!Ffing Networks: Concepts and Empirics

Total Page:16

File Type:pdf, Size:1020Kb

!Ffing Networks: Concepts and Empirics 2 Networks: Concepts and Empirics m aally. !ffing idual 2.1 Introduction The first aim of this chapter is to present the principal concepts relating to net­ works which will be used in this book. This presentation in section 2.2 will draw upon work carried out in the theory of graphs, in mathematical sociology, and in statistical physics. The study of networks has a rich and distinguished tradition in each of these subjects and there are a number of excellent books available. The exposition below borrows heavily from Harary (1969), Bollobas (1998), and Wasserman and Faust (1994). iould The second aim of this chapter is to discuss these concepts in relation to empiri­ cally observed networks. This discussion is presented in section 2.3. The empirical study of networks has been a very active field of study in the last decade. The discussion highlights some of the key features that have been identified by this research. In doing so, it directs our attention to specific networks which are then taken up in the theoretical investigations of the subsequent chapters. ment 2.2 Concepts eco­ es There is a set of nodes, N = { 1, 2, 3, . .. , n} , where n is a finite number. Rela­ tionships between nodes are conceptualized in terms of binary variables, so that a relationship either exists or does not exist. Denote by gii E {0, 1} a relationship between two nodes i and j. The variable g iJ takes on a value of 1 if there exists a link between i and j and 0 otherwise. 1 The set of nodes taken along with the links between them defines the network; this network is denoted by g and the collection of all possible networks on n nodes is denoted by g, . Given a network g, g + gij and g- gij have the natural interpretation. When gij = Oing, g+ gij adds thelinkgij = 1, while if gij = 1 in g , theng+ gij =g. 1 In this chapter, we consider links which are undirected, i.e., g iJ = gJ i. In some parts of the book (chapters 5, 7, and 8), we will study networks of directed links; most of the concepts defined here can be adopted in a natural way to cover directed links. See chapters 5 and 7 for definitions and additional notation relating to directed networks. 10 2. Networks: Concepts and Empirics 2.2. Corn 0 0 0 0 (a) The complete network (b) Empty network (c) Degree 1 network (d) Degree 2 network Figure 2.1. Regular networks for n = 4. Similarly, if gij l in g, g- gij deletes the link gij, while if gij = 0 in g, then g -gij= g. Neighbors and degrees. Let Ni (g) = {j E N I gij = 1} denote the nodes with which node i has a link; this set will be referred to as the neighbors of i. Let r)i (g) = INi (g) I denote the number of neighbors of node i in network g. Moreover, for any integer d ~ 1, let»/ (g) be the d -neighborhood of i in g: this is defined inductively, 1 Nk (g: »/(g) = Ni (g) and »/(g) = »/- (g) U ( U Nj (g)). other and jE.N;k-1 such an a core-pc Let N 1 (g), N 2 (g), ... , Nn - 1 (g) be a division of nodes into distinct groups, where nodes belong to the same group if and only if they have the same number of links, i.e., i , j E Nk(g), k = 1, 2, ... , n- 1, if and only if 1Ji (g) = 1Jj (g). With satisfy this notation in hand we can now describe a number of well-known networks. A network is said to be regular if every node has the same number of links, INJ (g i.e., r)i(g) = 1], Vi E N (and so all nodes belong to one group in the above are refe partition).2 The complete network, gc, is a regular network in which 1J = n - l, are refen while the empty network, ge, is a regular network in which 17 = 0. Figure 2.1 star \\; presents regular networks for n = 4. An ~ nodes D 2 If the number of nodes is even, then a regular graph of every degree is possible; this is not true when Dm +J(g the number of nodes is odd. For instance, in a network with n = 5, there exist no networks in which Dx(g - ~ every node has degree I or in which every node has degree 3. In some parts of the book, interest will center on how the degree of a regular network matters and then it will be (implicitly) assumed that the gro up ne number of nodes is even. whilen- 'llfi Empirics 2.2. Concepts 11 (a) Star network (b) Interlinked star (two centers) = 0 in g, then (c) Interlinked star (three centers) (d) Core-periphery network l)(e the nodes Figure 2.2. Star and variants. ~ghb ors of i. !II network g. A core-periphery network structure describes the following situation. There JOd of i in g: are two groups of nodes, N,(g) and Nk(g), with k > INk(g)l. Nodes in N 1 (g) constitute the periphery and have a single link each and this link is with a node in Nk(g); nodes in the set Nk(g) constitute the core and are fully linked with each other and with a subset of nodes in N 1 (g). The star network is a special case of such an architecture in which the core contains a single node. Figure 2.2 presents sri:ocl groups, a core-periphery network. me number of An interlinked stars network consists of two groups Nk(g) and Nn-I (g) which =1/j (g). With satisfy the following condition: Ni(g) = Nn- 1 (g) fori E Nk(g). The star networks. network is again a special case of such an architecture with INn-! (g)l = 1 and !llber of links, IN1 (g) I = n - 1. In an interlinked star network, nodes which have n - 1 links 1 in the above are referred to as central nodes or as hubs, while the complementary set of nodes rh '7 = n- 1, are referred to as peripheral nodes or as spokes. Figure 2.2 presents interlinked 0. Figure 2.1 stars with two and three central players. An exclusive groups network consists of m + 1 groups, a group of isolated nodes D, (g), and m ~ 1 distinct groups of completely linked nodes, D2 (g), ... , is· (}(){ true when Dm+!(g). Thus IJi(g) = 0 fori E D,(g), while 1Jj(g) = IDx(g)l-1 for j E avoods in which Dx(g), x E {2, 3, ... , m + 1}. A special case of this architecture is the dominant interest will l assumed that the group network in which there is one complete component with 1 < k < n nodes while n -k > 0 nodes are isolated. Figure 2.3 illustrates exclusive group networks. 12 2. Networks: Concepts and Empirics 2.2. Concepts one of the primary n ® issue of how nodes e 0 a number of diffe o 0· ® ~ The degree variance (a) Exclusive groups (b) Dominant group network network is 0 for all Figure 2.3. Exclusive group networks. The range has a maxi Figure 2.4. Line network. in a star is n - 2, wbl The description o A line network consists of two groups of nodes, N1(g) and N2(g), with elegant way to study IN1 (g)l = 2 and IN2(g)l = n - 2. As the name suggests, the network has links is captured in tti the form of a line; the two nodes with one link each are at the two ends of the line, idea of redistributin while the nodes with two links are in between. Figure 2.4 presents a line network with n = 6 nodes. These figures give us a first impression of how different networks can look! where The examples all contain relatively few nodes; in some economic and social contexts of interest, such as the diffusion of information or the evolution of social coordination and cooperation it is more natural to consider networks with a large number of nodes. When analyzing large networks it is more convenient to work Let P and P ' be I with distributions of links. /P and /P' the two Thedegreeofnodei is thenumberofi 's direct connections; so 1'/i (g) = INi (g)l Definition 2.1. P fu denotes the degree of node i in network g. The degree distribution in a network /P(k) ~ :P'(k) for is a vector P , where P(k) = INk(g)l/n is the frequency/fraction of nodes with degree k; thus P(k) ~ 0 for each k, and z:=~:,~ P(k) = 1. This degree Definition 2.2. P se distribution has support on /D = {0, 1, 2, ... , n - 1}. The average degree in network g is defined as n-1 f,(g) = L P(k)k = L T/i(g). (2.1) for every x E { 0 I _ k=O iEN n Definition 2.3. pi i In a star network the degree distribution has support on degrees 1 and n - 1, have the same mean with n - 1 nodes having degree 1, and 1 node having degree n - 1. The average degree in a star is 2- 2/ n. A simple examplt An important concern in the study of networks is the variation in the degrees. move from a regulaJ This variation is interesting in its own right but it also has an important instru­ mental aspect: degree may be related to node behavior and well-being.
Recommended publications
  • Networkx: Network Analysis with Python
    NetworkX: Network Analysis with Python Salvatore Scellato Full tutorial presented at the XXX SunBelt Conference “NetworkX introduction: Hacking social networks using the Python programming language” by Aric Hagberg & Drew Conway Outline 1. Introduction to NetworkX 2. Getting started with Python and NetworkX 3. Basic network analysis 4. Writing your own code 5. You are ready for your project! 1. Introduction to NetworkX. Introduction to NetworkX - network analysis Vast amounts of network data are being generated and collected • Sociology: web pages, mobile phones, social networks • Technology: Internet routers, vehicular flows, power grids How can we analyze this networks? Introduction to NetworkX - Python awesomeness Introduction to NetworkX “Python package for the creation, manipulation and study of the structure, dynamics and functions of complex networks.” • Data structures for representing many types of networks, or graphs • Nodes can be any (hashable) Python object, edges can contain arbitrary data • Flexibility ideal for representing networks found in many different fields • Easy to install on multiple platforms • Online up-to-date documentation • First public release in April 2005 Introduction to NetworkX - design requirements • Tool to study the structure and dynamics of social, biological, and infrastructure networks • Ease-of-use and rapid development in a collaborative, multidisciplinary environment • Easy to learn, easy to teach • Open-source tool base that can easily grow in a multidisciplinary environment with non-expert users
    [Show full text]
  • A Note on Soenergy of Stars, Bi-Stars and Double Star Graphs
    BULLETIN OF THE INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE ISSN (p) 2303-4874, ISSN (o) 2303-4955 www.imvibl.org /JOURNALS / BULLETIN Vol. 6(2016), 105-113 Former BULLETIN OF THE SOCIETY OF MATHEMATICIANS BANJA LUKA ISSN 0354-5792 (o), ISSN 1986-521X (p) A NOTE ON soENERGY OF STARS, BISTAR AND DOUBLE STAR GRAPHS S. P. Jeyakokila and P. Sumathi Abstract. Let G be a finite non trivial connected graph.In the earlier paper idegree, odegree, oidegree of a minimal dominating set of G were introduced, oEnergy of a graph with respect to the minimal dominating set was calculated in terms of idegree and odegree. Algorithm to get the soEnergy was also introduced and soEnergy was calculated for some standard graphs in the earlier papers. In this paper soEnergy of stars, bistars and double stars with respect to the given dominating set are found out. 1. INTRODUCTION Let G = (V; E) be a finite non trivial connected graph. A set D ⊂ V is a dominating set of G if every vertex in V − D is adjacent to some vertex in D.A dominating set D of G is called a minimal dominating set if no proper subset of D is a dominating set. Star graph is a tree consisting of one vertex adjacent to all the others. Bistar is a graph obtained from K2 by joining n pendent edges to both the ends of K2. Double star is the graph obtained from K2 by joining m pendent edges to one end and n pendent edges to the other end of K2.
    [Show full text]
  • Social Network Analysis and Information Propagation: a Case Study Using Flickr and Youtube Networks
    International Journal of Future Computer and Communication, Vol. 2, No. 3, June 2013 Social Network Analysis and Information Propagation: A Case Study Using Flickr and YouTube Networks Samir Akrouf, Laifa Meriem, Belayadi Yahia, and Mouhoub Nasser Eddine, Member, IACSIT 1 makes decisions based on what other people do because their Abstract—Social media and Social Network Analysis (SNA) decisions may reflect information that they have and he or acquired a huge popularity and represent one of the most she does not. This concept is called ″herding″ or ″information important social and computer science phenomena of recent cascades″. Therefore, analyzing the flow of information on years. One of the most studied problems in this research area is influence and information propagation. The aim of this paper is social media and predicting users’ influence in a network to analyze the information diffusion process and predict the became so important to make various kinds of advantages influence (represented by the rate of infected nodes at the end of and decisions. In [2]-[3], the marketing strategies were the diffusion process) of an initial set of nodes in two networks: enhanced with a word-of-mouth approach using probabilistic Flickr user’s contacts and YouTube videos users commenting models of interactions to choose the best viral marketing plan. these videos. These networks are dissimilar in their structure Some other researchers focused on information diffusion in (size, type, diameter, density, components), and the type of the relationships (explicit relationship represented by the contacts certain special cases. Given an example, the study of Sadikov links, and implicit relationship created by commenting on et.al [6], where they addressed the problem of missing data in videos), they are extracted using NodeXL tool.
    [Show full text]
  • Total Chromatic Number of Star and Bistargraphs 1D
    International Journal of Pure and Applied Mathematics Volume 117 No. 21 2017, 699-708 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu Special Issue ijpam.eu Total Chromatic Number of Star and BistarGraphs 1D. Muthuramakrishnanand 2G. Jayaraman 1Department of Mathematics, National College, Trichy, Tamil Nadu, India. [email protected] 2Research Scholar, National College, Trichy, Tamil Nadu, India. [email protected] Abstract A total coloring of a graph G is an assignment of colors to both the vertices and edges of G, such that no two adjacent or incident vertices and edges of G are assigned the same colors. In this paper, we have discussed 2 the total coloring of 푀 퐾1,푛 , 푇 퐾1,푛 , 퐿 퐾1,푛 and 퐵푛,푛and we obtained the 2 total chromatic number of 푀 퐾1,푛 , 푇 퐾1,푛 , 퐿 퐾1,푛 and 퐵푛,푛. AMS Subject Classification: 05C15 Keywords and Phrases:Middle graph, line graph, total graph, star graph, square graph, total coloring and total chromatic number. 699 International Journal of Pure and Applied Mathematics Special Issue 1. Introduction In this paper, we have chosen finite, simple and undirected graphs. Let퐺 = (푉 퐺 , 퐸 퐺 ) be a graph with the vertex set 푉(퐺) and the edge set E(퐺), respectively. In 1965, the concept of total coloring was introduced by Behzad [1] and in 1967 he [2] came out new ideology that, the total chromatic number of complete graph and complete bi-partite graph. A total coloring of퐺, is a function 푓: 푆 → 퐶, where 푆 = 푉 퐺 ∪ 퐸 퐺 and C is a set of colors to satisfies the given conditions.
    [Show full text]
  • Achromatic Coloring on Double Star Graph Families
    International J.Math. Combin. Vol.3 (2009), 71-81 Achromatic Coloring on Double Star Graph Families Vernold Vivin J. Department of Mathematics, Sri Shakthi Institute of Engineering and Technology, Coimbatore - 641 062, Tamil Nadu, India. E-mail: vernold [email protected], [email protected] Venkatachalam M. Department of Mathematics, SSK College of Engineering and Technology, Coimbatore - 641 105, Tamil Nadu, India. E-mail: [email protected] Akbar Ali M.M. Department of Mathematics, Sri Shakthi Institute of Engineering and Technology, Coimbatore - 641 062, Tamil Nadu, India. E-mail: um [email protected] Abstract: The purpose of this article is to find the achromatic number, i.e., Smarandachely achromatic 1-coloring for the central graph, middle graph, total graph and line graph of double star graph K1,n,n denoted by C(K1,n,n), M(K1,n,n), T (K1,n,n) and L(K1,n,n) re- spectively. Keywords: Smarandachely achromatic k-coloring, Smarandachely achromatic number, central graph, middle graph, total graph, line graph and achromatic coloring. AMS(2000): 05C15 §1. Preliminaries For a given graph G = (V, E) we do an operation on G, by subdividing each edge exactly once and joining all the non adjacent vertices of G. The graph obtained by this process is called central graph [10] of G denoted by C(G). Let G be a graph with vertex set V (G) and edge set E(G). The middle graph [4] of G, denoted by M(G) is defined as follows. The vertex set of M(G) is V (G) E(G). Two vertices ∪ x, y in the vertex set of M(G) are adjacent in M(G) in case one of the following holds: (i) x, y are in E(G) and x, y are adjacent in G.
    [Show full text]
  • Even Star Decomposition of Complete Bipartite Graphs
    Journal of Mathematics Research; Vol. 8, No. 5; October 2016 ISSN 1916-9795 E-ISSN 1916-9809 Published by Canadian Center of Science and Education Even Star Decomposition of Complete Bipartite Graphs E. Ebin Raja Merly1 & J. Suthiesh Goldy2 1 Nesamony Memorial Christian college, Marthandam, KanyakumarI District, Tamilnadu-629165, India 2 Research scholar, Nesamony Memorial Christian college, Marthandam, Kanyakumari District, Tamilnadu-629165, India Correspondence: J. Suthiesh Goldy, Research Scholar, Nesamony Memorial Christian college, Marthandam, KanyakumarI District, Tamilnadu-629165, India. Email: [email protected] Received: August 24, 2016 Accepted: September 5, 2016 Online Published: September 27, 2016 doi:10.5539/jmr.v8n5p101 URL: http://dx.doi.org/10.5539/jmr.v8n5p101 Abstract A decomposition (G1, G2, G3, , Gn) of a graph G is an Arithmetic Decomposition(AD) if |E(G i)| = a + (i – 1)d for all i = 1, 2, , n and a, d Z+. Clearly q = n [2a + (n – 1)d]. The AD is a CMD if a = 1 and d = 1. In this paper we 2 introduced the new concept Even Decomposition of graphs. If a = 2 and d = 2 in AD, then q = n(n + 1). That is, the number of edges of G is the sum of first n even numbers 2, 4, 6, , 2n. Thus we call the AD with a = 2 and d = 2 as Even Decomposition. Since the number of edges of each subgraph of G is even, we denote the Even Decomposition as (G2, G4, , G2n). Keywords: Continuous Monotonic Decomposition, Decomposition of graph, Even Decomposition, Even Star Decomposition (ESD) 1. Introduction All basic terminologies from Graph Theory are used in this paper in the sense of Frank Harary.
    [Show full text]
  • Deep Generative Modeling in Network Science with Applications to Public Policy Research
    Working Paper Deep Generative Modeling in Network Science with Applications to Public Policy Research Gavin S. Hartnett, Raffaele Vardavas, Lawrence Baker, Michael Chaykowsky, C. Ben Gibson, Federico Girosi, David Kennedy, and Osonde Osoba RAND Health Care WR-A843-1 September 2020 RAND working papers are intended to share researchers’ latest findings and to solicit informal peer review. They have been approved for circulation by RAND Health Care but have not been formally edted. Unless otherwise indicated, working papers can be quoted and cited without permission of the author, provided the source is clearly referred to as a working paper. RAND’s R publications do not necessarily reflect the opinions of its research clients and sponsors. ® is a registered trademark. CORPORATION For more information on this publication, visit www.rand.org/pubs/working_papers/WRA843-1.html Published by the RAND Corporation, Santa Monica, Calif. © Copyright 2020 RAND Corporation R® is a registered trademark Limited Print and Electronic Distribution Rights This document and trademark(s) contained herein are protected by law. This representation of RAND intellectual property is provided for noncommercial use only. Unauthorized posting of this publication online is prohibited. Permission is given to duplicate this document for personal use only, as long as it is unaltered and complete. Permission is required from RAND to reproduce, or reuse in another form, any of its research documents for commercial use. For information on reprint and linking permissions, please visit www.rand.org/pubs/permissions.html. The RAND Corporation is a research organization that develops solutions to public policy challenges to help make communities throughout the world safer and more secure, healthier and more prosperous.
    [Show full text]
  • Random Graph Models of Social Networks
    Colloquium Random graph models of social networks M. E. J. Newman*†, D. J. Watts‡, and S. H. Strogatz§ *Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501; ‡Department of Sociology, Columbia University, 1180 Amsterdam Avenue, New York, NY 10027; and §Department of Theoretical and Applied Mechanics, Cornell University, Ithaca, NY 14853-1503 We describe some new exactly solvable models of the structure of actually connected by a very short chain of intermediate social networks, based on random graphs with arbitrary degree acquaintances. He found this chain to be of typical length of distributions. We give models both for simple unipartite networks, only about six, a result which has passed into folklore by means such as acquaintance networks, and bipartite networks, such as of John Guare’s 1990 play Six Degrees of Separation (10). It has affiliation networks. We compare the predictions of our models to since been shown that many networks have a similar small- data for a number of real-world social networks and find that in world property (11–14). some cases, the models are in remarkable agreement with the data, It is worth noting that the phrase ‘‘small world’’ has been used whereas in others the agreement is poorer, perhaps indicating the to mean a number of different things. Early on, sociologists used presence of additional social structure in the network that is not the phrase both in the conversational sense of two strangers who captured by the random graph. discover that they have a mutual friend—i.e., that they are separated by a path of length two—and to refer to any short path social network is a set of people or groups of people, between individuals (8, 9).
    [Show full text]
  • Navigating Networks by Using Homophily and Degree
    Navigating networks by using homophily and degree O¨ zgu¨r S¸ ims¸ek* and David Jensen Department of Computer Science, University of Massachusetts, Amherst, MA 01003 Edited by Peter J. Bickel, University of California, Berkeley, CA, and approved July 11, 2008 (received for review January 16, 2008) Many large distributed systems can be characterized as networks We show that, across a wide range of synthetic and real-world where short paths exist between nearly every pair of nodes. These networks, EVN performs as well as or better than the best include social, biological, communication, and distribution net- previous algorithms. More importantly, in the majority of cases works, which often display power-law or small-world structure. A where previous algorithms do not perform well, EVN synthesizes central challenge of distributed systems is directing messages to whatever homophily and degree information can be exploited to specific nodes through a sequence of decisions made by individual identify much shorter paths than any previous method. nodes without global knowledge of the network. We present a These results have implications for understanding the func- probabilistic analysis of this navigation problem that produces a tioning of current and prospective distributed systems that route surprisingly simple and effective method for directing messages. messages by using local information. These systems include This method requires calculating only the product of the two social networks routing messages, referral systems for finding measures widely used to summarize all local information. It out- informed experts, and also technological systems for routing performs prior approaches reported in the literature by a large messages on the Internet, ad hoc wireless networking, and margin, and it provides a formal model that may describe how peer-to-peer file sharing.
    [Show full text]
  • Star Arboricity
    COMBINATORICA COMBINATORICA12 (4) (1992) 375-380 Akad~miai Kiadd - Springer-Verlag STAR ARBORICITY NOGA ALON, COLIN McDIARMID and BRUCE REED Received September 11, 1989 A star forest is a forest all of whose components are stars. The star arboricity, st(G) of a graph G is the minimum number of star forests whose union covers all the edges of G. The arboricity, A(G), of a graph G is the minimum number of forests whose union covers all the edges of G. Clearly st(G) > A(G). In fact, Algor and Alon have given examples which show that in some cases st(G) can be as large as A(G)+ f~(log/k) (where s is the maximum degree of a vertex in G). We show that for any graph G, st(G) <_A(G) + O(log ~). 1. Introduction All graphs considered here are finite and simple. For a graph H, let E(H) denote the set of its edges, and let V(H) denote the set of its vertices. A star is a tree with at most one vertex whose degree is not one. A star forest is a forest whose connected components are stars. The star arboricity of a graph G, denoted st(G), is the minimum number of star forests whose union covers all edges of G. The arboricity of G, denoted A(G) is the minimum number of forests needed to cover all edges of G. Clearly, st(G) > A(G) by definition. Furthermore, it is easy to see that any tree can be covered by two star forests.
    [Show full text]
  • Star Coloring Outerplanar Bipartite Graphs
    Discussiones Mathematicae Graph Theory 39 (2019) 899–908 doi:10.7151/dmgt.2109 STAR COLORING OUTERPLANAR BIPARTITE GRAPHS Radhika Ramamurthi and Gina Sanders Department of Mathematics California State University San Marcos San Marcos, CA 92096-0001 USA e-mail: [email protected] Abstract A proper coloring of the vertices of a graph is called a star coloring if at least three colors are used on every 4-vertex path. We show that all outerplanar bipartite graphs can be star colored using only five colors and construct the smallest known example that requires five colors. Keywords: chromatic number, star coloring, outerplanar bipartite graph. 2010 Mathematics Subject Classification: 05C15. 1. Introduction A proper r-coloring of a graph G is an assignment of labels from {1, 2,...,r} to the vertices of G so that adjacent vertices receive distinct colors. The minimum r so that G has a proper r-coloring is called the chromatic number of G, denoted by χ(G). The chromatic number is one of the most studied parameters in graph theory, and by convention, the term coloring of a graph is usually used instead of proper coloring. In 1973, Gr¨unbaum [5] considered proper colorings with the additional constraint that the subgraph induced by every pair of color classes is acyclic, i.e., contains no cycles. He called such colorings acyclic colorings, and the minimum r such that G has an acyclic r-coloring is called the acyclic chromatic number of G, denoted by a(G). In introducing the notion of an acyclic coloring, Gr¨unbaum noted that the condition that the union of any two color classes induces a forest can be generalized to other bipartite graphs.
    [Show full text]
  • Scale- Free Networks in Cell Biology
    Scale- free networks in cell biology Réka Albert, Department of Physics and Huck Institutes of the Life Sciences, Pennsylvania State University Summary A cell’s behavior is a consequence of the complex interactions between its numerous constituents, such as DNA, RNA, proteins and small molecules. Cells use signaling pathways and regulatory mechanisms to coordinate multiple processes, allowing them to respond to and adapt to an ever-changing environment. The large number of components, the degree of interconnectivity and the complex control of cellular networks are becoming evident in the integrated genomic and proteomic analyses that are emerging. It is increasingly recognized that the understanding of properties that arise from whole-cell function require integrated, theoretical descriptions of the relationships between different cellular components. Recent theoretical advances allow us to describe cellular network structure with graph concepts, and have revealed organizational features shared with numerous non-biological networks. How do we quantitatively describe a network of hundreds or thousands of interacting components? Does the observed topology of cellular networks give us clues about their evolution? How does cellular networks’ organization influence their function and dynamical responses? This article will review the recent advances in addressing these questions. Introduction Genes and gene products interact on several level. At the genomic level, transcription factors can activate or inhibit the transcription of genes to give mRNAs. Since these transcription factors are themselves products of genes, the ultimate effect is that genes regulate each other's expression as part of gene regulatory networks. Similarly, proteins can participate in diverse post-translational interactions that lead to modified protein functions or to formation of protein complexes that have new roles; the totality of these processes is called a protein-protein interaction network.
    [Show full text]