Profile of Martin Karplus, Michael Levitt, and Arieh Warshel, 2013 Nobel Laureates in Chemistry

Total Page:16

File Type:pdf, Size:1020Kb

Profile of Martin Karplus, Michael Levitt, and Arieh Warshel, 2013 Nobel Laureates in Chemistry PROFILE PROFILE Profile of Martin Karplus, Michael Levitt, and Arieh Warshel, 2013 Nobel Laureates in Chemistry Alan R. Fersht1 Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom You can read the Nobel Prize Web site for affectionately called “LMB,” thehomeof the best description of the science behind the Sydney Brenner, Francis Crick, John Ken- 2013 Nobel Prize in Chemistry. However, let drew, Aaron Klug, Cesar Milstein, Max me tell you what the beginnings of the sci- Perutz, and Fred Sanger—all now legends ence and its immediate impact were really in molecular biology. LMB was small and like–a personal account from a close by- overcrowded. Theoreticians were crammed stander and indirect collaborator in a neigh- side by side in small offices; experimentalists boring field who grew up scientifically with did not have offices, but sat at the end of the two of the laureates, and knows well the bench for paper work. Nobel laureates occu- third. The new laureates’ papers in the mid- pied tiny cubbyholes, and Sydney Brenner 1970s changed the way we think about pro- and Francis Crick shared a small office. We Michael Levitt. Credit: Linda A. Cicero/Stan- teins and set up a new area of science, which metallofthetimeincorridors,andinthe ford News Service. immediately and radically influenced and in- canteen for coffee, lunch, and tea. There spired me, along with many others. was continual cross-fertilization of ideas and The 1960s and 1970s were a time of great discussions among the different strands of time was rather esoteric and mainly appealed excitement in the world of proteins. Their scientists. Above all, the legendary figures to a small number of X-ray crystallographers. amino acid sequences were by then routinely, were central to this passionate intellectual Warshel then came to work with Levitt but laboriously, being determined. The first activity and drew us, the much younger sci- at LMB. They collaborated first on enzyme tranche of 3D structures from X-ray crystal- entists, in and treated us as equals. They mechanisms, which was my passion. Sepa- lography had been published. And the impli- gave us our independence early on and en- rately and jointly they came up with ideas cationsofthestructureofDNAandits thusiastically encouraged us by being living that were revolutionary from their calcula- transcription and translation, and the folding examples of what scientists should be. I was tions on the mechanism of catalysis by hen of its protein products were being explored. recruited at the age of 26, after my one post- egg-white lysozyme—a landmark study from The center for these activities was the Medi- doctoral year with W. P. Jencks (another David Phillips’ laboratory (4) not from LMB. cal Research Laboratory of Molecular Biology, great scientist and man) to work on the mech- Phillips was another great scientist who anism of enzymes, as there was no mechanistic worked hard to further the careers of young chemist in LMB. I was given a laboratory and scientists. The Phillips paper was remarkable a technician and told to do anything I wanted. because the mechanism of lysozyme was un- Independence at that age is now so rare. known until the crystal structure had been de- Into this milieu came a wunderkind, termined, and the crystallographers proposed Michael Levitt, to do a PhD. By great fortune, a mechanism involving strained interactions John Kendrew, a member of the Scien- in one of the binding sites and electrostatic fi ti c Academic Advisory Committee of the stabilization of an oxocarbenium ion. Weizmann Institute suggested that Levitt go I had come back in 1969 from my post- fi – there rst to work with Shneior Lifson (1914 doctoral year with Bill Jencks, having been 2001), as related by Levitt (1). Kendrew exposed to the “strain theory” of enzyme ca- fi realized that the consistent force eld that talysis, dating back to J. B. S. Haldane (5). Lifson was working on from data on small Many enzymologists believed that enzymes crystalline molecules (2) could be applied to were so sufficiently rigid that they could dis- macromolecules and analyzed their energet- tort a substrate toward the structure of its ics. Levitt teamed up with Arieh Warshel in transition state, which was the driving force Lifson’s laboratory and produced the first real program that could compute noncovalent in- teraction energies within proteins and nucleic Author contributions: A.R.F. wrote the paper. Martin Karplus. Image Copyright Emmanuel acids, which is the basis of current energy The author declares no conflict of interest. Nguyen Ngoc, BnF. refinement methods (3). The work at the 1E-mail: [email protected]. www.pnas.org/cgi/doi/10.1073/pnas.1320569110 PNAS Early Edition | 1of2 Downloaded by guest on September 26, 2021 for enzymatic catalysis. However, Levitt’scal- ended with a section: “It is most important to culations had shown that this was unlikely. have available detailed tests of the dynamic Hidden in a book (6) but fortunately told simulation.” This was where our paths crossed directly to me, he had written: “Small distor- again and I could become part of a confeder- tions of a substrate conformation that cause ation between experimentalists and theoreti- large increases in strain energy cannot be cians. Warshel et al. used an experiment of caused by binding to the enzyme.” Warshel mine on the energetics of the salt bridge in and Levitt (7) produced a paper, “Theoretical chymotrypsin to benchmark electrostatic studies of enzymic reactions: Dielectric, elec- simulations (12). The advent of protein engi- trostatic, and steric stabilization of the car- neering allowed Martin Karplus to calibrate bonium ion in the reaction of lysozyme,” his program CHARMM by simulating the which calculated the interaction energies in energetics of the mutational energies we had the enzyme–substrate complex (7). Arieh measured on the protein barnase. Valerie stressed the importance of electrostatic effects Daggett and Levitt performed the first atom- in enzymatic catalysis, a theme he has subse- istic simulation of protein unfolding in 1992, quently consistently promoted, and drummed using Levitt’s program ENCAD (13). This the general importance into me. coincided with my introduction of ϕ-value Inspired by their work and the early X-ray analysis for the experimental near-atomistic crystallography, I wrote a book that at- Arieh Warshel. analysis of protein folding/unfolding transi- tempted to synthesize radical, new ideas into tion states. So began a long collaboration be- a modern look at enzyme mechanisms (8). tween Daggett and me, combining simulation The Warshel and Levitt key papers and anal- protein structure (10). Levitt has subsequently with experiment, fathered by Levitt. yses were frequently cited throughout the first concentrated on protein folding, using both On a personal note of pride, but with and subsequent editions. I coined the term simplified and atomistic models. a continuing message, I am Master of a Cam- “stress” rather than “strain” because of War- I still remember the frisson of excitement bridge College, Gonville and Caius, whose shel and Levitt’s calculations. Radically new when the first paper on the atomistic molec- members are numbered in the hundreds, as ideas often take a long while to be accepted ular dynamics simulation of a protein, again well as my being at LMB. We elect a few re- (9). Warshel and Levitt’s lysozyme paper took BPTI, was published by Martin Karplus and search fellows each year toward the end of considerable time to catch on—the number colleagues in Nature in 1977 (11). It was the their PhD so they can do independent post- of citations each year averaged only ∼17 for next landmark in computer simulation of doctoral work in the sciences and the human- the first 10 years of publication but has proteins. Karplus was already a young full ities. Four have gone on to win Nobel Prizes, climbed to a remarkable and consistent 120 professor at Harvard, having earned his including Roger Tsien, and now Michael per annum for the past 10 years; over 2,000 PhD at the age of 23, and with a famous Levitt. And we did have Francis Crick as a citations in all, so far. Their influence made equation in NMR spectroscopy named after mature graduate student. The message is, we me write in my book that enzyme mecha- him. Karplus has bestrode the world of the- must allow scientists to be independent when nisms should be solved by a confederation oretical chemistry like a colossus. The list of they are young and not wait until they are in of chemists and theoreticians, based on hisformerstudentsandpostdoctoralscholars their 30s and 40s for their first independent structure: “The chemist seeks to identify looks like a who’s who of theoreticians. And grants. To me, all three of this year’swinners the chemical nature of the intermediates, he is a gourmet chef and professional-stan- deserved their Nobel Prizes just for their by what chemical paths they form and decay, dard photographer with books and exhibi- earlier work, and have taken it to even and the types of catalysis that are involved. tions to his name. greater heights since. The prize is a triumph These results can then be combined with I listed the Levitt and Lifson (3) 1969 and for youth. Martin Karplus earned his PhD at those from X-ray diffraction (and NMR) the McCammon et al. (11) MD simulation as an age when many are just starting it. Michael studies and calculations by theoretical chem- two of the 12 key events in technological Levitt and Arieh Warshel showed what ists to give a complete description of the innovations in studying the folding of pro- young scientists can achieve in a laboratory mechanism.” That is generally accepted teins(9).TheKarplusandcolleaguespaper that fosters talent and independence.
Recommended publications
  • FF12MC: a Revised AMBER Forcefield and New Protein Simulation Protocol
    bioRxiv preprint doi: https://doi.org/10.1101/061184; this version posted July 11, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. FF12MC: A revised AMBER forcefield and new protein simulation protocol Yuan-Ping Pang Computer-Aided Molecular Design Laboratory, Mayo Clinic, Rochester, MN 55905, USA Corresponding author: Stabile 12-26, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA; E-mail address: [email protected] Short title: FF12MC: A new protein simulation protocol Keywords: Protein folding; Protein dynamics; Protein simulation; Protein structure refinement; Molecular dynamics simulation; Force field; Chignolin; CLN025; Trp-cage; BPTI. bioRxiv preprint doi: https://doi.org/10.1101/061184; this version posted July 11, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. ABSTRACT Specialized to simulate proteins in molecular dynamics (MD) simulations with explicit solvation, FF12MC is a combination of a new protein simulation protocol employing uniformly reduced atomic masses by tenfold and a revised AMBER forcefield FF99 with (i) shortened C– H bonds, (ii) removal of torsions involving a nonperipheral sp3 atom, and (iii) reduced 1–4 interaction scaling
    [Show full text]
  • Refinement of Protein Conformations Using a Macromolecular Energy Minimization Procedure
    J. Mol. Biol. (1969) 46, 269-279 Refinement of Protein Conformations using a Macromolecular Energy Minimization Procedure MICHAEL LEVITT AND SHNEIOR LIFSON Weixmann Institute of Science Rehovot, Israel (Received 3 December 1968, and in revised form 29 July, 1969) This paper presents a rapid refinement procedure capable of deriving the stable conformation of a macromolecule from experimental model co-ordinates. All the degrees of freedom of the molecule are allowed to vary and all parts of the structure are refined simultaneously in a general force-field. The procedure has been applied to myoglobin and lysozyme. The deviations of peptide bonds from planar conformation and of various bond angles from their respective average values are found to contribute significantly to the retied protein conformation. Hydrogen atoms are not included in the present refinement. A set of non-bonded potential functions, applicable to the equilibrium of a folded protein in an aqueous medium, is described and tested on myoglobin. 1. Introduction The Cartesian co-ordinates of a protein molecule have been obtained from measure- ments on a rigid wire model, built according to electron density maps derived from X-ray diffraction measurements. The errors inherent in measuring a mechanical model give rise to highly strained bond lengths and angles. Much of this strain can be relieved without affecting the relative orientation of parts of the molecule. Diamond (1966) proposed a co-ordinate refinement procedure which varied certain dihedral and bond angles to give the best fit to the rough measured co-ordinates. The fixed bond lengths and angles of each amino acid residue were obtained from crystallographic studies of small molecules.
    [Show full text]
  • IYUNIM Multidisciplinary Studies in Israeli and Modern Jewish Society
    IYUNIM Multidisciplinary Studies in Israeli and Modern Jewish Society IYUNIM Multidisciplinary Studies in Israeli and Modern Jewish Society Volume 31 2019 Editors: Avi Bareli, Ofer Shiff Assistant Editor: Orna Miller Editorial Board: Avi Bareli, Avner Ben-Amos, Kimmy Caplan, Danny Gutwein, Menachem Hofnung, Paula Kabalo, Nissim Leon, Kobi Peled, Shalom Ratzabi, Ilana Rosen, Ofer Shiff Founding Editor: Pinhas Ginossar Style Editing: Ravit Delouya, Herzlia Efrati, Keren Glicklich, Yeal Ofir, Meira Turetzky Proofreading: Margalit Abas-Gian, Leah Lutershtein Abstracts Editing: Moshe Tlamim Cover Design: Shai Zauderer Production Manager: Hadas Blum ISSN 0792-7169 Danacode 1246-10023 © 2019 All Rights Reserved The Ben-Gurion Research Institute Photo Typesetting: Sefi Graphics Design, Beer Sheva Printed in Israel at Art Plus, Jerusalem CONTENTS Society Uri Cohen Shneior Lifson and the Founding of the Open University, 1970-1976 7 Oded Heilbronner Moral Panic and the Consumption of Pornographic Literature in Israel in the 1960s 60 Danny Gutwein The Chizbatron and the Transformation of the Palmach’s Pioneering Ethos, 1948-1950 104 Defense Yogev Elbaz A Calculated Risk: Israel’s Intervention in Jordan’s Civil War, September 1970 152 Nadav Fraenkel The Etzion Bloc Settlements and the Yishuv’s Institutions in the War of Independence 182 Mandate Era Ada Gebel Yitzhak Breuer and the Question of Sovereignty in the Land of Israel 215 Dotan Goren The Hughes Land Affair in Transjordan 244 Culture and Literature Liora Bing-Heidecker Choreo-trauma: The Poetics of Loss in the Dance Works of Judith Arnon and of Rami Beer 272 Or Aleksandrowicz The Façade of Building: Exposed Building Envelope Technologies in Modern Israeli Architecture 306 Michael Gluzman David Grossman’s Writing of Bereavement 349 Abbreviations 381 List of Participants 382 English Abstracts i ABSTRACTS ABSTRACTS Shneior Lifson and the Founding of the Open University, 1970-1976 Uri Cohen The idea of an Open University in Israel gained traction in 1970 and in 1976 it opened its doors for classes.
    [Show full text]
  • Cambridge's 92 Nobel Prize Winners Part 4 - 1996 to 2015: from Stem Cell Breakthrough to IVF
    Cambridge's 92 Nobel Prize winners part 4 - 1996 to 2015: from stem cell breakthrough to IVF By Cambridge News | Posted: February 01, 2016 Some of Cambridge's most recent Nobel winners Over the last four weeks the News has been rounding up all of Cambridge's 92 Nobel Laureates, which this week comes right up to the present day. From the early giants of physics like JJ Thomson and Ernest Rutherford to the modern-day biochemists unlocking the secrets of our genome, we've covered the length and breadth of scientific discovery, as well as hugely influential figures in economics, literature and politics. What has stood out is the importance of collaboration; while outstanding individuals have always shone, Cambridge has consistently achieved where experts have come together to bounce their ideas off each other. Key figures like Max Perutz, Alan Hodgkin and Fred Sanger have not only won their own Nobels, but are regularly cited by future winners as their inspiration, as their students went on to push at the boundaries they established. In the final part of our feature we cover the last 20 years, when Cambridge has won an average of a Nobel Prize a year, and shows no sign of slowing down, with ground-breaking research still taking place in our midst today. The Gender Pay Gap Sale! Shop Online to get 13.9% off From 8 - 11 March, get 13.9% off 1,000s of items, it highlights the pay gap between men & women in the UK. Shop the Gender Pay Gap Sale – now. Promoted by Oxfam 1.1996 James Mirrlees, Trinity College: Prize in Economics, for studying behaviour in the absence of complete information As a schoolboy in Galloway, Scotland, Mirrlees was in line for a Cambridge scholarship, but was forced to change his plans when on the weekend of his interview he was rushed to hospital with peritonitis.
    [Show full text]
  • Martin Karplus &LISTING RELEASE IMMEDIATE for 7:30 PM PM 7:30 SEP 24 52 East 11 Cultural New Forum Austrian York SEP 25 1953 Photographs MARTIN KARPLUS Exhib
    FOR IMMEDIATE RELEASE & LISTING Exhibition: MARTIN KARPLUS Photographs 1953 – 2009 SEP 25 – NOV 28, 2014 Austrian Cultural Forum New York 11 East 52nd Street, New York SEP 24 | EXHIBITION OPENING 7:30 PM – 9PM (no RSVP req'd) Self Portrait of Martin Karplus, Marineland of the pacific, California, USA 1956 Martin Karplus is a chemist, Professor emeritus at Harvard University, and Nobel laureate who has spent the past treet treet york| new | ny 10022 | phone:(212) 319 5300 | (212) fax: 644 8660 [email protected] | | www.acfny.org fifty years consumed by a passion for documenting humanity in thousands of photographs. Sourced from Europe, s Asia, and the Americas, these photographs candidly capture societies at pivotal moments in their cultural and nd economic development in rich Kodachrome color. From September 25 through November 28, the Austrian Cultural Forum New York will present these works in his first ever New York retrospective, Martin Karplus | Photographs 1953- 2009. In 1953, nearing the completion of his PhD at Cal Tech, the Austrian-born, American Karplus received his uncle’s Leica camera as a gift from his parents and headed to Oxford University on a fellowship. In the ensuing years he austriancultural forum | east 11 52 would spend months on end exploring the globe, documenting what he describes in his artist statement as a “vision of a world, much of which no longer exists”. Images from the Netherlands, Denmark, Greece, Italy, France, Yugoslavia, and Germany present the closure of a bygone lifestyle as societies modernized and rebuilt in the wake of World War II and the dawning of the Cold War.
    [Show full text]
  • Kosmas 2018 Ns
    New Series Vol. 1 N° 2 by the Czechoslovak Society of Arts and Sciences KOSMAS CZECHOSLOVAK AND CENTRAL EUROPEAN JOURNAL KOSMAS ISSN 1056-005X ©2018 by the Czechoslovak Society of Arts and Sciences (SVU) Kosmas: Czechoslovak and Central European Journal (Formerly Kosmas: Journal of Czechoslovak and Central European Studies, Vols. 1-7, 1982-1988, and Czechoslovak and Central European Journal, Vols. 8-11, (1989-1993). Kosmas is a peer reviewed, multidisciplinary journal that focuses on Czech, Slovak and Central European Studies. It publishes scholarly articles, memoirs, research materials, and belles-lettres (including translations and original works), dealing with the region and its inhabitants, including their communities abroad. It is published twice a year by the Czechoslovak Society of Arts and Sciences (SVU). Editor: Hugh L. Agnew (The George Washington University) Associate Editors: Mary Hrabík Šámal (Oakland University) Thomas A. Fudge (University of New England, Australia) The editors assume no responsibility for statements of fact or opinion made by contributors. Manuscript submissions and correspondence concerning editorial matters should be sent via email to the editor, Hugh L. Agnew. The email address is [email protected]. Please ensure that you reference “Kosmas” in the subject line of your email. If postal correspondence proves necessary, the postal address of the editor is Hugh L. Agnew, History Department, The George Washington University, 801 22nd St. NW, Washington, DC, 20052 USA. Books for review, book reviews, and all correspondence relating to book reviews should be sent to the associate editor responsible for book reviews, Mary Hrabík Šámal, at the email address [email protected]. If postal correspondence proves necessary, send communications to her at 2130 Babcock, Troy, MI, 48084 USA.
    [Show full text]
  • A. Personal Statement B. Positions, Honors and Review Service
    Program Director/Principal Investigator (Last, First, Middle) : LEVITT, Michael BIOGRAPHICAL SKETCH Provide the following information for the Senior/key personnel and other significant contributors in the order listed on Form Page 2. Follow this format for each person. DO NOT EXCEED FOUR PAGES. NAME POSITION TITLE Michael LEVITT eRA COMMONS USER NAME (credential, e.g., agency login) Professor LEVITT.MICHAEL EDUCATION/TRAINING (Begin with baccalaureate or other initial professional education, such as nursing, and include postdoctoral training.) INSTITUTION AND LOCATION DEGREE FIELD OF STUDY (if applicable) MM/YY King's College, London, England B.Sc. 06/1967 Physics Royal Society Fellow, Weizmann Institute Israel N/A 09/1968 Conformation Analysis Cambridge University, England Ph.D. 12/1971 Computational Biology A. Personal Statement I pioneered of computational biology setting up the conceptual and theoretical framework for a field that I am still actively involved in at all levels. More specifically, I still write and maintain computer programs of all types including large simulation packages and molecular graphics interfaces. I have also developed a high-level of expertise in Perl scripting, as well as in the advanced use of the Office Suite of programs (Word, Excel and PowerPoint), which is more important and rare than it may seem. My research focuses on three different but inter-related areas of research. First, we are interested in predicting the folding of a polypeptide chain into a protein with a unique native-structure with particular emphasis on how the hydrophobic forces affect the pathway. We expect hydrophobic interactions to energetically favor structure that are more native-like.
    [Show full text]
  • Nfap Policy Brief » October 2019
    NATIONAL FOUNDATION FOR AMERICAN POLICY NFAP POLICY BRIEF» OCTOBER 2019 IMMIGRANTS AND NOBEL PRIZES : 1901- 2019 EXECUTIVE SUMMARY Immigrants have been awarded 38%, or 36 of 95, of the Nobel Prizes won by Americans in Chemistry, Medicine and Physics since 2000.1 In 2019, the U.S. winner of the Nobel Prize in Physics (James Peebles) and one of the two American winners of the Nobel Prize in Chemistry (M. Stanley Whittingham) were immigrants to the United States. This showing by immigrants in 2019 is consistent with recent history and illustrates the contributions of immigrants to America. In 2018, Gérard Mourou, an immigrant from France, won the Nobel Prize in Physics. In 2017, the sole American winner of the Nobel Prize in Chemistry was an immigrant, Joachim Frank, a Columbia University professor born in Germany. Immigrant Rainer Weiss, who was born in Germany and came to the United States as a teenager, was awarded the 2017 Nobel Prize in Physics, sharing it with two other Americans, Kip S. Thorne and Barry C. Barish. In 2016, all 6 American winners of the Nobel Prize in economics and scientific fields were immigrants. Table 1 U.S. Nobel Prize Winners in Chemistry, Medicine and Physics: 2000-2019 Category Immigrant Native-Born Percentage of Immigrant Winners Physics 14 19 42% Chemistry 12 21 36% Medicine 10 19 35% TOTAL 36 59 38% Source: National Foundation for American Policy, Royal Swedish Academy of Sciences, George Mason University Institute for Immigration Research. Between 1901 and 2019, immigrants have been awarded 35%, or 105 of 302, of the Nobel Prizes won by Americans in Chemistry, Medicine and Physics.
    [Show full text]
  • Modeling Atomic Structure of the Emre Multidrug Pump to Design Inhibitor Peptides
    PI: Karplus, Martin Title: Modeling atomic structure of the EmrE multidrug pump to design inhibitor peptides Received: 06/14/2013 FOA: PA11-262 Council: 01/2014 Competition ID: ADOBE-FORMS-B2 FOA Title: NIH SMALL RESEARCH GRANT PROGRAM (PARENT R03) 1 R03 AI111416-01 Dual: Accession Number: 3599020 IPF: 3212901 Organization: HARVARD UNIVERSITY Former Number: Department: Chemistry and Chemical Biology IRG/SRG: ZRG1 MSFD-N (08)F AIDS: N Expedited: N Subtotal Direct Costs Animals: N New Investigator: N (excludes consortium F&A) Humans: N Early Stage Investigator: N Year 1: Clinical Trial: N Year 2: Current HS Code: 10 HESC: N Senior/Key Personnel: Organization: Role Category: Martin Karplus Ph.D. Harvard University PD/PI Victor Ovchinnikov Ph.D Harvard University Co-Investigator Always follow your funding opportunity's instructions for application format. Although this application demonstrates good grantsmanship, time has passed since the grantee applied. The sample may not reflect the latest format or rules. NIAID posts new samples periodically: https://www.niaid.nih.gov/grants-contracts/sample-applications The text of the application is copyrighted. You may use it only for nonprofit educational purposes provided the document remains unchanged and the PI, the grantee organization, and NIAID are credited. Note on Section 508 conformance and accessibility: We have reformatted these samples to improve accessibility for people with disabilities and users of assistive technology. If you have trouble accessing the content, please contact the NIAID Office of Knowledge and Educational Resources at [email protected]. Principal Investigator/Program Director (Last, first, middle): Karplus, Martin Specific Aims Many aromatic compounds are used as antibiotic, antiseptic, and antineoplastic agents in the control of pathogens.
    [Show full text]
  • Interview with Harry B. Gray
    HARRY B. GRAY (b. 1935) INTERVIEWED BY SHIRLEY K. COHEN SEPTEMBER 2000 – MARCH 2001 AND HEIDI ASPATURIAN JANUARY – MAY 2016 Photo taken in 1997 ARCHIVES CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California Subject area Chemistry Abstract Two interviews in seven and six sessions respectively, with Harry Gray, the Arnold O. Beckman Professor of Chemistry. The first series of interviews, conducted in 2000-01 with Shirley Cohen, deals with Gray’s life and career up to that time. The second series, conducted in 2016 with Heidi Aspaturian, covers the period 2001–2016, expands on a number of topics discussed in the first interview series, and adds to the account of Gray’s earlier decades. Discussion topics common to the two interviews are cross-referenced in both texts. 2000–01 Interview Gray opens this interview series with a description of his family roots and formative years in Kentucky’s tobacco-farming country, including his youthful career with the local newspaper and early interest in chemistry. He then provides an account of his undergraduate studies at Western Kentucky State College (BS 1957), graduate work with F. Basolo and R. Pearson at Northwestern University http://resolver.caltech.edu/CaltechOH:OH_Gray_H (PhD 1960), and postdoctoral work with C. Ballhausen at the University of Copenhagen, where he pioneered the development of ligand field theory. As a professor at Columbia University, he continued work at the frontiers of inorganic chemistry, published several books and, through an affiliation with Rockefeller University, was drawn to interdisciplinary research, which led him to accept a faculty position at Caltech in 1966. He talks about his approach to teaching and his research in inorganic chemistry and electron transfer at Caltech, his interactions with numerous Caltech personalities, including A.
    [Show full text]
  • Nobel Special Issue of Chemical Physics Letters
    Accepted Manuscript Editorial Nobel Special Issue of Chemical Physics Letters David Clary, Mitchio Okumura, Villy Sundstrom PII: S0009-2614(13)01325-0 DOI: http://dx.doi.org/10.1016/j.cplett.2013.10.045 Reference: CPLETT 31683 To appear in: Chemical Physics Letters Please cite this article as: D. Clary, M. Okumura, V. Sundstrom, Nobel Special Issue of Chemical Physics Letters, Chemical Physics Letters (2013), doi: http://dx.doi.org/10.1016/j.cplett.2013.10.045 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. Nobel Special Issue of Chemical Physics Letters Editorial The hallmark of Chemical Physics Letters is the fast publication of urgent communications of the highest quality. It has not escaped our notice that this policy has allowed several of the breakthrough papers in chemistry to be published in our journal. Indeed, looking through Chemical Physics Letters over the last 42 years we found papers published by as many as 15 authors who went on subsequently to win the Nobel Prize in Chemistry for work linked to their articles. Furthermore, several of these papers were referenced in the Nobel citations. We thought our readers would find it of interest to see a collection of these papers brought together and introduced with summaries explaining their significance and written by the Nobelists themselves, close colleagues or editors of the journal.
    [Show full text]
  • Development of Multiscale Models for Complex Chemical Systems
    9 OCTOBER 2013 Scientifc Background on the Nobel Prize in Chemistry 2013 DEVELOPMENT OF MULTISCALE MODELS FOR COMPLEX CHEMICAL SYSTEMS THE ROYAL SWEDISH ACADEMY OF SCIENCES has as its aim to promote the sciences and strengthen their infuence in society. BOX 50005 (LILLA FRESCATIVÄGEN 4 A), SE-104 05 STOCKHOLM, SWEDEN Nobel Prize® and the Nobel Prize® medal design mark TEL +46 8 673 95 00, [email protected] HTTP://KVA.SE are registrated trademarks of the Nobel Foundation Scientific background on the Nobel Prize in Chemistry 2013 DEVELOPMENT OF MULTISCALE MODELS FOR COMPLEX CHEMICAL SYSTEMS The Royal Swedish Academy of Science has decided to award the 2013 Nobel Prize in Chemistry to Martin Karplus, Harvard U., Cambridge, MA, USA Michael Levitt, Stanford U., Stanford, CA, USA and Arieh Warshel, U. Southern Ca., Los Angeles, CA, USA For “Development of Multiscale Models for Complex Chemical Systems” 1 (10) Multiscale models for Complex Chemical Systems The Nobel Prize in Chemistry 2013 has been awarded to Martin Karplus, Michael Levitt and Arieh Warshel for development of multiscale models of complex chemical systems. Background Chemistry and Biochemistry have developed very rapidly during the last 50 years. This applies to all parts of the fields, but the development of Biochemistry is perhaps the most striking one. In the first half of these 50 years the determination of protein structure was perhaps the field where the largest efforts were spent and the largest progress was made. The standard methods to analyse the structure of proteins are X-ray crystallography of crystals or analysing the spin – spin couplings obtained from NMR-spectroscopy.
    [Show full text]