Plastid Phylogenomics Improve Phylogenetic Resolution in the Lauraceae
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cryptocarya of Thedirectorategeneral for Cryptocarya Development Cooperation , a Large, Pantropical Genus of Genus Pantropical Large, a , Cryptocarya Species
Taxonomy of Cryptocarya species of Brazil Taxonomy of Cryptocarya This revision of Brazilian species of Cryptocarya, a large, pantropical genus of species of Brazil Lauraceae, comes highly recommended. Lauraceae is an extensive family of trees that has remained poorly studied because large trees with small fl owers are often ignored by fi eld workers. In a time when so much botanical research is focused on relationships between taxa, it is refreshing to see such a detailed work on species delimitation in a previously inaccessible group. Everything one could want to know about neotropical Cryptocarya species is included: keys, descriptions, illustrations, use, etc. In short, this is a monograph in the classical sense. Pedro L.R. de Moraes The author has studied the species extensively in the fi eld and this fi eld knowledge adds much to the value of this taxonomic review and sets it apart from most revisions that often are largely based on studies of dried specimens. Here, detailed discussions of fi eld characters and photographs of fresh specimens are aptly integrated. In conclusion, this is an excellent contribution to our knowledge of Lauraceae and the author is to be congratulated. One could only wish for more publications on the same high level! December 2007 Dr H. Van der Werff Curator & Assistant Director of Research Missouri Botanical Garden, St. Louis, USA – Volume 3 (2007) – Volume Produced with the fi nancial support of the Directorate General for Development Cooperation Volume 3 (2007) 0885-07_ABC-TAXA3_Cover.indd 1 28-02-2008 14:40:08 -
Evolutionary Comparisons of the Chloroplast Genome in Lauraceae and Insights Into Loss Events in the Magnoliids
GBE Evolutionary Comparisons of the Chloroplast Genome in Lauraceae and Insights into Loss Events in the Magnoliids Yu Song1,2,†,Wen-BinYu1,2,†, Yunhong Tan1,2,†, Bing Liu3,XinYao1,JianjunJin4, Michael Padmanaba1, Jun-Bo Yang4,*, and Richard T. Corlett1,2,* 1Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China 2Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw, Myanmar 3State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China 4Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China *Corresponding authors: E-mails: [email protected]; [email protected]. †These authors contributed equally to this work. Accepted: September 1, 2017 Data deposition: This project has been deposited at GenBank of NCBI under the accession number MF939337 to MF939351. Abstract Available plastomes of the Lauraceae show similar structure and varied size, but there has been no systematic comparison across the family. In order to understand the variation in plastome size and structure in the Lauraceae and related families of magnoliids, we here compare 47 plastomes, 15 newly sequenced, from 27 representative genera. We reveal that the two shortest plastomes are in the parasitic Lauraceae genus Cassytha, with lengths of 114,623 (C. filiformis) and 114,963 bp (C. capillaris), and that they have lost NADH dehydrogenase (ndh) genes in the large single-copy region and one entire copy of the inverted repeat (IR) region. The plastomes of the core Lauraceae group, with lengths from 150,749 bp (Nectandra angustifolia) to 152,739 bp (Actinodaphne trichocarpa), have lost trnI-CAU, rpl23, rpl2,afragmentofycf2, and their intergenic regions in IRb region, whereas the plastomes of the basal Lauraceae group, with lengths from 157,577 bp (Eusideroxylon zwageri) to 158,530 bp (Beilschmiedia tungfangen- sis), have lost rpl2 in IRa region. -
Phosphorous Application Improves Drought Tolerance of Phoebe Zhennan
fpls-08-01561 September 11, 2017 Time: 14:19 # 1 View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by El Servicio de Difusión de la Creación Intelectual ORIGINAL RESEARCH published: 13 September 2017 doi: 10.3389/fpls.2017.01561 Phosphorous Application Improves Drought Tolerance of Phoebe zhennan Akash Tariq1,2, Kaiwen Pan1*, Olusanya A. Olatunji1,2, Corina Graciano3, Zilong Li1, Feng Sun1, Xiaoming Sun1, Dagang Song1, Wenkai Chen1, Aiping Zhang1, Xiaogang Wu1, Lin Zhang1, Deng Mingrui1, Qinli Xiong1 and Chenggang Liu1,4 1 CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China, 2 International College, University of Chinese Academy of Sciences, Beijing, China, 3 Instituto de Fisiología Vegetal, Consejo Nacional de Investigaciones Científicas y Técnicas – Universidad Nacional de La Plata, Buenos Aires, Argentina, 4 Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Chengdu, China Phoebe zhennan (Gold Phoebe) is a threatened tree species in China and a valuable and important source of wood and bioactive compounds used in medicine. Apart from Edited by: anthropogenic disturbances, several biotic constraints currently restrict its growth and Urs Feller, development. However, little attention has been given to building adaptive strategies -
Cassytha) and Insights Into the Plastid Phylogenomics of Lauraceae
GBE Plastome Evolution in the Sole Hemiparasitic Genus Laurel Dodder (Cassytha) and Insights into the Plastid Phylogenomics of Lauraceae Chung-Shien Wu1,†, Ting-Jen Wang1,†,Chia-WenWu1, Ya-Nan Wang2, and Shu-Miaw Chaw1,* 1Biodiversity Research Center, Academia Sinica, Taipei 11529, Taiwan 2School of Forestry and Resource Conservation, Nation Taiwan University, Taipei 10617, Taiwan *Corresponding author: E-mail: [email protected]. †These authors contributed equally to this work. Accepted: September 6, 2017 Data deposition: This project has been deposited at DDBJ under the accession numbers LC210517, LC212965, LC213014, and LC228240. Abstract To date, little is known about the evolution of plastid genomes (plastomes) in Lauraceae. As one of the top five largest families in tropical forests, the Lauraceae contain many species that are important ecologically and economically. Lauraceous species also provide wonderful materials to study the evolutionary trajectory in response to parasitism because they contain both nonparasitic and parasitic species. This study compared the plastomes of nine Lauraceous species, including the sole hemiparasitic and herbaceous genus Cassytha (laurel dodder; here represented by Cassytha filiformis). We found differential contractions of the canonical inverted repeat (IR), resulting in two IR types present in Lauraceae. These two IR types reinforce Cryptocaryeae and Neocinnamomum— Perseeae–Laureae as two separate clades. Our data reveal several traits unique to Cas. filiformis, including loss of IRs, loss or pseudogenization of 11 ndh and rpl23 genes, richness of repeats, and accelerated rates of nucleotide substitutions in protein- coding genes. Although Cas. filiformis is low in chlorophyll content, our analysis based on dN/dS ratios suggests that both its plastid house-keeping and photosynthetic genes are under strong selective constraints. -
Ozone Induced Stomatal Regulations, MAPK and Phytohormone Signaling in Plants
International Journal of Molecular Sciences Review Ozone Induced Stomatal Regulations, MAPK and Phytohormone Signaling in Plants Md. Mahadi Hasan 1 , Md. Atikur Rahman 2 , Milan Skalicky 3 , Nadiyah M. Alabdallah 4, Muhammad Waseem 1, Mohammad Shah Jahan 5,6 , Golam Jalal Ahammed 7 , Mohamed M. El-Mogy 8 , Ahmed Abou El-Yazied 9 , Mohamed F. M. Ibrahim 10 and Xiang-Wen Fang 1,* 1 State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; [email protected] (M.M.H.); [email protected] (M.W.) 2 Grassland and Forage Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Korea; [email protected] 3 Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 16500 Prague, Czech Republic; [email protected] 4 Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, Dammam 383, Saudi Arabia; [email protected] 5 Key Laboratory of Southern Vegetable Crop Genetic Improvement in Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; [email protected] 6 Department of Horticulture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh 7 College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China; [email protected] 8 Vegetable Crop Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt; Citation: Hasan, M.M.; Rahman, [email protected] 9 M.A.; Skalicky, M.; Alabdallah, N.M.; Department of Horticulture, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt; Waseem, M.; Jahan, M.S.; Ahammed, [email protected] 10 Department of Agricultural Botany, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt; G.J.; El-Mogy, M.M.; El-Yazied, A.A.; [email protected] Ibrahim, M.F.M.; et al. -
Phytochemical, Elemental and Biotechnological Study of Cryptocarya Latifolia, an Indigenous Medicinal Plant of South Africa
Phytochemical, Elemental and Biotechnological Study of Cryptocarya latifolia, an Indigenous Medicinal Plant of South Africa by Mohammed Falalu Hamza Submitted in fulfillment of the academic requirements for the degree of Master of Science in Chemistry in the School of Chemistry and Physics, University of KwaZulu-Natal, Durban 2013 Phytochemical, Elemental and Biotechnological Study of Cryptocarya latifolia, an Indigenous Medicinal Plant of South Africa by Mohammed Falalu Hamza Submitted in fulfillment of the academic requirements for the degree of Master of Science in Chemistry in the School of Chemistry and Physics, University of KwaZulu-Natal, Durban 2013 As the candidate’s supervisor, I have approved this thesis for submission. Signed_______________________Name__________________________Date_________ DECLARATION I Mohammed Falalu Hamza declare that 1. The research reported in this thesis, except where otherwise indicated, is my original research. 2. This thesis has not been submitted for any degree or examination at any other University. 3. This thesis does not contain other persons’ data, pictures, graphs or other information, unless specifically acknowledged as being sourced from other persons 4. This thesis does not contain other persons’ writing, unless specifically acknowledged as being sourced from other researchers. Where other written sources have been quoted, then: a. Their words have been re-written but the general information attributed to them has been referenced. b. Where their exact words have been used, then their writing has been placed in italics and inside quotation marks, and referenced. 5. This thesis does not contain text, graphics or tables copied and pasted from the internet, unless specifically acknowledged, and then source being detailed in the thesis and in the References sections Author: ___________________________________________________ Mohammed Falalu Hamza Supervisor:________________________________________________ Dr. -
Doctorat De L'université De Toulouse
En vue de l’obt ention du DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE Délivré par : Université Toulouse 3 Paul Sabatier (UT3 Paul Sabatier) Discipline ou spécialité : Ecologie, Biodiversité et Evolution Présentée et soutenue par : Joeri STRIJK le : 12 / 02 / 2010 Titre : Species diversification and differentiation in the Madagascar and Indian Ocean Islands Biodiversity Hotspot JURY Jérôme CHAVE, Directeur de Recherches CNRS Toulouse Emmanuel DOUZERY, Professeur à l'Université de Montpellier II Porter LOWRY II, Curator Missouri Botanical Garden Frédéric MEDAIL, Professeur à l'Université Paul Cezanne Aix-Marseille Christophe THEBAUD, Professeur à l'Université Paul Sabatier Ecole doctorale : Sciences Ecologiques, Vétérinaires, Agronomiques et Bioingénieries (SEVAB) Unité de recherche : UMR 5174 CNRS-UPS Evolution & Diversité Biologique Directeur(s) de Thèse : Christophe THEBAUD Rapporteurs : Emmanuel DOUZERY, Professeur à l'Université de Montpellier II Porter LOWRY II, Curator Missouri Botanical Garden Contents. CONTENTS CHAPTER 1. General Introduction 2 PART I: ASTERACEAE CHAPTER 2. Multiple evolutionary radiations and phenotypic convergence in polyphyletic Indian Ocean Daisy Trees (Psiadia, Asteraceae) (in preparation for BMC Evolutionary Biology) 14 CHAPTER 3. Taxonomic rearrangements within Indian Ocean Daisy Trees (Psiadia, Asteraceae) and the resurrection of Frappieria (in preparation for Taxon) 34 PART II: MYRSINACEAE CHAPTER 4. Phylogenetics of the Mascarene endemic genus Badula relative to its Madagascan ally Oncostemum (Myrsinaceae) (accepted in Botanical Journal of the Linnean Society) 43 CHAPTER 5. Timing and tempo of evolutionary diversification in Myrsinaceae: Badula and Oncostemum in the Indian Ocean Island Biodiversity Hotspot (in preparation for BMC Evolutionary Biology) 54 PART III: MONIMIACEAE CHAPTER 6. Biogeography of the Monimiaceae (Laurales): a role for East Gondwana and long distance dispersal, but not West Gondwana (accepted in Journal of Biogeography) 72 CHAPTER 7 General Discussion 86 REFERENCES 91 i Contents. -
The Litsea Genome and the Evolution of the Laurel Family
The Litsea genome and the evolution of the laurel family Chen et al 1 Supplementary Note 1. Sample preparation for Litsea cubeba genome sequencing For genome sequencing, we collected buds of L. cubeba. Genomic DNA was extracted using a modified cetyltrimethylammonium bromide (CTAB) protocol. For transcriptome analysis, we collected leaves, flowers, and roots from L. cubeba in Zhejiang Province, China, using a karyotype of 2n = 24 (Supplementary Figure 2a). Genome sizes can be determined from the total number of k-mers, divided by the peak value of the k-mer distribution1. To estimate the genome size of L. cubeba, we used a 350 bp pair-end library with 93.08 Gb high-quality reads to calculate the distribution of k-mer values, and found the main peak to be 54 (Supplementary Figure 2b). We estimated the L. cubeba genome size as 1370.14 Mbp, with a 1% heterozygosity rate and a 70.59% repeat sequence, based on an analysis of k-mer-numbers/depths. We used k-mer 41 to obtain a preliminary assembly of L. cubeba, with a scaffold N50 size of 776 bp and a corresponding contig N50 size of 591 bp. Supplementary Note 2. Whole genome duplication analysis in Laurales The KS peaks for WGDs in L. cubeba are both younger (smaller KS values) than the orthologous KS peak between L. cubeba and V. vinifera, implying that the two WGD events are specific to Magnoliids. To compare the WGD peaks of L. cubeba and the speciation events in the lineage of Magnoliids, we performed relative rate tests and corrected orthologous KS peaks between L. -
Phylogeny and Historical Biogeography of Lauraceae
PHYLOGENY Andre'S. Chanderbali,2'3Henk van der AND HISTORICAL Werff,3 and Susanne S. Renner3 BIOGEOGRAPHY OF LAURACEAE: EVIDENCE FROM THE CHLOROPLAST AND NUCLEAR GENOMES1 ABSTRACT Phylogenetic relationships among 122 species of Lauraceae representing 44 of the 55 currentlyrecognized genera are inferredfrom sequence variation in the chloroplast and nuclear genomes. The trnL-trnF,trnT-trnL, psbA-trnH, and rpll6 regions of cpDNA, and the 5' end of 26S rDNA resolved major lineages, while the ITS/5.8S region of rDNA resolved a large terminal lade. The phylogenetic estimate is used to assess morphology-based views of relationships and, with a temporal dimension added, to reconstructthe biogeographic historyof the family.Results suggest Lauraceae radiated when trans-Tethyeanmigration was relatively easy, and basal lineages are established on either Gondwanan or Laurasian terrains by the Late Cretaceous. Most genera with Gondwanan histories place in Cryptocaryeae, but a small group of South American genera, the Chlorocardium-Mezilauruls lade, represent a separate Gondwanan lineage. Caryodaphnopsis and Neocinnamomum may be the only extant representatives of the ancient Lauraceae flora docu- mented in Mid- to Late Cretaceous Laurasian strata. Remaining genera place in a terminal Perseeae-Laureae lade that radiated in Early Eocene Laurasia. Therein, non-cupulate genera associate as the Persea group, and cupuliferous genera sort to Laureae of most classifications or Cinnamomeae sensu Kostermans. Laureae are Laurasian relicts in Asia. The Persea group -
Chemical Constituent of -Glucuronidase Inhibitors from The
molecules Article Chemical Constituent of β-Glucuronidase Inhibitors from the Root of Neolitsea acuminatissima 1, 2, 2 3 Chu-Hung Lin y, Hsiao-Jung Chou y, Chih-Chi Chang , Ih-Sheng Chen , Hsun-Shuo Chang 3,4 , Tian-Lu Cheng 4,5, Yueh-Hiung Kuo 6,7,8,* and Horng-Huey Ko 2,4,* 1 Botanical Drug Technology Division, Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu 30011, Taiwan; [email protected] 2 Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; [email protected] (H.-J.C.); [email protected] (C.-C.C.) 3 School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; [email protected] (I.-S.C.); [email protected] (H.-S.C.) 4 Drug Development and Value Creation Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; [email protected] 5 Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan 6 Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 40402, Taiwan 7 Chinese Medicine Research Center, China Medical University, Taichung 40402, Taiwan 8 Department of Biotechnology, Asia University, Taichung 41354, Taiwan * Correspondence: [email protected] (Y.-H.K.); [email protected] (H.-H.K.); Tel.: +886-7-3121101 (ext. 2643) (H.-H.K.); Fax: +886-7-3210683 (H.-H.K.) These authors contributed equally to this work. y Academic Editors: Roberto Fabiani and Eliana Pereira Received: 10 October 2020; Accepted: 4 November 2020; Published: 6 November 2020 Abstract: Neolitsea acuminatissima (Lauraceae) is an endemic plant in Taiwan. -
Seed Dormancy and Germination in Neolitsea Acuminatissima (Lauraceae)
Taiwan J For Sci 21(1): 125-9, 2006 125 Research note Seed Dormancy and Germination in Neolitsea acuminatissima (Lauraceae) Shun-Ying Chen,1,2) Shing-Rong Kuo,2) Jerry M. Baskin,3) Carol C. Baskin,3,4) Ching-Te Chien5,6) 【Summary】 Fresh seeds of Neolitsea acuminatissima germinated slowly at 30/20℃ in light (with a 12-h daily photoperiod) and required > 20 wk to complete germination. Seeds cold-stratified at 4℃ for 9 mo or for 1 yr not only retained their original viability, but the germination rate significantly increased. Fresh seeds have a fully-developed embryo and a water-permeable seed coat and endo- carp, and they require > 4 wk to germinate in a warm temperature regime. Thus, we concluded that seeds of N. acuminatissima have nondeep physiological dormancy. Key words: cold stratification,Neolitsea acuminatissima, physiological dormancy, seed germination. Chen SY, Kuo SR, Baskin JM, Baskin CC, Chien CT. 2006. Seed dormancy and germination in Neolitsea acuminatissima (Lauraceae). Taiwan J For Sci 21(1):125-9. 研究簡報 高山新木薑子種子的休眠與發芽 陳舜英1,2) 郭幸榮2) Jerry M. Baskin3) Carol C. Baskin3,4) 簡慶德5,6) 摘 要 新鮮採收的高山新木薑子種子在變溫30/20℃和每天12時光照下發芽緩慢,需要20週以上的時間才 能全部發芽完畢。種子以4℃低溫層積9個月或1年,不但能保持與原來新鮮種子一樣的發芽活力,而且 發芽速率顯著地增加。新鮮種子具有發育完全的胚,以及水分可通透的種皮和內果皮,但它們卻需要4 週以上時間才開始發芽。因此,我們推論高山新木薑子種子具有非深度的生理休眠。 1) Division of Forest Biology, Taiwan Forestry Research Institute, 53 Nanhai Rd., Taipei 10066, Taiwan. 行政院農業委員會林業試驗所森林生物組,10066台北市南海路53號。 2) School of Forestry and Resource Conservation, National Taiwan University, 1, Roosevelt Road, Sec. 4, Taipei 10617, Taiwan. 台灣大學森林環境暨資源學研究所,10617台北市羅斯福路四段1號。 3) Department of Biology, University of Kentucky, Lexington, KY 40506-0225, USA. 4) Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546-0312, USA. -
Endemic Angiosperm Lineages in Mexico: Hotspots for Conservation
Acta Botanica Mexicana 100: 293-315 (2012) ENDEMIC ANGIOSPERM LINEAGES IN MEXICO: HOTSPOTS FOR CONSERVATION Victoria SoSa1,4 and J. arturo de-noVa2,3 1Instituto de Ecología A.C., Biología Evolutiva, Apdo. postal 63, 91070 Xalapa, Veracruz, Mexico. 2Universidad Autónoma de San Luis Potosí, Instituto de Investigación en Zonas Desérticas, Altair 200, 78377 San Luis Potosí, Mexico. 3Universidad Autónoma de San Luis Potosí, Facultad de Agronomía, km 14.5 carretera San Luis Potosí-Matehuala, 78321 San Luis Potosí, Mexico. 4Autor para la correspondencia: [email protected] ABSTRACT As a megadiverse country, Mexico harbors 4 to 8% of the flora of the world and of this, 51% is endemic. There is concern because several factors are impeding its conservation. In this paper, areas of endemism for the flowering plants of Mexico are identified to prioritize regions for conservation. To categorize zones for preservation, the approach followed takes biodiversity, weighted endemism and evolutionary history into account. Lineages of angiosperms, families, genera, and formal or informal groups within genera previously retrieved as monophyletic are selected to represent evolutionary history in equivalent spatial units. A database with 9416 entries based on specimens of species belonging to 259 monophyletic groups of angiosperms from Mexico was compiled, and their presence-absence recorded for every unit area. Species richness and weighted endemism index was calculated for each of these units. The results indicate that the majority of the regions with