    [Show full text]
  • Stoichiometry and Planktonic Grazer Composition Over Gradients of Light, Nutrients, and Predation Risk
    Ecology, 85(8), 2004, pp. 2291±2301 q 2004 by the Ecological Society of America STOICHIOMETRY AND PLANKTONIC GRAZER COMPOSITION OVER GRADIENTS OF LIGHT, NUTRIENTS, AND PREDATION RISK SPENCER R. HALL,1,3 MATHEW A. LEIBOLD,1,4 DAVID A. LYTLE,1,5 AND VAL H. SMITH2 1Department of Ecology and Evolution, University of Chicago, 1101 E. 57th Street Chicago, Illinois 60637 USA 2Program in Ecology and Population Biology, Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas 66045 USA Abstract. Mechanisms that explain shifts in species composition over environmental gradients continue to intrigue ecologists. Ecological stoichiometry has recently provided a new potential mechanism linking resource (light and nutrient) supply gradients to grazer performance via elemental food-quality mechanisms. More speci®cally, it predicts that light and nutrient gradients should determine the relative dominance of P-rich taxa, such as Daphnia, in grazer assemblages. We tested this hypothesis in pond mesocosms (cattle tanks) by creating gradients of resource supply and predation risk, to which we added diverse assemblages of algal producer and zooplankton grazer species. We then characterized the end-point composition of grazer assemblages and quantity and elemental food quality of edible algae. We found that somatically P-rich Daphnia only dominated grazer assemblages in high-nutrient, no-predator treatments. In these ecosystems, P sequestered in producers exceeded a critical concentration. However, other grazers having even higher body P content did not respond similarly. These grazers were often abundant in low-nutrient environments with poorer food quality. At face value, this result is problematic for ecological stoichi- ometry because body composition did not correctly predict response of these other species.
    [Show full text]
  • Macroecology in the Age of Big Data –
    Received: 7 February 2019 | Revised: 8 May 2019 | Accepted: 9 May 2019 DOI: 10.1111/jbi.13633 PERSPECTIVE Macroecology in the age of Big Data – Where to go from here? Rafael O. Wüest1 | Niklaus E. Zimmermann1 | Damaris Zurell2 | Jake M. Alexander3 | Susanne A. Fritz4,5 | Christian Hof6 | Holger Kreft7 | Signe Normand8 | Juliano Sarmento Cabral9 | Eniko Szekely10 | Wilfried Thuiller11 | Martin Wikelski12,13 | Dirk Nikolaus Karger1 1Swiss Federal Research Institute WSL, Birmensdorf, Switzerland 2Department of Geography, Humboldt University Berlin, Berlin, Germany 3Institute of Integrative Biology, ETH Zurich, Zürich, Switzerland 4Senckenberg Biodiversity and Climate Research Centre, Frankfurt (Main), Germany 5Institute of Ecology, Evolution & Diversity, Goethe‐University, Frankfurt (Main), Germany 6Terrestrial Ecology Research Group, Technical University of Munich, Freising, Germany 7Biodiversity, Macroecology & Biogeography, Faculty of Forest Sciences and Forest Ecology, University of Göttingen, Göttingen, Germany 8Ecoinformatics & Biodiversity & Center for Biodiversity on a Changing world, Aarhus, Denmark 9Ecosystem Modeling, CCTB University of Würzburg, Würzburg, Germany 10Swiss Data Science Center, ETH Zurich and EPFL, Lausanne, Switzerland 11Evolution, Modeling and Analysis of Biodiversity (EMABIO), Laboratoire d'Ecologie Alpine (LECA), Université Grenoble Alpes, Grenoble, France 12Max‐Planck‐Institut for Ornithology, Vogelwarte Radolfzell, Radolfzell, Germany 13Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany Correspondence Dirk Nikolaus Karger, Swiss Federal Abstract Research Institute WSL, Zürcherstrasse 111, Recent years have seen an exponential increase in the amount of data available in all 8903 Birmensdorf, Switzerland. Email: [email protected] sciences and application domains. Macroecology is part of this “Big Data” trend, with a strong rise in the volume of data that we are using for our research.
    [Show full text]
  • A Global Method for Calculating Plant CSR Ecological Strategies Applied Across Biomes World-Wide
    Functional Ecology 2016 doi: 10.1111/1365-2435.12722 A global method for calculating plant CSR ecological strategies applied across biomes world-wide Simon Pierce*,1, Daniel Negreiros2, Bruno E. L. Cerabolini3, Jens Kattge4, Sandra Dıaz5, Michael Kleyer6, Bill Shipley7, Stuart Joseph Wright8, Nadejda A. Soudzilovskaia9, Vladimir G. Onipchenko10, Peter M. van Bodegom9, Cedric Frenette-Dussault7, Evan Weiher11, Bruno X. Pinho12, Johannes H. C. Cornelissen13, John Philip Grime14, Ken Thompson14, Roderick Hunt15, Peter J. Wilson14, Gabriella Buffa16, Oliver C. Nyakunga16,17, Peter B. Reich18,19, Marco Caccianiga20, Federico Mangili20, Roberta M. Ceriani21, Alessandra Luzzaro1, Guido Brusa3, Andrew Siefert22, Newton P. U. Barbosa2, Francis Stuart Chapin III23, William K. Cornwell24, Jingyun Fang25, Geraldo Wilson Fernandez2,26, Eric Garnier27, Soizig Le Stradic28, Josep Penuelas~ 29,30, Felipe P. L. Melo12, Antonio Slaviero16, Marcelo Tabarelli12 and Duccio Tampucci20 1Department of Agricultural and Environmental Sciences (DiSAA), University of Milan, Via G. Celoria 2, I-20133 Milan, Italy; 2Ecologia Evolutiva e Biodiversidade/DBG, ICB/Universidade Federal de Minas Gerais, CP 486, 30161-970 Belo Horizonte, MG, Brazil; 3Department of Theoretical and Applied Sciences, University of Insubria, Via J.H. Dunant 3, I-21100 Varese, Italy; 4Max Planck Institute for Biogeochemistry, P.O. Box 100164, 07701 Jena, Germany; 5Instituto Multidisciplinario de Biologıa Vegetal (CONICET-UNC) and FCEFyN, Universidad Nacional de Cordoba, Av. Velez Sarsfield 299,
    [Show full text]
  • Conservation Ecology: Using Ants As Bioindicators
    Table of Contents Using Ants as bioindicators: Multiscale Issues in Ant Community Ecology......................................................0 ABSTRACT...................................................................................................................................................0 INTRODUCTION.........................................................................................................................................0 SCALE DEPENDENCY IN ANT COMMUNITIES....................................................................................1 Functional groups .............................................................................................................................2 Regulation of diversity......................................................................................................................3 Measuring species richness and composition...................................................................................4 Estimating species richness...............................................................................................................6 IMPLICATIONS FOR THE USE OF ANTS AS BIOINDICATORS..........................................................8 Using functional groups to assess ecological change.......................................................................8 Assessing species diversity...............................................................................................................9 RESPONSES TO THIS ARTICLE.............................................................................................................10
    [Show full text]