Reduce, Reuse, Reengineer
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
NEW ENERGY New Energy
Capital #15 the world of NPM NEW ENERGY New energy After a year and a half of the pandemic, new horizons are opening up and new energy is unleashed. It Wanted: has become clear that the need to adapt to COVID has sparked a lot of creativity and accelerated ongoing developments. Many organisations have found that digitalisation offers even more and greater opportunities than expected, and that major efficiency improvements were put within reach. Without exception, our participations have been successful in adapting to the changing demands of the market, as their various Future contributions to this magazine establish. The pandemic also seems to have boosted global sustainability ambitions – something that we, as a long-term investment company, can only applaud. So in this Capital Magazine, we also feature a unique participation, Builders! Groendus, with a direct link to energy: its generation, storage and use. A special kind of 'new energy' arose in the past 18 months in leadership. This is made visible especially in the roundtable with Engbert Verkoren (Conclusion), Jürgen von Hollen (Ultimaker) and Kees van Veen (Agrocare) in this edition. With much of their organisations working from home at least part-time, it may not have been easy, but they certainly proved it to be possible: motivating staff, planning for a better future, and aligning with a new strategic course. These leaders offer another example of how our resilient and creative participations can realise their ambitions even in unpredictable and adverse circumstances. As NPM Capital, we are committed to providing our continued support to companies whose mission aligns with one of our strategic investment focuses: Everything is Digital, Healthy Life & Learning, Feeding the World and The Future of Energy. -
Gravity Based Energy Storage System: a Technological Review
Ravi Gupta et al., International Journal of Emerging Trends in Engineering Research, 8(9), September 2020, 6406 – 6 4 1 4 ISSN 2347 - 3983 Volume 8. No. 9, September 2020 International Journal of Emerging Trends in Engineering Research Available Online at http://www.warse.org/IJETER/static/pdf/file/ijeter240892020.pdf https://doi.org/10.30534/ijeter/2020/240892020 Gravity Based Energy Storage System: A technological review Dr. Ravi Gupta1, Preet Lata2, Arpit Gupta3 1Assistant Professor, Engineering College Bharatpur, Rajasthan, India, [email protected] 2 Assistant Professor, Engineering College Bharatpur, Rajasthan, India, [email protected] 3Student, Electrical Engineering Department, [email protected] ABSTRACT reliability of RES for electricity production and thus installation of these sources is increasing As in today’s world the penetration of renewable worldwide[1]-[3]. Figure 1 shows data provided by energy resources is increasing for electricity International Renewable Energy Agency (IRENA), production, the problems due to unpredictable nature the total worldwide renewable energy generation and variable output of these resources increases. capacity was 2537 GW (at the end of 2019), Which Solution to these problem leads to the need of proper was 7.4% (176 GW) more than the last year energy storage systems. There are various energy generation capacity. Hydro power had the largest storage techniques that been developed and being share of 47% of total generation capacity among all using since long time e.g. battery storage, other RES followed by Wind power (25%) and Solar compressed air energy storage, pumped hydro power (23%). Year by year the total installed storage, flywheel storage etc., but each technique has capacity of RES technologies is increasing. -
Energy Storage in Parkstad Ii. Method
ENERGY STORAGE IN PARKSTAD Jornt Walsweer Faculty of Architecture & the Built Environment, Delft University of Technology Julianalaan 134, 2628BL Delft [email protected] ABSTRACT Parkstad is planning to power most of its electrical grid by solar energy, resulting in an intermittent power supply. One of the methods to solve this intermittency is to create facilities for energy storage. The landscape differs from the rest of the Netherlands by its hilly profile. The most important difference is presence of a large subterranean infrastructure which is a relic from the mining past. This vast infrastructure holds potential for energy storage. Energy storage demand exists on three levels. Daily storage demand, inter seasonal storage demand and incidental storage demand could benefit from energy storage among other solutions. The actual methods to achieve this energy storage are mechanical, electrochemical, chemical and thermal. For Parkstad compressed air storage, underground pumped hydro and gravitational storage hold potential. KEYWORDS: Energy storage, Parkstad, Former mining, CAES, Hydropower, Gravitational, Architecture I. INTRODUCTION The energy transition towards renewable energy sources is in full swing. In the Netherlands the most important renewable energy sources are geothermal, solar, wind and biomass. (ECN, 2017) These sources will provide the heat and power that is necessary to power the whole country. Simultaneously a development towards more local generation en consumption is happening in several communities. The amount of local energy corporations has grown from roughly 300 in 2012 to about 392 in 2017. (Schwenke, 2017) Other ambition documents also show a shift from the traditional national scale toward a smaller regional of local scale. -
In Energy Systems
Citation: Greene, M and Schiffer, A (2018) Learning from past and current energy transitions to build sus- tainable and resilient energy futures: Lessons from Ireland and The Gambia. In: SHAPE ENERGY Research Design Challenge: Control, change and capacity-building in energy systems. Shape Energy, pp. 57-66. ISBN UNSPECIFIED Link to Leeds Beckett Repository record: https://eprints.leedsbeckett.ac.uk/id/eprint/4924/ Document Version: Book Section (Published Version) The aim of the Leeds Beckett Repository is to provide open access to our research, as required by funder policies and permitted by publishers and copyright law. The Leeds Beckett repository holds a wide range of publications, each of which has been checked for copyright and the relevant embargo period has been applied by the Research Services team. We operate on a standard take-down policy. If you are the author or publisher of an output and you would like it removed from the repository, please contact us and we will investigate on a case-by-case basis. Each thesis in the repository has been cleared where necessary by the author for third party copyright. If you would like a thesis to be removed from the repository or believe there is an issue with copyright, please contact us on [email protected] and we will investigate on a case-by-case basis. CONTROL, CHANGE AND CAPACITY-BUILDING IN ENERGY SYSTEMS SHAPE ENERGY Research Design Challenge CONTROL, CHANGE AND CAPACITY-BUILDING IN ENERGY SYSTEMS Editors Patrick Sumpf*, Karlsruhe Institute of Technology (Germany) Christian Büscher, Karlsruhe Institute of Technology (Germany) *[email protected] March 2018 Suggested citation: Sumpf, P. -
Feasibility, and Resiliency, and Economic Impacts of Energy Storage in Urban Water Systems: Case Study of Cleveland, Tennessee
University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 12-2017 Feasibility, and Resiliency, and Economic Impacts of Energy Storage in Urban Water Systems: Case Study of Cleveland, Tennessee Susanna Hannah Sutherland University of Tennessee, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Recommended Citation Sutherland, Susanna Hannah, "Feasibility, and Resiliency, and Economic Impacts of Energy Storage in Urban Water Systems: Case Study of Cleveland, Tennessee. " PhD diss., University of Tennessee, 2017. https://trace.tennessee.edu/utk_graddiss/4814 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Susanna Hannah Sutherland entitled "Feasibility, and Resiliency, and Economic Impacts of Energy Storage in Urban Water Systems: Case Study of Cleveland, Tennessee." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Energy Science and Engineering. Brennan T. Smith, Major Professor We have read this dissertation