Petrology of Lamproites Petrology of Lamproites

Total Page:16

File Type:pdf, Size:1020Kb

Petrology of Lamproites Petrology of Lamproites PETROLOGY OF LAMPROITES PETROLOGY OF LAMPROITES Roger H. Mitchell Lakehead University Thunder Bay, Ontario Canada and Steven C. Bergman ARCO Oi! and Gas Company Plano, Texas SPRINGER SCIENCE+BUSINESS MEDIA, UC Llbrary of Congress Cataloglng-ln-Publlcation Data Mitchell, Roger H. Petrology of lamproites I Roger H. Mitehell and Steven C. Bergman. p. em. Ineludes bibliographieal referenees and index. ISBN 978-1-4613-6688-1 ISBN 978-1-4615-3788-5 (eBook) DOI 10.1007/978-1-4615-3788-5 1. Lamproite. 2. Petrology. 3. Geoehemistry. 4. Rocks, Igneous. I. Bergman, Steven C. 11. Tit18. QE462.L35M57 1991 552' .3--de20 90-25226 CIP ISBN 978-1-4613-6688-1 © 1991 Springer Science+ Business Media New York Origioallypublished by Plenum Press, New York in 1991 Spftcover reprint of the hardcover 1st edition 1991 All rights reserved No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording, or otherwise, without written permission from the Publisher This work is dedicated to REX T. PRIDER Emeritus Professor of Geology University of Western Australia in recognition of his pioneering studies of the mineralogy and petrology of lamproites. Preface In this book, the first dedicated entirely to the petrology of lamproites and their relationships to other potassium-rich rocks, the objective of the authors is to provide a comprehensive critical review of the occurrence, mineralogy, geochemistry, and petrogenesis of the clan. Although lamproites represent one of the rarest of all rock types, they are both economically and scientifically important and we believe the time is ripe for a review of the advances made in their petrology over the past two decades. Many of these advances stem from the recognition of diamond-bearing lamproites in Western Australia and the reclassification of several anomalous diamond-bearing kim­ berlites as lamproites. Consequently lamproites, previously of interest only to a small number of mineralogists specializing in exotica outside the mainstream of igneous petrol­ ogy, have become prime targets for diamond exploration on a worldwide basis. Contemporaneously with these developments, petrologists realized that lamproites possess isotopic signatures complementary to those of midoceanic ridge basalts, alkali basalts, kimberlites, and other mantle-derived melts. These isotopic studies provided new insights into the long-term development of the mantle by suggesting that the source regions of lamproites were metasomatically enriched in light rare earth and other incompatible elements up to 1-2 Ga prior to the melting events leading to generation of the magma. We believe that an understanding of the nature of lamproites is essential for geologists concerned with exploration for diamond, and petrologists and geochemists interested in continental alkaline magmatism and mantle evolution. In the book we present new inter­ pretations of various aspects of lamproite petrology. Hence, the work is not simply a summary of existing information and accepted concepts; rather it proposes hypotheses that it is hoped, will serve to stimulate further studies of these unusual rocks. The book is the work of two authors, and although in overall agreement regarding the content and philosophy of the text, each assumes primary responsibility for any errors or omissions to be found in his particular contributions. In addition to the style and overall editing of the work, Roger Mitchell was responsible for Chapters 1, 2, 6-8, and 10 and Steven Bergman was responsible for Chapters 3-5 and 9. Alan Edgar and Henry Meyer are thanked for reviewing initial drafts of many of the chapters. Valerie Dennison is especially thanked for proofreading the entire work. Many people have contributed to the production of this book. We are particularly appreciative of preprints, thin sections, and rock samples provided by and discussions with vii viii PREFACE Lynton Jaques, Barbara Scott Smith, Alan Edgar, Danielle Velde, Henry Meyer, Bram Janse, Leendert Krol, Peter Berendsen, John Lewis, Steve Foley, Gino Venturelli, Mike Roden, Peter Nixon, Carter Hearn, Ted Scamboz, Howard Coopersmith, Hugh O'Brien, Tony Irving, Ken Collerson, Tony Erlank, Nick Rock, and Dave Nelson. Special thanks go to Henry Meyer for providing many hours of microprobe time at Purdue University, Barbara Scott Smith for photographic work, and Ken Foland for geochronological data. 1. Toney, D. 1. Henry, and L. Liang assisted with some of the microprobe analyses in Dallas. We thank P. A. Sheahan, K. Weissman, P. A. Carper, L. Batzle, and 1. M. Prokesh for literature searches and the acquisition of citations. Technical assistance at ARCO in Dallas was provided by 1. Talbot, V. Mount, S. R. Yang, F. Stiff, and E. Kinsel, and at Lakehead University by A. MacKenzie, M. Downey, A. Hammond, R. Viitala, W. Bons, and S. Millar. Sam Spivak drafted all of the original diagrams. Mitchell's work on lamproites is supported by the Natural Sciences and Engineering Research Council of Canada and Lakehead University. Much of Bergman's contribution was supported by the Anaconda Minerals Company (Industrial Minerals Group) and the ARCO Oil and Gas Company Exploration and Production Research Laboratory, in conjunction with their (presently expired) diamond exploration and minerals research programs. Roger Mitchell wishes to thank Valerie Dennison for her continued encouragement of his studies of lamproites and maintenance of an environment favorable to the preparation of this book. Steve Bergman acknowledges the support and consideration provided by Mary, Allison, Everett, Louise, and Maggie Bergman. Roger Mitchell Thunder Bay Steven Bergman Dallas Contents Chapter 1. The Lamproite Clan-Etymology and Historical Perspective 1 1. 1. Introduction 1 1.2. Initial Discoveries-1870-1906 1 1.3. Etymology of Lamproite 2 1.4. Western Australian Discoveries-The Legitimization of Lamproites 3 1.5. Johannsen and Modal Classifications of Rocks 4 1.6. Further Developments, New Occurrences, and Diamond- Bearing Lamproites 5 1.7. Reclassification of Anomalous Kimberlites 6 1. 8 . Recent Developments 7 Chapter 2. Potassic Rocks and the Lamproite Clan 9 2.1. Alkalinity, Sodic, Potassic, and Ultrapotassic Rocks 9 2.2. Alkali-Alumina Relationships 10 2.3. Potassic Rocks-General Petrographic Characteristics and Terminology 11 2.3.1. Lamproites 11 2.3.2. Roman Province Leucitites 12 2.3.3. Ultrapotassic Leucitites 13 2.3.4. Kalsilite-Bearing Lavas (Kamafugitic Rocks) 14 2.3.5. Potassic Lamprophyres 15 2.3.6. Kimberlite and Micaceous Kimberlites 15 2.3.7. The Shoshonite Association 16 2.3.8. Potassic Intrusive Rocks 17 2.4. Petrochemical Classifications of Potassic Rocks 17 2.4.1. Niggli Parameters 18 2.4.2. K20-Na20 Diagrams 19 2.4.3. Total Alkali-Silica Classifications 19 2.4.4. Sahama (1974) 21 2.4.5. Barton (1979) 23 ix x CONTENTS 2.4.6. Bogatikov et al. (1985) 26 2.4.7. Foley et al. (1987) 29 2.5. Petrographic and Mineralogical Classifications 31 2.5.1. Petrographic Classifications 31 2.5.2. Mineralogical Classifications 32 2.6. The Lamproite Clan 35 2.6.1. Geochemical Criteria for Lamproite Recognition 37 2.6.2. Mineralogical Criteria for Lamproite Recognition 37 Chapter 3. Description of Lamproite Occurrences-Distribution, Age, Characteristics, and Geological Framework 39 3.1. Introduction 39 3.2. North American and Greenland Lamproites 40 3.2.1. Group Name: Prairie Creek 43 3.2.2. Group Name: Leucite Hills 46 3.2.3. Group Name: Smoky Butte 50 3.2.4. Group Name: Francis 52 3.2.5. Group Name: Hills Pond 55 3.2.6. Group Name: Sisimiut 57 3.2.7. Group Name: Yellow Water Butte 59 3.2.8. Group Name: Froze-to-Death Butte 61 3.3. European Lamproites 63 3.3.1. Group Name: Murcia-Almeria 65 3.3.2. Group Name: Sisco 69 3.3.3. Group Name: Sesia-Lanzo and Combin 70 3.4. African Lamproites 72 3.4.1. Group Name: Kapamba 73 3.4.2. Group Name: Pneil, Postmasburg, Swartruggens 75 3.4.3. Group Name: Bobi 76 3.5. Australian Lamproites 79 3.5.1. Group Name: Argyle 80 3.5.2. Group Name: West Kimberley 83 3.6. Antarctic Lamproites 86 3.6.1. Group Name: Gaussberg 86 3.6.2. Group Names: Mount Bayliss and Priestley Peak 87 3.7. Asian Lamproites 89 3.7.1. Group Name: Chelima 90 3.7.2. Group Name: Majhgawan 93 3.7.3. Group Name: Barakar 96 3.7.4. Group Name: Murun 97 3.8. South American Lamproites 98 3.8.1. Group Name: Coromandel 98 3.9. Conclusions 101 CONTENTS xi Chapter 4. Tectonic Framework of Lamproite Genesis 103 4.1. Age and Temporal Relations of Lamproite Magmatism 104 4.2. Regional Geological and Tectonic Setting Generalizations 107 4.2.1. Lamproites and Plate Tectonics 108 4.2.2. Lamproites and Contemporaneous Subduction Zones 108 4.2.3. Fracture Zones, Transform Faults, and Continental Lineaments 110 4.2.4. Mantle Plumes, Hot Spots, and Hot Regions 111 4.2.5. Continental Rift Zones and Aulacogens 114 4.2.6. Orogeny and Postorogenic Relaxation 115 4.3. Lithospheric History of Lamproite Settings 116 4.3.1. Regional Structure 116 4.3.2. Basement Age, Composition, and Evolution 117 4.3.3. Contemporaneous, Previous, and Subsequent Magmatism 117 4.3.4. Importance of Paleosubduction and Fossil Benioff Zones 119 4.3.5. Mantle Metasomatism-Another Necessary Condition 120 4.3.6. Comparison with Kimberlites, Alkali Basalts, Lamprophyres, and Potassium-Rich Rocks 121 4.4. Tectonic Framework of Four Mesozoic-to-Cenozoic Lamproite Type-Locality Magmatic Fields 122 4.4.1. Leucite Hills 122 4.4.2. West Kimberley 122 4.4.3. Murcia-Almeria 123 4.4.4. Prairie Creek 123 4.5. Conclusions and Preferred Model 123 Chapter 5. Petrological Facies and Igneous Forms of the Lamproite Clan 125 5.1.
Recommended publications
  • Evolution of K-Rich Magmas Derived from a Net Veined
    Evolution of K-rich magmas derived from a net veined lithospheric mantle in an ongoing extensional setting: Geochronology and geochemistry of Eocene and Miocene volcanic rocks from Eastern Pontides (Turkey) Cem Yücel, Mehmet Arslan, Irfan Temizel, Emel Abdioğlu, Gilles Ruffet To cite this version: Cem Yücel, Mehmet Arslan, Irfan Temizel, Emel Abdioğlu, Gilles Ruffet. Evolution of K-rich magmas derived from a net veined lithospheric mantle in an ongoing extensional setting: Geochronology and geochemistry of Eocene and Miocene volcanic rocks from Eastern Pontides (Turkey). Gondwana Research, Elsevier, 2017, 45, pp.65-86. 10.1016/j.gr.2016.12.016. insu-01462865 HAL Id: insu-01462865 https://hal-insu.archives-ouvertes.fr/insu-01462865 Submitted on 9 Feb 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Accepted Manuscript Evolution of K-rich magmas derived from a net veined lithospheric mantle in an ongoing extensional setting: Geochronology and geochemistry of Eocene and Miocene volcanic rocks from Eastern Pontides (Turkey) Cem Yücel, Mehmet Arslan,
    [Show full text]
  • Fingerprints of Kamafugite-Like Magmas in Mesozoic Lamproites of the Aldan Shield: Evidence from Olivine and Olivine-Hosted Inclusions
    minerals Article Fingerprints of Kamafugite-Like Magmas in Mesozoic Lamproites of the Aldan Shield: Evidence from Olivine and Olivine-Hosted Inclusions Ivan F. Chayka 1,2,*, Alexander V. Sobolev 3,4, Andrey E. Izokh 1,5, Valentina G. Batanova 3, Stepan P. Krasheninnikov 4 , Maria V. Chervyakovskaya 6, Alkiviadis Kontonikas-Charos 7, Anton V. Kutyrev 8 , Boris M. Lobastov 9 and Vasiliy S. Chervyakovskiy 6 1 V. S. Sobolev Institute of Geology and Mineralogy Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; [email protected] 2 Institute of Experimental Mineralogy, Russian Academy of Sciences, 142432 Chernogolovka, Russia 3 Institut des Sciences de la Terre (ISTerre), Université de Grenoble Alpes, 38041 Grenoble, France; [email protected] (A.V.S.); [email protected] (V.G.B.) 4 Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, Moscow, Russia; [email protected] 5 Department of Geology and Geophysics, Novosibirsk State University, 630090 Novosibirsk, Russia 6 Institute of Geology and Geochemistry, Ural Branch of the Russian Academy of Sciences, 620016 Yekaterinburg, Russia; [email protected] (M.V.C.); [email protected] (V.S.C.) 7 School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia; [email protected] 8 Institute of Volcanology and Seismology, Far Eastern Branch of the Russian Academy of Sciences, 683000 Petropavlovsk-Kamchatsky, Russia; [email protected] 9 Institute of Mining, Geology and Geotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia; [email protected] * Correspondence: [email protected]; Tel.: +7-985-799-4936 Received: 17 February 2020; Accepted: 6 April 2020; Published: 9 April 2020 Abstract: Mesozoic (125–135 Ma) cratonic low-Ti lamproites from the northern part of the Aldan Shield do not conform to typical classification schemes of ultrapotassic anorogenic rocks.
    [Show full text]
  • Mineralogy and Chemistry of Rare Earth Elements in Alkaline Ultramafic Rocks and Fluorite in the Western Kentucky Fluorspar District Warren H
    Mineralogy and Chemistry of Rare Earth Elements in Alkaline Ultramafic Rocks and Fluorite in the Western Kentucky Fluorspar District Warren H. Anderson Report of Investigations 8 doi.org/10.13023/kgs.ri08.13 Series XIII, 2019 Cover Photo: Various alkaline ultramafic rocks showing porphyritic, brecciated, and aphanitic textures, in contact with host limestone and altered dike texture. From left to right: • Davidson North dike, Davidson core, YH-04, 800 ft depth. Lamprophyre with calcite veins, containing abundant rutile. • Coefield area, Billiton Minner core BMN 3. Intrusive breccia with lamprophyric (al- nöite) matrix. • Maple Lake area, core ML-1, 416 ft depth. Lamprophyre intrusive. • Maple Lake area, core ML-2, 513 ft depth. Lamprophyre (bottom) in contact with host limestone (top). Kentucky Geological Survey University of Kentucky, Lexington Mineralogy and Chemistry of Rare Earth Elements in Alkaline Ultramafic Rocks and Fluorite in the Western Kentucky Fluorspar District Warren H. Anderson Report of Investigations 8 doi.org/10.13023/kgs.ri08.13 Series XIII, 2019 Our Mission The Kentucky Geological Survey is a state-supported research center and public resource within the University of Kentucky. Our mission is to sup- port sustainable prosperity of the commonwealth, the vitality of its flagship university, and the welfare of its people. We do this by conducting research and providing unbiased information about geologic resources, environmen- tal issues, and natural hazards affecting Kentucky. Earth Resources—Our Common Wealth www.uky.edu/kgs © 2019 University of Kentucky For further information contact: Technology Transfer Officer Kentucky Geological Survey 228 Mining and Mineral Resources Building University of Kentucky Lexington, KY 40506-0107 Technical Level General Intermediate Technical Statement of Benefit to Kentucky Rare earth elements are used in many applications in modern society, from cellphones to smart weapons systems.
    [Show full text]
  • Information to Users
    INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely afreet reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. UMI University Microfilms International A Bell & Howell Information Company 300 Nortfi Zeeb Road, Ann Arbor, Ml 48106-1346 USA 313/761-4700 800/521-0600 Order Number 9412018 Integrated approach to diamond exploration in the north-central United States Memmi, John Michael, Ph.D. The Ohio State University, 1993 Copyright ©1993 by Memmi, John Michael.
    [Show full text]
  • Geology of the Crater of Diamonds State Park and Vicinity, Pike County, Arkansas
    SPS-03 STATE OF ARKANSAS ARKANSAS GEOLOGICAL SURVEY Bekki White, State Geologist and Director STATE PARK SERIES 03 GEOLOGY OF THE CRATER OF DIAMONDS STATE PARK AND VICINITY, PIKE COUNTY, ARKANSAS by J. M. Howard and W. D. Hanson Little Rock, Arkansas 2008 STATE OF ARKANSAS ARKANSAS GEOLOGICAL SURVEY Bekki White, State Geologist and Director STATE PARK SERIES 03 GEOLOGY OF THE CRATER OF DIAMONDS STATE PARK AND VICINITY, PIKE COUNTY, ARKANSAS by J. M. Howard and W. D. Hanson Little Rock, Arkansas 2008 STATE OF ARKANSAS Mike Beebe, Governor ARKANSAS GEOLOGICAL SURVEY Bekki White, State Geologist and Director COMMISSIONERS Dr. Richard Cohoon, Chairman………………………………………....Russellville William Willis, Vice Chairman…………………………………...…….Hot Springs David J. Baumgardner………………………………………….………..Little Rock Brad DeVazier…………………………………………………………..Forrest City Keith DuPriest………………………………………………………….….Magnolia Becky Keogh……………………………………………………...……..Little Rock David Lumbert…………………………………………………...………Little Rock Little Rock, Arkansas 2008 i TABLE OF CONTENTS Introduction…………………………………………………………………………..................... 1 Geology…………………………………………………………………………………………... 1 Prairie Creek Diatreme Rock Types……………………………….…………...……...………… 3 Mineralogy of Diamonds…………………….……………………………………………..……. 6 Typical shapes of Arkansas diamonds…………………………………………………………… 6 Answers to Frequently Asked Questions……………..……………………………….....……… 7 Definition of Rock Types……………………………………………………………………… 7 Formation Processes.…...…………………………………………………………….....…….. 8 Search Efforts……………...……………………………...……………………...………..….
    [Show full text]
  • Basin-Centered Gas Systems of the U.S. by Marin A
    Basin-Centered Gas Systems of the U.S. By Marin A. Popov,1 Vito F. Nuccio,2 Thaddeus S. Dyman,2 Timothy A. Gognat,1 Ronald C. Johnson,2 James W. Schmoker,2 Michael S. Wilson,1 and Charles Bartberger1 Columbia Basin Western Washington Sweetgrass Arch (Willamette–Puget Mid-Continent Rift Michigan Basin Sound Trough) (St. Peter Ss) Appalachian Basin (Clinton–Medina Snake River and older Fms) Hornbrook Basin Downwarp Wasatch Plateau –Modoc Plateau San Rafael Swell (Dakota Fm) Sacramento Basin Hanna Basin Great Denver Basin Basin Santa Maria Basin (Monterey Fm) Raton Basin Arkoma Park Anadarko Los Angeles Basin Chuar Basin Basin Group Basins Black Warrior Basin Colville Basin Salton Mesozoic Rift Trough Permian Basin Basins (Abo Fm) Paradox Basin (Cane Creek interval) Central Alaska Rio Grande Rift Basins (Albuquerque Basin) Gulf Coast– Travis Peak Fm– Gulf Coast– Cotton Valley Grp Austin Chalk; Eagle Fm Cook Inlet Open-File Report 01–135 Version 1.0 2001 This report is preliminary, has not been reviewed for conformity with U. S. Geological Survey editorial standards and stratigraphic nomenclature, and should not be reproduced or distributed. Any use of trade names is for descriptive purposes only and does not imply endorsement by the U. S. Government. 1Geologic consultants on contract to the USGS 2USGS, Denver U.S. Department of the Interior U.S. Geological Survey BASIN-CENTERED GAS SYSTEMS OF THE U.S. DE-AT26-98FT40031 U.S. Department of Energy, National Energy Technology Laboratory Contractor: U.S. Geological Survey Central Region Energy Team DOE Project Chief: Bill Gwilliam USGS Project Chief: V.F.
    [Show full text]
  • Diamond Evaluation of the Prairie Creek Lamproite Province, Arkansas, Usa
    DIAMOND EVALUATION OF THE PRAIRIE CREEK LAMPROITE PROVINCE, ARKANSAS, USA Dennis Dunn, University of Texas at Austin, USA REGIONAL GEOLOGY from the 105 tonnes of material from the Twin Knobs 2 lamproite (Figure 2). The calculated diamond grade The Prairie Creek lamproite province consists of seven throughout the Twin Knobs 2 lamproite was known diamondiferous lamproite vents within a belt that approximately 0.04 carats per 100 tonnes. The calculated extends for 5 km, in a northeasterly direction from the average diamond content of both intrusions was an order largest of the vents, Prairie Creek (Figure 1). The Prairie of magnitude less that that observed at the Prairie Creek Creek lamproite has a K-Ar age of ~106 Ma (Gogineni lamproite which yielded an average diamond grade of and others, 1978). The northeast alignment is sub-parallel 0.57 carats per 100 tonnes (Morgan Worldwide Mining to the northeast-trending Reelfoot Rift located ~100 km Consultants, 1997), and for the Twin Knobs 1 lamproite east of the intrusions. The lamproite province straddles which yielded a grade of 0.17 carats per 100 tonnes the geologic and physiographic boundary between the (Waldman and others, 1987). Cenozoic Gulf Coastal Plain and the Paleozoic Ouachita Mountains. It is widely believed that the lamproite province lies near the southern margin of the North American craton which consists of 1.3 to 1.5 Ga granite- rhyolite terrane (Van Schmus and others, 1986). Three previously unexplored Arkansas lamproites were delineated and evaluated during the 1980’s. The three vents – Black Lick (10 hectares), Twin Knobs 2 (2 hectares) and Timberlands (<1 hectare) -- were intruded into the Lower Cretaceous Trinity Group and are overlain unconformably by the Late Cretaceous Tokio Formation rocks.
    [Show full text]
  • Gems and Placers—A Genetic Relationship Par Excellence
    Article Gems and Placers—A Genetic Relationship Par Excellence Dill Harald G. Mineralogical Department, Gottfried-Wilhelm-Leibniz University, Welfengarten 1, D-30167 Hannover, Germany; [email protected] Received: 30 August 2018; Accepted: 15 October 2018; Published: 19 October 2018 Abstract: Gemstones form in metamorphic, magmatic, and sedimentary rocks. In sedimentary units, these minerals were emplaced by organic and inorganic chemical processes and also found in clastic deposits as a result of weathering, erosion, transport, and deposition leading to what is called the formation of placer deposits. Of the approximately 150 gemstones, roughly 40 can be recovered from placer deposits for a profit after having passed through the “natural processing plant” encompassing the aforementioned stages in an aquatic and aeolian regime. It is mainly the group of heavy minerals that plays the major part among the placer-type gemstones (almandine, apatite, (chrome) diopside, (chrome) tourmaline, chrysoberyl, demantoid, diamond, enstatite, hessonite, hiddenite, kornerupine, kunzite, kyanite, peridote, pyrope, rhodolite, spessartine, (chrome) titanite, spinel, ruby, sapphire, padparaja, tanzanite, zoisite, topaz, tsavorite, and zircon). Silica and beryl, both light minerals by definition (minerals with a density less than 2.8–2.9 g/cm3, minerals with a density greater than this are called heavy minerals, also sometimes abbreviated to “heavies”. This technical term has no connotation as to the presence or absence of heavy metals), can also appear in some placers and won for a profit (agate, amethyst, citrine, emerald, quartz, rose quartz, smoky quartz, morganite, and aquamarine, beryl). This is also true for the fossilized tree resin, which has a density similar to the light minerals.
    [Show full text]
  • Ncomms7837.Pdf
    ARTICLE Received 3 Oct 2014 | Accepted 3 Mar 2015 | Published 17 Apr 2015 DOI: 10.1038/ncomms7837 Did diamond-bearing orangeites originate from MARID-veined peridotites in the lithospheric mantle? Andrea Giuliani1, David Phillips1, Jon D. Woodhead1, Vadim S. Kamenetsky2, Marco L. Fiorentini3, Roland Maas1, Ashton Soltys1 & Richard A. Armstrong4 Kimberlites and orangeites (previously named Group-II kimberlites) are small-volume igneous rocks occurring in diatremes, sills and dykes. They are the main hosts for diamonds and are of scientific importance because they contain fragments of entrained mantle and crustal rocks, thus providing key information about the subcontinental lithosphere. Orangeites are ultrapotassic, H2O and CO2-rich rocks hosting minerals such as phlogopite, olivine, calcite and apatite. The major, trace element and isotopic compositions of orangeites resemble those of intensely metasomatized mantle of the type represented by MARID (mica-amphibole- rutile-ilmenite-diopside) xenoliths. Here we report new data for two MARID xenoliths from the Bultfontein kimberlite (Kimberley, South Africa) and we show that MARID-veined mantle has mineralogical (carbonate-apatite) and geochemical (Sr-Nd-Hf-O isotopes) characteristics compatible with orangeite melt generation from a MARID-rich source. This interpretation is supported by U-Pb zircon ages in MARID xenoliths from the Kimberley kimberlites, which confirm MARID rock formation before orangeite magmatism in the area. 1 School of Earth Sciences, The University of Melbourne, Parkville, 3010 Victoria, Australia. 2 School of Physical Sciences, University of Tasmania, Hobart, 7001 Tasmania, Australia. 3 Centre for Exploration Targeting, Australian Research Council Centre of Excellence for Core to Crust Fluid Systems, School of Earth and Environment, University of Western Australia, Crawley, 6009 Western Australia, Australia.
    [Show full text]
  • Diamondiferous Kimberlites in Central India Synchronous with Deccan flood Basalts
    Earth and Planetary Science Letters 290 (2010) 142–149 Contents lists available at ScienceDirect Earth and Planetary Science Letters journal homepage: www.elsevier.com/locate/epsl Diamondiferous kimberlites in central India synchronous with Deccan flood basalts Bernd Lehmann a,⁎, Ray Burgess b, Dirk Frei c, Boris Belyatsky d, Datta Mainkar e, Nittala V. Chalapathi Rao a,f, Larry M. Heaman g a Mineral Resources, Technical University of Clausthal, 38678 Clausthal-Zellerfeld, Germany b School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Manchester M13 9PL, UK c Geological Survey of Denmark and Greenland (GEUS), 1359 Copenhagen, Denmark d Precambrian Geology and Geochronology, Russian Academy of Sciences, Makarova emb. 2, 199034 St Petersburg, Russia e Directorate of Geology and Mining, Ring Road 1, 492007 Raipur, Chhattisgarh, India f Department of Geology, Banaras Hindu University, 221005 Varanasi, Uttar Pradesh, India g Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Canada T6G 2E3 article info abstract Article history: Recently discovered diamondiferous kimberlite (Group-II) pipes in central India have surprisingly young Received 9 September 2009 40Ar/39Ar whole rock and U–Pb perovskite ages around 65 million years. These ages overlap with the main Received in revised form 1 December 2009 phase of the Deccan flood basalt magmatism, and suggest a common tectonomagmatic control for both flood Accepted 4 December 2009 basalts and kimberlites. The occurrence of macrodiamonds in the pipes implies the presence of a thick Available online 12 January 2010 subcratonic lithosphere at the Cretaceous/Tertiary boundary, significantly different from the present-day Editor: R.W. Carlson thickness of the Indian lithosphere.
    [Show full text]
  • List H - Igneous Rocks - Alphabetical List
    LIST H - IGNEOUS ROCKS - ALPHABETICAL LIST Specific rock name Group name Specific rock name Group name A-type granites granites granodiorite porphyry granodiorites absarokite trachyandesites granophyre* igneous rocks adakites volcanic rocks granosyenite granites and syenites adamellite granites graphic granite granites agglutinates* pyroclastics green tuff pyroclastics agpaite syenites griquaite pyroxenite alaskite granites harzburgite peridotites albitite syenites hawaiite alkali basalts albitophyre keratophyre hornblendite ultramafics alkali olivine basalt alkali basalts hyaloclastite pyroclastics alnoite plutonic rocks I-type granites granites andesite porphyry andesites ignimbrite pyroclastics andesite tuff pyroclastics ijolite plutonic rocks ankaramite volcanic rocks jotunite plutonic rocks ankaratrite nephelinite kakortokite syenites anorthosite plutonic rocks kamafugite igneous rocks anorthositic gabbro gabbros keratophyre volcanic rocks aplite granites kersantite lamprophyres appinite plutonic rocks kimberlite* ariegite pyroxenite komatiite volcanic rocks ash-flow tuff pyroclastics labradoritite gabbros augitite volcanic rocks lamproite plutonic rocks basanite volcanic rocks latite volcanic rocks benmoreite volcanic rocks leucitite volcanic rocks biotite granite granites leucogranite granites boninite andesites lherzolite peridotites bostonite syenites limburgite volcanic rocks bronzitite pyroxenite liparite rhyolites camptonite lamprophyres liparite porphyry rhyolites charnockite granites lujavrite syenites chromitite ultramafics
    [Show full text]
  • Some Industrial Mineral Deposit Models: Descriptive Deposit Models
    U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY Some Industrial Mineral Deposit Models: Descriptive Deposit Models edited by G.J. Orris1 and J.D. Bliss1 Open-File Report 91-11A 1991 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards or with the North American Stratigraphic Code. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. ____________________ 1 U.S. Geological Survey, Tucson, Arizona TABLE OF CONTENTS Page INTRODUCTION ................................................................. iii Descriptive model of diamond bearing kimberlite pipes (Model 12), by T.C. Michalski and P.J. Modreski ................................................................ 1 Descriptive model of wollastonite skarn (Model 18g) by G.J. Orris ................................................................. 7 Descriptive model of amorphous graphite (Model 18k) by D.M. Sutphin ........................................................... 9 Descriptive model of lithium in smectites of closed basins (Model 25lc) by Sigrid Asher-Bolinder ................ 11 Descriptive model of fumarolic sulfur (Model 25m) by K.R. Long ..............................................................… 13 Descriptive model of sedimentary zeolites; Deposit subtype: Zeolites in tuffs of open hydrologic systems (Model 25oa) by R.A. Sheppard ................................... 16 Descriptive model of sedimentary zeolites; Deposit subtype:
    [Show full text]