Indirect Ammoxidation of Glycerol Into Acrylonitrile Via the Intermediate Acrolein

Total Page:16

File Type:pdf, Size:1020Kb

Indirect Ammoxidation of Glycerol Into Acrylonitrile Via the Intermediate Acrolein Indirect Ammoxidation of Glycerol into Acrylonitrile via the Intermediate Acrolein Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der RWTH Aachen University zur Erlangung des akademischen Grades eines Doktors der Ingenieurwissenschaften genehmigte Dissertation vorgelegt von Diplom-Ingenieur (FH) Carsten Liebig aus Worms Berichter: Universitätsprofessor Dr. Wolfgang F. Hölderich Universitätsprofessor Dr. Andreas Pfennig Tag der mündlichen Prüfung: 10.10.2012 Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfügbar. This work was carried out between February 2010 and September 2012 within a co- tutorial thesis at the Department of Chemical Technology and Heterogeneous Catalysis at RWTH Aachen University, Germany and at the Unité de Catalyse et Chimie du Solide, UMR CNRS 8181, at the Université des Sciences et Technologies de Lille, France. I would like to thank Prof. Dr. Wolfgang Hölderich and Prof. Dr. Sébastien Paul for kindly providing the interesting and challenging research topic, for their critical advice and inspiration as well as the excellent working conditions in Aachen and Lille respectively. Thanks to Prof. Dr. Andreas Pfennig and Prof. Dr. Jacques Vedrine for reviewing this thesis and for accepting their role as referee for this thesis. I am very grateful to the European Union for the financial support of this thesis within the Seventh Framework Program (FP7/2007-2013) under grant agreement n°241718 EuroBioRef. Especially, I would like to thank Prof. Dr. Franck Dumeignil for his support throughout my studies. Furthermore, I owe thanks to Dr. Jean-Luc Dubois of Arkema for the critical discussions and his advices. Moreover, I want to thank Prof. Dr. Gerhard Raabe and Dr. Jacques Kervennal for being examiners of this thesis. Furthermore, I wish to thank Dr. Benjamin Katryniok for his continuous support and many discussions, ideas and advices during my stay in Lille. I would like to thank all technicians in Aachen and Lille for their help - especially Elke Biener, Heike Bergstein, Noah Avraham, Marianne Nägler, Gerard Cambien, Olivier Gardoll and Arnaud Beaurain. Moreover, I would like to thank my colleagues in Aachen and Lille Dr. Moritz Venschott, Kyunghoon Kim, Dr. Raweewan Klaewkla, Dr. Oana Rusu, Dr. Matthias Arend, Yun Chen, Thomas Eschemann, Verena Ritzerfeld, Axel Pyrlik, Anna Matzen, Cyrille Guillon, Jorge Beiramar, Dr. Maryam Safariamin-Karimi, Fangli Jing, Kaew- arpha Thavornprasert and Dr. Svetlana Heyte for their help and many fruitful discussions. I owe thanks to my research students Paulo Schmitz, Sebastian Guski, Jonas Deitermann and Fabrice Tanguy for their active engagement and commitment in this work. Finally, I would like to thank my parents, my sister and my girlfriend Inga for their everlasting support and encouragement during my studies. Abstract Due to the depleting reserves of coal, oil and natural gas and to their negative impact on the environment, the humanity is forced to find renewable alternatives to replace the fossil feedstocks for the production of energy and chemical products. An example for an area of application where renewables are already used to substitute fossil feedstocks is the production of fuels. Biodiesel is one of the most popular biofuels nowadays. It is produced by transesterification of vegetable oils and fats. In this process, glycerol is formed as a by-product (approximately 10 wt.%). Glycerol is a versatile starting material which has up to 2000 applications. One very promising use of glycerol as starting material would be the dehydration of glycerol into acrolein. It could then be further converted into acrylonitrile - one of the most important monomers in the polymer production worldwide - by ammoxidation in the presence of ammonia and oxygen over mixed metal oxide catalysts. Today, acrylonitrile is exclusively synthesized from fossil feedstocks like propene and propane on an industrial scale. Therefore, a process combining the dehydration of glycerol to acrolein and the ammoxidation of the latter to acrylonitrile would be an alternative to the production processes based on fossil feedstocks. Thus, both reaction steps were studied separately at first - with focus on the ammoxidation of acrolein - and connected in a tandem reactor setup finally. For the first step of dehydration of glycerol to acrolein, we used previously optimized WO3/TiO2 catalysts, while oxide catalysts containing antimony, iron, vanadium and molybdenum were developed and used for the second ammoxidation step. Especially, the Sb-Fe-O catalysts were found highly selective and the influence of Sb/Fe ratio was subsequently studied. The presence of a FeSbO4 mixed phase on the synthesized samples was correlated to a high selectivity to acrylonitrile. Further, an increase in selectivity to acrylonitrile with the reaction time was observed, which was explained by the progressive formation of additional amounts of FeSbO4 over the catalysts during the reaction. After optimizing the key reaction parameter (reaction temperature, catalyst amount, NH3/acrolein ratio, O2/acrolein ratio) within a design of experiments, both reaction steps were connected in a tandem reactor. A maximum yield in acrylonitrile of 40 % (based on glycerol) was obtained. Table of Contents 1 Introduction and Aim of Work ................................................................................. 1 2 Basic Knowledge .................................................................................................... 4 2.1 Glycerol ............................................................................................................ 4 2.1.1 Glycerol Production ................................................................................... 4 2.1.2 Uses of Glycerol ........................................................................................ 8 2.2 Acrolein .......................................................................................................... 12 2.2.1 Acrolein Production .................................................................................. 12 2.2.2 Uses of Acrolein ....................................................................................... 15 2.3 Acrylonitrile .................................................................................................... 18 2.3.1 Acrylonitrile Production ............................................................................ 18 2.3.2 Uses of Acrylonitrile ................................................................................. 21 3 Scientific State of the Art ...................................................................................... 24 3.1 Direct Ammoxidation of Glycerol .................................................................... 24 3.2 Indirect Ammoxidation of Glycerol via Acrolein .............................................. 27 3.2.1 Step I: Dehydration of Glycerol ................................................................ 28 3.2.1.1 Intermediate Conclusion for the Dehydration of Glycerol .................. 32 3.2.2 Step II: Ammoxidation of Acrolein ............................................................ 33 3.2.2.1 Mechanism and Kinetics ................................................................... 36 3.2.2.2 Intermediate Conclusion for the Ammoxidation of Acrolein ............... 39 4 Results and Discussion ........................................................................................ 41 4.1 Dehydration of Glycerol ................................................................................. 41 4.1.1 Reactor Setup .......................................................................................... 41 4.1.2 Characterization ....................................................................................... 44 4.1.2.1 Nitrogen Physisorption ...................................................................... 44 4.1.2.2 X-ray Diffraction ................................................................................. 47 4.1.2.3 Temperature Programmed Desorption .............................................. 50 4.1.3 Results ..................................................................................................... 52 4.1.3.1 Catalysts Prepared According to Method I ........................................ 52 4.1.3.2 Catalysts Prepared According to Method II ....................................... 56 4.1.3.3 Combination of Method I and II ......................................................... 58 4.1.3.4 Identification of By-products .............................................................. 59 4.2 Ammoxidation of Acrolein .............................................................................. 60 4.2.1 Reactor Setup .......................................................................................... 60 I 4.2.2 Characterization ....................................................................................... 64 4.2.2.1 Antimony Iron Mixed Oxides ............................................................. 64 4.2.2.2 Antimony Vanadium Mixed Oxides ................................................... 76 4.2.2.3 Additional Ammoxidation Catalysts ................................................... 84 4.2.3 Results ..................................................................................................... 92 4.2.3.1 Preliminary Experiments ................................................................... 92 4.2.3.2 Catalyst Screening ...........................................................................
Recommended publications
  • Supported Metal Hydroxides As Efficient Heterogeneous Catalysts for Green Functional Group Transformations
    Journal of the Japan Petroleum Institute, 57, (6), 251-260 (2014) 251 [Review Paper] Supported Metal Hydroxides as Efficient Heterogeneous Catalysts for Green Functional Group Transformations Kazuya YAMAGUCHI and Noritaka MIZUNO* Dept. of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, JAPAN (Received August 23, 2014) This review article mainly describes our research on the development of highly active heterogeneous catalysts based on the properties of metal hydroxides and efficient green functional group transformations using these cata- lysts. Metal hydroxide species have both Lewis acid (metal center) and Brønsted base (hydroxy group) sites on the same metal sites. Combined action of the Lewis acid and Brønsted base paired sites can activate various types of organic substrates; for example, alcohols→alkoxides, amines→ amides, nitriles→η2-amidates, and terminal alkynes→acetylides. In the presence of supported ruthenium hydroxide catalyst (Ru(OH)x/Al2O3), oxidative dehydrogenation of alcohols and amines efficiently proceeds, forming the corresponding carbonyl compounds (aldehydes and ketones) and nitriles, respectively. Ru(OH)x /Al2O3 can also catalyze hydration of nitriles to pri- mary amides, ammoxidation of primary alcohols to nitriles, and formal α-oxygenation of primary amines to pri- mary amides. In addition, oxidative alkyne homocoupling and 1,3-dipolar cycloaddition efficiently proceed in the presence of supported copper hydroxide catalysts (Cu(OH)x /OMS-2 for homocoupling, Cu(OH)x/TiO2 and Cu(OH)x/Al2O3 for cycloaddition; where OMS-2 is manganese oxide-based octahedral molecular sieve, KMn8O16). The catalytic processes for these transformations are heterogeneous, and the catalysts can be reused several times with maintained high catalytic activity.
    [Show full text]
  • Catalysis Science & Technology
    Catalysis Science & Technology Accepted Manuscript This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication. Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available. You can find more information about Accepted Manuscripts in the Information for Authors. Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains. www.rsc.org/catalysis Page 1 of 10 Catalysis Science & Technology Journal Name RSC Publishing ARTICLE Scheelite: A Versatile Structural Template for Selective Alkene Oxidation Catalysts Cite this: DOI: 10.1039/x0xx00000x J. F. Brazdil , Manuscript Received 00th January 2012, The scheelite (CaWO4) structure type serves as the framework for a wide variety of metal Accepted 00th January 2012 oxide catalysts used for the selective oxidation and ammoxidation of alkenes. Among the industrially important processes where these catalysts find application are propylene oxidation DOI: 10.1039/x0xx00000x to acrolein, propylene ammoxidation to acrylonitrile and butene oxidative dehydrogenation to www.rsc.org/ butadiene.
    [Show full text]
  • Ammoxidation Reactions 1 1.2 (Potential) Applications of Nitriles 3 1.3 Aromatic Nitriles As Intermediates in Selective Oxidation Reactions 5 2
    Catalytic conversion of alkylaromatics to aromatic nitriles Citation for published version (APA): Stobbelaar, P. J. (2000). Catalytic conversion of alkylaromatics to aromatic nitriles. Technische Universiteit Eindhoven. https://doi.org/10.6100/IR538872 DOI: 10.6100/IR538872 Document status and date: Published: 01/01/2000 Document Version: Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal.
    [Show full text]
  • ECO-Ssls for Pahs
    Ecological Soil Screening Levels for Polycyclic Aromatic Hydrocarbons (PAHs) Interim Final OSWER Directive 9285.7-78 U.S. Environmental Protection Agency Office of Solid Waste and Emergency Response 1200 Pennsylvania Avenue, N.W. Washington, DC 20460 June 2007 This page intentionally left blank TABLE OF CONTENTS 1.0 INTRODUCTION .......................................................1 2.0 SUMMARY OF ECO-SSLs FOR PAHs......................................1 3.0 ECO-SSL FOR TERRESTRIAL PLANTS....................................4 5.0 ECO-SSL FOR AVIAN WILDLIFE.........................................8 6.0 ECO-SSL FOR MAMMALIAN WILDLIFE..................................8 6.1 Mammalian TRV ...................................................8 6.2 Estimation of Dose and Calculation of the Eco-SSL ........................9 7.0 REFERENCES .........................................................16 7.1 General PAH References ............................................16 7.2 References Used for Derivation of Plant and Soil Invertebrate Eco-SSLs ......17 7.3 References Rejected for Use in Derivation of Plant and Soil Invertebrate Eco-SSLs ...............................................................18 7.4 References Used in Derivation of Wildlife TRVs .........................25 7.5 References Rejected for Use in Derivation of Wildlife TRV ................28 i LIST OF TABLES Table 2.1 PAH Eco-SSLs (mg/kg dry weight in soil) ..............................4 Table 3.1 Plant Toxicity Data - PAHs ..........................................5 Table 4.1
    [Show full text]
  • Acrylonitrile
    Common Name: ACRYLONITRILE CAS Number: 107-13-1 DOT Number: UN 1093 (Inhibited) RTK Substance number: 0024 DOT Hazard Class: 3 (Flammable Liquid) Date: May 1998 Revisions: December 2005 ------------------------------------------------------------------------- ------------------------------------------------------------------------- HAZARD SUMMARY * Acrylonitrile can affect you when breathed in and by training concerning chemical hazards and controls. The federal passing through your skin. OSHA Hazard Communication Standard 29 CFR 1910.1200, * Acrylonitrile is a CARCINOGEN--HANDLE WITH requires private employers to provide similar training and EXTREME CAUTION. information to their employees. * Acrylonitrile should be handled as a TERATOGEN-- WITH EXTREME CAUTION. * Exposure to hazardous substances should be routinely * Skin contact can cause severe irritation and blistering. evaluated. This may include collecting personal and area air * Exposure to Acrylonitrile can irritate the eyes, nose, and samples. You can obtain copies of sampling results from throat. your employer. You have a legal right to this information * Breathing Acrylonitrile can irritate the lungs causing under the OSHA Standard 29 CFR 1910.1020. coughing and/or shortness of breath. Higher exposures can * If you think you are experiencing any work-related health cause a build-up of fluid in the lungs (pulmonary edema), a problems, see a doctor trained to recognize occupational medical emergency, with severe shortness of breath. diseases. Take this Fact Sheet with you. * Exposure to Acrylonitrile can cause weakness, headache, * ODOR THRESHOLD = 1.6 ppm. dizziness, confusion, nausea, vomiting, and can lead to * The range of accepted odor threshold values is quite broad. death. Caution should be used in relying on odor alone as a * Repeated exposure can irritate the nose causing discharge, warning of potentially hazardous exposures.
    [Show full text]
  • Polymer Effect on Molecular Recognition. Enhancement of Molecular-Shape Selectivity for Polycyclic Aromatic Hydrocarbons by Poly(Acrylonitrile)
    Polymer Journal, Vol.34, No. 6, pp 437—442 (2002) Polymer Effect on Molecular Recognition. Enhancement of Molecular-Shape Selectivity for Polycyclic Aromatic Hydrocarbons by Poly(acrylonitrile) Makoto TAKAFUJI, Wei DONG, Yoshihiro GOTO, Toshihiko SAKURAI, ∗ † Shoji NAGAOKA, and Hirotaka IHARA Department of Applied Chemistry & Biochemistry, Faculty of Engineering, Kumamoto University, Kumamoto 860–8555, Japan ∗Kumamoto Industrial Research Institute, Kumamoto 862–0901, Japan (Received December 10, 2001; Accepted April 25, 2002) ABSTRACT: Poly(acrylonitrile) immobilized onto porous silica (Sil-ANn) was prepared to evaluate the effect of polymerization degree of poly(acrylonitrile) on selective interaction with polycyclic aromatic hydrocarbons. The HPLC using the packed column (Sil-ANn) and an aqueous solution as a mobile phase showed higher selectivity for structural isomers of polycyclic aromatic hydrocarbons compared with simply cyanopropylated silica (Sil-CN) and alkylated silica (Sil-C4). It was considered that silica-supported poly(acrylonitrile) recognized molecular aromaticity of π-electron con- taining compounds rather than molecular hydrophobicity. Furthermore, similar results were obtained in the selectivity towards geometrical isomers such as trans- and cis-stilbenes or triphenylene and o-terphenyl and structural isomers such as o-, m-, p-terphenyls. Also the separation factors increased with an increase in polymerization degree of ANn. This paper discusses that polymeric structures enhance the selectivity. KEY WORDS Polymer Grafting
    [Show full text]
  • Acrylonitrile
    Acrylonitrile 107-13-1 Hazard Summary Exposure to acrylonitrile is primarily occupational: it is used in the manufacture of acrylic acid and modacrylic fibers. Acute (short-term) exposure of workers to acrylonitrile has been observed to cause mucous membrane irritation, headaches, dizziness, and nausea. No information is available on the reproductive or developmental effects of acrylonitrile in humans. Based on limited evidence in humans and evidence in rats, EPA has classified acrylonitrile as a probable human carcinogen (Group B1). Please Note: The main sources of information for this fact sheet are EPA's Integrated Risk Information System (IRIS) (4), which contains information on inhalation chronic toxicity of acrylonitrile and the RfC and the carcinogenic effects of acrylonitrile including the unit cancer risk for inhalation exposure, EPA's Health Effects Assessment for Acrylonitrile (6), and the Agency for Toxic Substances and Disease Registry's (ATSDR's) Toxicological Profile for Acrylonitrile (1). Uses Acrylonitrile is primarily used in the manufacture of acrylic and modacrylic fibers. It is also used as a raw material in the manufacture of plastics (acrylonitrile-butadiene-styrene and styrene-acrylonitrile resins), adiponitrile, acrylamide, and nitrile rubbers and barrier resins. (1,6) Sources and Potential Exposure Human exposure to acrylonitrile appears to be primarily occupational, via inhalation. (1) Acrylonitrile may be released to the ambient air during its manufacture and use. (1) Assessing Personal Exposure Acrylonitrile
    [Show full text]
  • Toxicological Profile for Acetone Draft for Public Comment
    ACETONE 1 Toxicological Profile for Acetone Draft for Public Comment July 2021 ***DRAFT FOR PUBLIC COMMENT*** ACETONE ii DISCLAIMER Use of trade names is for identification only and does not imply endorsement by the Agency for Toxic Substances and Disease Registry, the Public Health Service, or the U.S. Department of Health and Human Services. This information is distributed solely for the purpose of pre dissemination public comment under applicable information quality guidelines. It has not been formally disseminated by the Agency for Toxic Substances and Disease Registry. It does not represent and should not be construed to represent any agency determination or policy. ***DRAFT FOR PUBLIC COMMENT*** ACETONE iii FOREWORD This toxicological profile is prepared in accordance with guidelines developed by the Agency for Toxic Substances and Disease Registry (ATSDR) and the Environmental Protection Agency (EPA). The original guidelines were published in the Federal Register on April 17, 1987. Each profile will be revised and republished as necessary. The ATSDR toxicological profile succinctly characterizes the toxicologic and adverse health effects information for these toxic substances described therein. Each peer-reviewed profile identifies and reviews the key literature that describes a substance's toxicologic properties. Other pertinent literature is also presented, but is described in less detail than the key studies. The profile is not intended to be an exhaustive document; however, more comprehensive sources of specialty information are referenced. The focus of the profiles is on health and toxicologic information; therefore, each toxicological profile begins with a relevance to public health discussion which would allow a public health professional to make a real-time determination of whether the presence of a particular substance in the environment poses a potential threat to human health.
    [Show full text]
  • Ethylene Oxide
    ETHYLENE OXIDE Ethylene oxide was considered by previous IARC Working Groups in 1976, 1984, 1987, 1994, and 2007 (IARC, 1976, 1985, 1987, 1994, 2008). Since that time new data have become avail- able, which have been incorporated in this Monograph, and taken into consideration in the present evaluation. 1. Exposure Data 1.2 Uses Ethylene oxide is an important raw material 1.1 Identification of the agent used in the manufacture of chemical derivatives From IARC (2008), unless indicated otherwise that are the basis for major consumer goods in Chem. Abstr. Serv. Reg. No.: 75-21-8 virtually all industrialized countries. More than Chem. Abstr. Serv. Name: Oxirane half of the ethylene oxide produced worldwide Synonyms: 1,2-Epoxyethane is used in the manufacture of mono-ethylene glycol. Conversion of ethylene oxide to ethylene O glycols represents a major use for ethylene oxide in most regions: North America (65%), western Europe (44%), Japan (63%), China (68%), Other Asia (94%), and the Middle East (99%). Important C2H4O Relative molecular mass: 44.06 derivatives of ethylene oxide include di-ethylene Description: Colourless, flammable gas glycol, tri-ethylene glycol, poly(ethylene) (O’Neill, 2006) glycols, ethylene glycol ethers, ethanol-amines, Boiling-point: 10.6 °C (Lide, 2008) and ethoxylation products of fatty alcohols, Solubility: Soluble in water, acetone, fatty amines, alkyl phenols, cellulose and benzene, diethyl ether, and ethanol (Lide, poly(propylene) glycol (Occupational Safety and 2008) Health Administration, 2005; Devanney, 2010). Conversion factor: mg/m3 = 1.80 × ppm; A very small proportion (0.05%) of the annual calculated from: mg/m3 = (relative production of ethylene oxide is used directly in molecular weight/24.45) × ppm, assuming the gaseous form as a sterilizing agent, fumigant standard temperature (25 °C) and pressure and insecticide, either alone or in non-explo- (101.3 kPa).
    [Show full text]
  • Designing Multifunctionality Into Single Phase and Multiphase Metal-Oxide-Selective Propylene Ammoxidation Catalysts
    catalysts Review Designing Multifunctionality into Single Phase and Multiphase Metal-Oxide-Selective Propylene Ammoxidation Catalysts James F. Brazdil Archer Daniels Midland Company, James R. Randall Research Center, Decatur, IL 62521, USA; [email protected]; Tel.: +1-217-451-2870 Received: 5 February 2018; Accepted: 26 February 2018; Published: 2 March 2018 Abstract: Multifunctionality is the hallmark of most modern commercial heterogeneous catalyst systems in use today, including those used for the selective ammoxidation of propylene to acrylonitrile. It is the quintessential principle underlying commercial catalyst design efforts since petrochemical process development is invariably driven by the need to reduce manufacturing costs. This is in large part achieved through new and improved catalysts that increase selectivity and productivity. In addition, the future feedstocks for chemical processes will be invariably more refractory than those currently in use (e.g., replacing alkenes with alkanes or using CO2), thus requiring a disparate combination of chemical functions in order to effect multiple chemical transformations with the fewest separate process steps. This review summarizes the key chemical phenomena behind achieving the successful integration of multiple functions into a mixed-metal-oxide-selective ammoxidation catalyst. An experiential and functional catalyst design model is presented that consists of one or both of the following components: (1) a mixed-metal-oxide–solid solution where the individual metal components serve separate and necessary functions in the reaction mechanism through their atomic level interaction in the context of a single crystallographic structure; (2) the required elemental components and their catalytic function existing in separate phases, where these phases are able to interact for the purposes of electron and lattice oxygen transfer through the formation of a structurally coherent interface (i.e., epitaxy) between the separate crystal structures.
    [Show full text]
  • Naphthalene Photoinitiated Copolymerizafion of Unsaturated Monomers
    Naphthalene photoinitiated copolymerizafion of unsaturated monomers J. BARTOŇ, I. ČAPEK, D. LATH, and E. LATHOVÁ Polymer Institute, Slovak Academy of Sciences, 809 34 Bratislava Received 18 February 1976 For the naphthalene photoinitiated copolymerization of acrylonitrile with styrene, methyl methacrylate, vinyl chloride, vinyl acetate, and isoprene the copolymerization parameters, number average molecular weights, and limiting viscosity numbers of copolymers were determined. It was found that copolyme­ rization rates increased by increasing the acrylonitrile concentration in feed. The results obtained point at the radical nature of copolymerization. При нафталином фотоинициированной сополимеризации акрилонитри- ла со стиролом, метилметакрилатом, винилхлоридом, винилацетатом и изопреном были установлены параметры сополимеризации, средний молекулярный вес и предельная характеристика вязкости сополимеров. Было установлено, что скорость сополимеризации увеличивается с повы­ шением концентрации акрилонитрила в затравке. Полученные результа­ ты указывают на радикальную сущность сополимеризации. In our papers [1—3] we have shown that aromatic hydrocarbons photoinitiated the polymerization of acrylonitrile. It was concluded that polymerization proceeds by a free radical mechanism. As initiating particles the ion radicals were con­ sidered. These initiating particles were formed in the subsequent reactions of the reaction product arising in the interaction between aromatic hydrocarbon in the first excited singlet state and acrylonitrile in the ground state. In this communication we report the results of study of copolymerization of acrylonitrile (AN) with methyl methacrylate (MMA), styrene (S), vinyl chloride (VC1), vinyl acetate (VAc), and isoprene (I) in the presence of naphthalene (N) acting as photoinitiator. Experimental Monomers, all commercial products were carefully purified by three times repeated rectification under reduced pressure of argon. Vinyl chloride was dried by passing it through silica gel column.
    [Show full text]
  • Acrylonitrile
    ACRYLONITRILE This substance was considered by previous Working Groups, in February 1978 (IARC, 1979) and March 1987 (IARC, 1987a). Since that time, new data have become available, and these have been incorporated into the monograph and taken into consi- deration in the present evaluation. 1. Exposure Data 1.1 Chemical and physical data 1.1.1 Nomenclature Chem. Abstr. Serv. Reg. No.: 107-13-1 Chem. Abstr. Name: 2-Propenenitrile Synonyms: AN; cyanoethylene; propenenitrile; VCN; vinyl cyanide 1.1.2 Structural and molecular formulae and relative molecular mass H2 CCHCN C3H3N Relative molecular mass: 53.06 1.1.3 Chemical and physical properties of the pure substance (a) Description: Colourless liquid (Verschueren, 1996) (b) Boiling-point: 77.3°C (Lide, 1995) (c) Melting-point: –83.5°C (Lide, 1995) 20 (d) Density: d4 0.8060 (Lide, 1995) (e) Spectroscopy data: Infrared, nuclear magnetic resonance and mass spectral data have been reported (Sadtler Research Laboratories, 1980; Brazdil, 1991) (f) Solubility: Soluble in water (7.35 mL/100 mL at 20°C); very soluble in acetone, benzene, diethyl ether and ethanol (Lide, 1995; Budavari, 1996) (g) Volatility: Vapour pressure, 13.3 kPa at 23°C; relative vapour density (air = 1), 1.83 (Verschueren, 1996) (h) Stability: Flash-point (open cup), 0°C; flammable; polymerizes spontaneously, particularly in the absence of oxygen, on exposure to visible light and in contact with concentrated alkali (Budavari, 1996) (i) Explosive limits: Lower, 3.05%; upper, 17.0% (Budavari, 1996) (j) Octanol/water partition coefficient (P): log P, 0.25 (Hansch et al., 1995) –43– 44 IARC MONOGRAPHS VOLUME 71 (k) Conversion factor: mg/m3 = 2.17 × ppm1 1.1.4 Technical products and impurities Acrylonitrile of 99.5–99.7% purity is available commercially, with the following specifications (ppm by weight, maximum): acidity (as acetic acid), 10; acetone, 75; ace- tonitrile, 300; acrolein, 1; hydrogen cyanide, 5; total iron, 0.1; oxazole, 10; peroxides (as hydrogen peroxide), 0.2; water, 0.5%; and nonvolatile matter, 100.
    [Show full text]