Reptilia: Gekkonidae)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
African Herp News
African Herp News Newsletter of the Herpetological Association of Africa Number 59 APRIL 2013 HERPETOLOGICAL ASSOCIATION OF AFRICA http://www. wits.ac.za/haa FOUNDED 1965 The HAA is dedicated to the study and conservation of African reptiles and amphibians. Membership is open to anyone with an interest in the African herpetofauna. Members receive the Association’s journal, African Journal of Herpetology (which publishes review papers, research articles, and short communications – subject to peer review) and African Herp News, the Newsletter (which includes short communications, natural history notes, geographical distribution notes, herpetological survey reports, venom and snakebite notes, book reviews, bibliographies, husbandry hints, announcements and news items). NEWSLETTER EDITOR’S NOTE Articles shall be considered for publication provided that they are original and have not been published elsewhere. Articles will be submitted for peer review at the Editor’s discretion. Authors are requested to submit manuscripts by e-mail in MS Word ‘.doc’ or ‘.docx’ format. COPYRIGHT: Articles published in the Newsletter are copyright of the Herpetological Association of Africa and may not be reproduced without permission of the Editor. The views and opinions expressed in articles are not necessarily those of the Editor. COMMITTEE OF THE HERPETOLOGICAL ASSOCIATION OF AFRICA CHAIRMAN Aaron Bauer, Department of Biology, Villanova University, 800 Lancaster Avenue, Villanova, Pennsylvania 19085, USA. [email protected] SECRETARY Jeanne Tarrant, African Amphibian Conservation Research Group, NWU. 40A Hilltop Road, Hillcrest 3610, South Africa. [email protected] TREASURER Abeda Dawood, National Zoological Gardens, Corner of Boom and Paul Kruger Streets, Pretoria 0002, South Africa. [email protected] JOURNAL EDITOR John Measey, Applied Biodiversity Research, Kirstenbosch Research Centre, South African Biodiversity Institute, P/Bag X7, Claremont 7735, South Africa. -
Addo Elephant National Park Reptiles Species List
Addo Elephant National Park Reptiles Species List Common Name Scientific Name Status Snakes Cape cobra Naja nivea Puffadder Bitis arietans Albany adder Bitis albanica very rare Night adder Causes rhombeatus Bergadder Bitis atropos Horned adder Bitis cornuta Boomslang Dispholidus typus Rinkhals Hemachatus hemachatus Herald/Red-lipped snake Crotaphopeltis hotamboeia Olive house snake Lamprophis inornatus Night snake Lamprophis aurora Brown house snake Lamprophis fuliginosus fuliginosus Speckled house snake Homoroselaps lacteus Wolf snake Lycophidion capense Spotted harlequin snake Philothamnus semivariegatus Speckled bush snake Bitis atropos Green water snake Philothamnus hoplogaster Natal green watersnake Philothamnus natalensis occidentalis Shovel-nosed snake Prosymna sundevalli Mole snake Pseudapsis cana Slugeater Duberria lutrix lutrix Common eggeater Dasypeltis scabra scabra Dappled sandsnake Psammophis notosticus Crossmarked sandsnake Psammophis crucifer Black-bellied watersnake Lycodonomorphus laevissimus Common/Red-bellied watersnake Lycodonomorphus rufulus Tortoises/terrapins Angulate tortoise Chersina angulata Leopard tortoise Geochelone pardalis Green parrot-beaked tortoise Homopus areolatus Marsh/Helmeted terrapin Pelomedusa subrufa Tent tortoise Psammobates tentorius Lizards/geckoes/skinks Rock Monitor Lizard/Leguaan Varanus niloticus niloticus Water Monitor Lizard/Leguaan Varanus exanthematicus albigularis Tasman's Girdled Lizard Cordylus tasmani Cape Girdled Lizard Cordylus cordylus Southern Rock Agama Agama atra Burrowing -
2020 Conservation Outlook Assessment
IUCN World Heritage Outlook: https://worldheritageoutlook.iucn.org/ Vallée de Mai Nature Reserve - 2020 Conservation Outlook Assessment Vallée de Mai Nature Reserve 2020 Conservation Outlook Assessment SITE INFORMATION Country: Seychelles Inscribed in: 1983 Criteria: (vii) (viii) (ix) (x) In the heart of the small island of Praslin, the reserve has the vestiges of a natural palm forest preserved in almost its original state. The famouscoco de mer, from a palm-tree once believed to grow in the depths of the sea, is the largest seed in the plant kingdom. © UNESCO SUMMARY 2020 Conservation Outlook Finalised on 01 Dec 2020 GOOD WITH SOME CONCERNS The protection and management of Vallée de Mai Nature Reserve is generally effective and is supported by a national legal framework, although there is a lack of a national protected area system. The management authority is very competent and is effectively implementing science-based programs and outreach and education schemes. However, the future of the site’s key value, the coco de mer palm, is still under threat from illegal collection and over-exploitation for its nuts and kernel. The site's management has reduced both commercial harvesting and illegal collection of nuts based on scientific research, although the conservation impacts of these requires further assessment. The National Government and the managing agency are implementing targeted conservation measures and aim to tighten law and legislation to protect the species, which include an increase in penalty for poaching of coco de mer nuts. Current priorities for the Nature Reserve include continuation and expansion of the outreach and education programme; promoting an increase in the size and connectivity of Vallée de Mai within the Praslin Island landscape, with a legally designated buffer zone; increasing anti-poaching; and continuing to control the harvesting of coco de mer seeds while expanding a program of replanting seedlings. -
Literature Cited in Lizards Natural History Database
Literature Cited in Lizards Natural History database Abdala, C. S., A. S. Quinteros, and R. E. Espinoza. 2008. Two new species of Liolaemus (Iguania: Liolaemidae) from the puna of northwestern Argentina. Herpetologica 64:458-471. Abdala, C. S., D. Baldo, R. A. Juárez, and R. E. Espinoza. 2016. The first parthenogenetic pleurodont Iguanian: a new all-female Liolaemus (Squamata: Liolaemidae) from western Argentina. Copeia 104:487-497. Abdala, C. S., J. C. Acosta, M. R. Cabrera, H. J. Villaviciencio, and J. Marinero. 2009. A new Andean Liolaemus of the L. montanus series (Squamata: Iguania: Liolaemidae) from western Argentina. South American Journal of Herpetology 4:91-102. Abdala, C. S., J. L. Acosta, J. C. Acosta, B. B. Alvarez, F. Arias, L. J. Avila, . S. M. Zalba. 2012. Categorización del estado de conservación de las lagartijas y anfisbenas de la República Argentina. Cuadernos de Herpetologia 26 (Suppl. 1):215-248. Abell, A. J. 1999. Male-female spacing patterns in the lizard, Sceloporus virgatus. Amphibia-Reptilia 20:185-194. Abts, M. L. 1987. Environment and variation in life history traits of the Chuckwalla, Sauromalus obesus. Ecological Monographs 57:215-232. Achaval, F., and A. Olmos. 2003. Anfibios y reptiles del Uruguay. Montevideo, Uruguay: Facultad de Ciencias. Achaval, F., and A. Olmos. 2007. Anfibio y reptiles del Uruguay, 3rd edn. Montevideo, Uruguay: Serie Fauna 1. Ackermann, T. 2006. Schreibers Glatkopfleguan Leiocephalus schreibersii. Munich, Germany: Natur und Tier. Ackley, J. W., P. J. Muelleman, R. E. Carter, R. W. Henderson, and R. Powell. 2009. A rapid assessment of herpetofaunal diversity in variously altered habitats on Dominica. -
Reptiles and Amphibians of the Goegap Nature Reserve
their time underground in burrows. These amphibians often leave their burrows after heavy rains that are seldom. Reptiles And Amphibians Of The There are reptiles included in this report, which don’t occur here in Goegap but at the Augrabies Falls NP. So you can find here also the Nile monitor and the flat liz- Goegap Nature Reserve ard. Measuring reptiles By Tanja Mahnkopf In tortoises and terrapins the length is measured at the shell. Straight along the mid- line of the carapace. The SV-Length is the length of head and body (Snout to Vent). In lizards it easier to look for this length because their tail may be a regenerated one Introduction and these are often shorter than the original one. The length that is mentioned for the The reptiles are an ancient class on earth. The earliest reptile fossils are about 315 species in this report is the average to the maximum length. For the snakes I tried to million years old. During the aeons of time they evolved a great diversity of extinct give the total length because it is often impossible to say where the tail begins and and living reptiles. The dinosaurs and their relatives dominated the earth 150 million the body ends without holding the snake. But there was not for every snake a total years ago. Our living reptiles are remnants of that period or from a period after the length available. dinosaurs were extinct. Except of the chameleons (there are only two) you can find all reptiles in the appen- Obviously it looks like reptiles are not as successful as mammals. -
Description of a New Flat Gecko (Squamata: Gekkonidae: Afroedura) from Mount Gorongosa, Mozambique
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/320043814 Description of a new flat gecko (Squamata: Gekkonidae: Afroedura) from Mount Gorongosa, Mozambique Article in Zootaxa · September 2017 DOI: 10.11646/zootaxa.4324.1.8 CITATIONS READS 2 531 8 authors, including: William R Branch Jennifer Anna Guyton Nelson Mandela University Princeton University 250 PUBLICATIONS 4,231 CITATIONS 7 PUBLICATIONS 164 CITATIONS SEE PROFILE SEE PROFILE Andreas Schmitz Michael Barej Natural History Museum of Geneva Museum für Naturkunde - Leibniz Institute for Research on Evolution and Biodiver… 151 PUBLICATIONS 2,701 CITATIONS 38 PUBLICATIONS 274 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Monitoring and Managing Biodiversity Loss in South-East Africa's Montane Ecosystems View project Ad hoc herpetofauna observations View project All content following this page was uploaded by Jennifer Anna Guyton on 27 September 2017. The user has requested enhancement of the downloaded file. Zootaxa 4324 (1): 142–160 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2017 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4324.1.8 http://zoobank.org/urn:lsid:zoobank.org:pub:B4FF9A5F-94A7-4E75-9EC8-B3C382A9128C Description of a new flat gecko (Squamata: Gekkonidae: Afroedura) from Mount Gorongosa, Mozambique WILLIAM R. BRANCH1,2,13, JENNIFER A. GUYTON3, ANDREAS SCHMITZ4, MICHAEL F. BAREJ5, PIOTR NASKRECKI6,7, HARITH FAROOQ8,9,10,11, LUKE VERBURGT12 & MARK-OLIVER RÖDEL5 1Port Elizabeth Museum, P.O. Box 13147, Humewood 6013, South Africa 2Research Associate, Department of Zoology, Nelson Mandela University, P.O. -
A New Species of Pachydactylus (Squamata: Gekkonidae) from the Otavi Highlands of Northern Namibia
Bonn zoological Bulletin Volume 57 Issue 2 pp. 257–266 Bonn, November 2010 A new species of Pachydactylus (Squamata: Gekkonidae) from the Otavi Highlands of northern Namibia Aaron M. Bauer Department of Biology, Villanova University, 800 Lancaster Avenue, Villanova, Pennsylvania 19085, USA; E-mail: [email protected] Abstract. A new species of the “northwestern clade” of Pachydactylus is described from the Otavi Highlands of north- eastern Namibia. It is distinguishable from all other members of this clade and from the superficially similar members of the Pachydactylus serval/weberi group on the basis of its inclusion of the rostral in the nostril rim, the possession of a maximum of only four undivided scansors beneath the digits of the pes, is 16 rows of strongly keeled, rounded, juxta- posed dorsal trunk tubercles, its projecting, keeled, lanceolate caudal tubercles, and its complex dorsal trunk patterning. Its probable closest relative is P. otaviensis, also form the Otavi Highlands. These are the only known endemic reptiles from this dolomitic area and their existence points both to an unappreciated area of diversity and endemism in northeast- ern Namibia and to the need for additional herpetological work in even well-known parts of the country. Key words. Gekkonidae, Pachydactylus, Namibia, new species. INTRODUCTION Pachydactylus Wiegmann, 1834 is the most species-rich northwestern Botswana, and P. otaviensis Bauer, Lamb & genus of geckos in southern Africa, with more than 50 Branch, 2006 and an undescribed species (‘Pachydacty- species currently recognized (Bauer & Lamb 2005; Bauer lus sp. 2’, Bauer et al. 2006a) – both from the Otavi High- et al. -
Reptiles & Amphibians of Kirindy
REPTILES & AMPHIBIANS OF KIRINDY KIRINDY FOREST is a dry deciduous forest covering about 12,000 ha and is managed by the Centre National de Formation, dʹEtudes et de Recherche en Environnement et Foresterie (CNFEREF). Dry deciduous forests are among the world’s most threatened ecosystems, and in Madagascar they have been reduced to 3 per cent of their original extent. Located in Central Menabe, Kirindy forms part of a conservation priority area and contains several locally endemic animal and plant species. Kirindy supports seven species of lemur and Madagascarʹs largest predator, the fossa. Kirindy’s plants are equally notable and include two species of baobab, as well as the Malagasy endemic hazomalany tree (Hazomalania voyroni). Ninety‐nine per cent of Madagascar’s known amphibians and 95% of Madagascar’s reptiles are endemic. Kirindy Forest has around 50 species of reptiles, including 7 species of chameleons and 11 species of snakes. This guide describes the common amphibians and reptiles that you are likely to see during your stay in Kirindy forest and gives some field notes to help towards their identification. The guide is specifically for use on TBA’s educational courses and not for commercial purposes. This guide would not have been possible without the photos and expertise of Marius Burger. Please note this guide is a work in progress. Further contributions of new photos, ids and descriptions to this guide are appreciated. This document was developed during Tropical Biology Association field courses in Kirindy. It was written by Rosie Trevelyan and designed by Brigid Barry, Bonnie Metherell and Monica Frisch. -
Navorsinge Van Die Nasionale Museum Bloemfontein
ISSN 0067-9208 NAVORSINGE VAN DIE NASIONALE MUSEUM BLOEMFONTEIN NATURAL SCIENCES VOLUME 6, PART 7 OCTOBER 1989 TAIL-BREAK FREQUENCY, TAIL SIZE AND THE EXTENT OF CAUDAL AUTOTOMY IN THE CAPE THICK-TOED GECKO, PACHYDACTYLUS CAPENSIS CAPENSIS (SAURIA: GEKKONIDAE) by M.F.BATES National Museum, Bloemfontein (With 8 figures) ABSTRACT Bates, M.F. 1989. Tail-break frequency, tail size and the extent of caudal autotomy in the Cape thick-toed gecko, Pacltydactyllls capensis capensis (Sauria: Gekkonidae). Navors. nas. Mus., Bloemfontein 6(7): 223-242. The tails of geckos in three samples from widely separated areas in southern Africa (I'iz. Botswana/northern Transvaal, Pretoria and Orange Free State) were examined to determine tail-break frequencies, tail size and the extent of caudal autotomy. Tail-break frequencies in all samples. were relatively high (51,5%, 52,9% and 68,8% respectively) when compared to most other African gekkonids and suggest the effectiveness of caudal autotomy for predator escape. There were no broken tails in the smaller specimens of each sample, after which tail-break frequency increased with increasing snout-vent length. The percentage of tail autotomized tends to increase with increasing SVL, suggesting a high occurrence of multiple tail breaks. There was no significant difference in tail break frequencies between geckos from two microhabitat types in the Orange Free State. Growth in length of the original tail relative to SVL was symmetric, whereas growth in width of the original tail relati"e to SVL suggested a partial trend towards allometric growth. In a sample of geckos from the O.F.S., 64,1% of all specimens with regenerated or regenerating tails had autotomized over 80% of the tail length, suggesting that caudal autotomy commonly results in the loss of a large proportion of the tail in nature. -
A Fish-Scaled Gecko (Geckolepis Sp.) Escapes Predation by a Velvet Gecko (Blaesodactylus Sp.) Through Skin Shedding
Herpetology Notes, volume 8: 479-481 (2015) (published online on 03 October 2015) A fish-scaled gecko (Geckolepis sp.) escapes predation by a velvet gecko (Blaesodactylus sp.) through skin shedding Charlie Gardner1,*, Louise Jasper2 Many reptiles have evolved the ability to shed part night walk as tourists within the Bekaraoka forest block of their body in response to predator attack. The most of Loky-Manambato new protected area (13°08’38’’ widespread form is caudal autotomy, the shedding of S, 49°42’25’’ E), near the town of Daraina in extreme all or part of the tail, which occurs in many lizards and north-east Madagascar. At 19:25 we were alerted by amphisbaenians as well as some snakes and the tuataras movement on a tree trunk about 3 m away, and in our (Arnold, 1984; Bateman and Fleming, 2009): breakable torchlight observed a large Blaesodactylus that had tails allow potential prey animals to avoid predation captured a smaller gecko in its jaws and was struggling by i) providing a distraction away from the animal’s with it (Fig. 1). The animals immediately disappeared vulnerable head and torso, and ii) allowing animals that behind the tree but reappeared after a few seconds, at have been grasped by the tail to break free and escape. which point there were several violent, jerky movements Members of the gecko genus Geckolepis Grandidier, accompanied by the slap of the prey animal against the 1867 have evolved an even more extreme adaptation, tree trunk; however, we cannot say whether these were and are able to autotomise all or most of their skin when attempts by the predator to subdue its prey, or the efforts grasped; their skin is covered with large, overlapping of the prey to escape. -
Mechanics, Diversity, and Ecology of Gecko Adhesion
MECHANICS, DIVERSITY, AND ECOLOGY OF GECKO ADHESION A Dissertation Presented in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy with a Major in Biology in the College of Graduate Studies University of Idaho by Travis Jay Hagey August 2013 Major Professor: Luke. J. Harmon, Ph.D. ii AUTHORIZATION TO SUBMIT DISSERTATION This dissertation of Travis J. Hagey, submitted for the degree of Doctor of Philosophy with a major in Biology and titled “Mechanics, Diversity, and Ecology of Gecko Adhesion,” has been reviewed in final form. Permission, as indicated by the signatures and dates given below, is now granted to submit final copies to the College of Graduate Studies for approval. Major Professor ______________________________ Date _______________ Luke J. Harmon Committee ______________________________ Date _______________ Members Craig P. McGowan ______________________________ Date _______________ Jack M. Sullivan ______________________________ Date _______________ Kellar Autumn Department ______________________________ Date _______________ Administrator James J. Nagler College of Science ______________________________ Date _______________ Dean Paul Joyce Final Approval and Acceptance by the College of Graduate Studies ______________________________ Date _______________ Jie Chen iii Abstract The question of why animals are shaped the way they are has intrigued scientists for hundreds of years. Studies of ecological morphology (the relationship between an organism’s form, function, and environment) often bridge multiple disciplines including biomechanics, ecology, phylogenetics, and comparative methods. In this dissertation, I gathered data and tested hypotheses that considered the link between morphology and performance and the relationship between performance and ecology. I focused my research on the adhesive abilities of geckos. Geckos are an understudied, diverse group of lizards, well known for their adhesive toe pads. -
Scale Gecko (Squamata: Gekkonidae: Geckolepis) with Exceptionally Large Scales
Off the scale: a new species of fish- scale gecko (Squamata: Gekkonidae: Geckolepis) with exceptionally large scales Mark D. Scherz1, Juan D. Daza2, Jörn Köhler3, Miguel Vences4 and Frank Glaw1 1 Sektion Herpetologie, Zoologische Staatssammlung München (ZSM-SNSB), Munich, Germany 2 Department of Biological Sciences, Sam Houston State University, Huntsville, TX, United States 3 Hessisches Landesmuseum Darmstadt, Darmstadt, Germany 4 Zoologisches Institut, Technische Universität Braunschweig, Braunschweig, Germany ABSTRACT The gecko genus Geckolepis, endemic to Madagascar and the Comoro archipelago, is taxonomically challenging. One reason is its members ability to autotomize a large portion of their scales when grasped or touched, most likely to escape predation. Based on an integrative taxonomic approach including external morphology, morphometrics, genetics, pholidosis, and osteology, we here describe the first new species from this genus in 75 years: Geckolepis megalepis sp. nov. from the limestone karst of Ankarana in northern Madagascar. The new species has the largest known body scales of any gecko (both relatively and absolutely), which come off with exceptional ease. We provide a detailed description of the skeleton of the genus Geckolepis based on micro-Computed Tomography (micro-CT) analysis of the new species, the holotype of G. maculata, the recently resurrected G. humbloti, and a specimen belonging to an operational taxonomic unit (OTU) recently suggested to represent G. maculata. Geckolepis is characterized by highly mineralized, imbricated scales, paired frontals, and unfused subolfactory processes of the frontals, among other features. We identify diagnostic Submitted 26 October 2016 characters in the osteology of these geckos that help define our new species and show Accepted 3 January 2017 that the OTU assigned to G.