Batch and median neural gas Marie Cottrell, Barbara Hammer, Alexander Hasenfuss, Thomas Villmann To cite this version: Marie Cottrell, Barbara Hammer, Alexander Hasenfuss, Thomas Villmann. Batch and median neural gas. Neural Networks, Elsevier, 2006, 19, pp.762-771. 10.1016/j.neunet.2006.05.018. hal-00107462 HAL Id: hal-00107462 https://hal.archives-ouvertes.fr/hal-00107462 Submitted on 18 Oct 2006 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Batch and median neural gas Marie Cottrell SAMOS-MATISSE, Universite´ Paris I, Paris, France Barbara Hammer 1 Institute of Computer Science, Clausthal University of Technology, Clausthal-Zellerfeld, Germany Alexander Hasenfuß Institute of Computer Science, Clausthal University of Technology, Clausthal-Zellerfeld, Germany Thomas Villmann Clinic for Psychotherapy, Universitat¨ Leipzig, Leipzig, Germany ccsd-00107462, version 1 - 18 Oct 2006 1 corresponding author: Barbara Hammer, Institute of Computer Science, Clausthal University of Technology, Julius-Albert-Str. 4, D-38678 Clausthal-Zellerfeld, Germany,
[email protected] Preprint submitted to Elsevier Science 18 October 2006 Abstract Neural Gas (NG) constitutes a very robust clustering algorithm given euclidian data which does not suffer from the problem of local minima like simple vector quantization, or topo- logical restrictions like the self-organizing map.