Mimicking Hydrogenases: from Biomimetics to Artificial Enzymes T
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Web Tool for Hydrogenase Classification and Analysis Dan Søndergaard1, Christian N
www.nature.com/scientificreports OPEN HydDB: A web tool for hydrogenase classification and analysis Dan Søndergaard1, Christian N. S. Pedersen1 & Chris Greening2,3 H2 metabolism is proposed to be the most ancient and diverse mechanism of energy-conservation. The Received: 24 June 2016 metalloenzymes mediating this metabolism, hydrogenases, are encoded by over 60 microbial phyla Accepted: 09 September 2016 and are present in all major ecosystems. We developed a classification system and web tool, HydDB, Published: 27 September 2016 for the structural and functional analysis of these enzymes. We show that hydrogenase function can be predicted by primary sequence alone using an expanded classification scheme (comprising 29 [NiFe], 8 [FeFe], and 1 [Fe] hydrogenase classes) that defines 11 new classes with distinct biological functions. Using this scheme, we built a web tool that rapidly and reliably classifies hydrogenase primary sequences using a combination of k-nearest neighbors’ algorithms and CDD referencing. Demonstrating its capacity, the tool reliably predicted hydrogenase content and function in 12 newly-sequenced bacteria, archaea, and eukaryotes. HydDB provides the capacity to browse the amino acid sequences of 3248 annotated hydrogenase catalytic subunits and also contains a detailed repository of physiological, biochemical, and structural information about the 38 hydrogenase classes defined here. The database and classifier are freely and publicly available at http://services.birc.au.dk/hyddb/ Microorganisms conserve energy by metabolizing H2. Oxidation of this high-energy fuel yields electrons that can be used for respiration and carbon-fixation. This diffusible gas is also produced in diverse fermentation and 1 anaerobic respiratory processes . H2 metabolism contributes to the growth and survival of microorganisms across the three domains of life, including chemotrophs and phototrophs, lithotrophs and heterotrophs, aerobes and 1,2 anaerobes, mesophiles and extremophiles alike . -
Hydrogenases of Methanogens
ANRV413-BI79-18 ARI 27 April 2010 21:0 Hydrogenases from Methanogenic Archaea, Nickel, a Novel Cofactor, and H2 Storage Rudolf K. Thauer, Anne-Kristin Kaster, Meike Goenrich, Michael Schick, Takeshi Hiromoto, and Seigo Shima Max Planck Institute for Terrestrial Microbiology, D-35043 Marburg, Germany; email: [email protected] Annu. Rev. Biochem. 2010. 79:507–36 Key Words First published online as a Review in Advance on H2 activation, energy-converting hydrogenase, complex I of the March 17, 2010 respiratory chain, chemiosmotic coupling, electron bifurcation, The Annual Review of Biochemistry is online at reversed electron transfer biochem.annualreviews.org This article’s doi: Abstract 10.1146/annurev.biochem.030508.152103 Most methanogenic archaea reduce CO2 with H2 to CH4. For the Copyright c 2010 by Annual Reviews. activation of H2, they use different [NiFe]-hydrogenases, namely All rights reserved energy-converting [NiFe]-hydrogenases, heterodisulfide reductase- 0066-4154/10/0707-0507$20.00 associated [NiFe]-hydrogenase or methanophenazine-reducing by University of Texas - Austin on 06/10/13. For personal use only. [NiFe]-hydrogenase, and F420-reducing [NiFe]-hydrogenase. The energy-converting [NiFe]-hydrogenases are phylogenetically related Annu. Rev. Biochem. 2010.79:507-536. Downloaded from www.annualreviews.org to complex I of the respiratory chain. Under conditions of nickel limitation, some methanogens synthesize a nickel-independent [Fe]- hydrogenase (instead of F420-reducing [NiFe]-hydrogenase) and by that reduce their nickel requirement. The [Fe]-hydrogenase harbors a unique iron-guanylylpyridinol cofactor (FeGP cofactor), in which a low-spin iron is ligated by two CO, one C(O)CH2-, one S-CH2-, and a sp2-hybridized pyridinol nitrogen. -
A Web Tool for Hydrogenase Classification and Analysis
bioRxiv preprint doi: https://doi.org/10.1101/061994; this version posted September 16, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 HydDB: A web tool for hydrogenase 2 classification and analysis 3 Dan Søndergaarda, Christian N. S. Pedersena, Chris Greeningb, c* 4 5 a Aarhus University, Bioinformatics Research Centre, C.F. Møllers Allé 8, Aarhus 6 DK-8000, Denmark 7 b The Commonwealth Scientific and Industrial Research Organisation, Land and 8 Water Flagship, Clunies Ross Street, Acton, ACT 2060, Australia 9 c Monash University, School of Biological Sciences, Clayton, VIC 2800, Australia 10 11 Correspondence: 12 Dr Chris Greening ([email protected]), Monash University, School of 13 Biological Sciences, Clayton, VIC 2800, Australia 14 Dan Søndergaard ([email protected]), Aarhus University, Bioinformatics Research 15 Centre, C.F. Møllers Allé 8, Aarhus DK-8000, Denmark 1 bioRxiv preprint doi: https://doi.org/10.1101/061994; this version posted September 16, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 16 Abstract 17 H2 metabolism is proposed to be the most ancient and diverse mechanism of 18 energy-conservation. The metalloenzymes mediating this metabolism, 19 hydrogenases, are encoded by over 60 microbial phyla and are present in all major 20 ecosystems. -
Artificial Models of Iron Hydrogenases for Their Potential Use in The
International Journal of Scientific and Research Publications, Volume 7, Issue 12, December 2017 262 ISSN 2250-3153 Artificial models of iron hydrogenases for their potential use in the generation of molecular hydrogen: a mini- review María de la Luz Pérez-Arredondo*, Ricardo González-Barbosa**, Juan Antonio Ramírez-Vázquez**, ** Jóse J. N. Segoviano-Garfias * Student of Master degree, División de Ciencias de la Vida. Universidad de Guanajuato. Campus Irapuato-Salamanca. Irapuato, Gto. México ** Departamento de Ciencias Ambientales. División de Ciencias de la Vida. Universidad de Guanajuato. Campus Irapuato-Salamanca. Irapuato, Gto. México Abstract- The mimicking of natural processes and the development of alternative methods to obtain clean fuels such as H2, have been of great interest in recent years. In nature, the hydrogenase enzymes at some bacteria and algae are responsible of the fermentation and biophotolysis processes. This class of enzymes performs the reduction of hydronium ions to molecular hydrogen. Due to the composition of its active site, the hydrogenase enzymes are classified as: [Fe-Ni], [Fe-Fe] and [Fe] -hydrogenases. The study of its active centers has allowed inspiring model compounds that promote the advance in the development of efficient catalysts for the generation of hydrogen. In this review, we present some complexes that have been studied as models to imitate the active centers of the hydrogenases. Also, we analyze some electronic properties that they present. The most commonly used methods to mimic hydrogenases are structural, spectral or functional. Some of the common metals for this purpose are iron, nickel or cobalt, among others. In order to obtain an accurate model of a hydrogenase enzyme, several properties of the metals and ligands used for the generation of a metallic complex should be considered. -
[Nife]-Hydrogenase Ingmar Bürstela,B, Elisabeth Siebertb, Stefan Frielingsdorfa,B, Ingo Zebgerb, Bärbel Friedricha, and Oliver Lenza,B,1
CO synthesized from the central one-carbon pool as source for the iron carbonyl in O2-tolerant [NiFe]-hydrogenase Ingmar Bürstela,b, Elisabeth Siebertb, Stefan Frielingsdorfa,b, Ingo Zebgerb, Bärbel Friedricha, and Oliver Lenza,b,1 aDepartment of Biology, Microbiology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany; and bDepartment of Chemistry, Biophysical Chemistry, Technische Universität Berlin, 10623 Berlin, Germany Edited by Harry B. Gray, California Institute of Technology, Pasadena, CA, and approved November 8, 2016 (received for review September 1, 2016) Hydrogenases are nature’s key catalysts involved in both microbial of the HypD and HypC proteins acts as scaffold for the assembly of consumption and production of molecular hydrogen. H2 exhibits a the Fe(CN)2(CO) entity of the active site (7, 8). The HypF and − strongly bonded, almost inert electron pair and requires transition HypE proteins deliver the CN ligands, which are synthesized metals for activation. Consequently, all hydrogenases are metal- from carbamoyl phosphate (9). Incorporation of the nickel is fa- loenzymes that contain at least one iron atom in the catalytic center. cilitated by the HypB and HypA proteins (10). However, source For appropriate interaction with H2, the iron moiety demands for a and synthesis of the active site CO ligand remained elusive. sophisticated coordination environment that cannot be provided Maturation studies on the O2-tolerant, energy-generating just by standard amino acids. This dilemma has been overcome by [NiFe]-hydrogenases in the facultative H2-oxidizing bacterium the introduction of unprecedented chemistry—that is, by ligating Ralstonia eutropha H16 indicate that at least two different meta- the iron with carbon monoxide (CO) and cyanide (or equivalent) bolic sources exist for CO ligand synthesis (11). -
And Solar-Driven Fuel Synthesis with First Row Transition Metal Complexes † † Kristian E
This is an open access article published under a Creative Commons Attribution (CC-BY) License, which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited. Review Cite This: Chem. Rev. 2019, 119, 2752−2875 pubs.acs.org/CR Electro- and Solar-Driven Fuel Synthesis with First Row Transition Metal Complexes † † Kristian E. Dalle, Julien Warnan, Jane J. Leung, Bertrand Reuillard, Isabell S. Karmel, and Erwin Reisner* Christian Doppler Laboratory for Sustainable SynGas Chemistry, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom ABSTRACT: The synthesis of renewable fuels from abundant water or the greenhouse gas CO2 is a major step toward creating sustainable and scalable energy storage technologies. In the last few decades, much attention has focused on the development of nonprecious metal-based catalysts and, in more recent years, their integration in solid-state support materials and devices that operate in water. This review surveys the literature on 3d metal-based molecular catalysts and focuses on their immobilization on heterogeneous solid-state supports for electro-, photo-, and photoelectrocatalytic synthesis of fuels in aqueous media. The first sections highlight benchmark homogeneous systems using proton and CO2 reducing 3d transition metal catalysts as well as commonly employed methods for catalyst immobilization, including a discussion of supporting materials and anchoring groups. The subsequent sections elaborate on productive associations between molecular catalysts and a wide range of substrates based on carbon, quantum dots, metal oxide surfaces, and semiconductors. The molecule−material hybrid systems are organized as “dark” cathodes, colloidal photocatalysts, and photocathodes, and their figures of merit are discussed alongside system stability and catalyst integrity. -
Reconstitution of [Fe]-Hydrogenase Using Model Complexes
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Infoscience - École polytechnique fédérale de Lausanne Reconstitution of [Fe]-hydrogenase using model complexes Seigo Shima1,2,*, Dafa Chen3, Tao Xu4, Matthew D. Wodrich4,5, Takashi Fujishiro1, Katherine M. Schultz4, Jörg Kahnt1, Kenichi Ataka6 & Xile Hu4,* 1Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany. 2PRESTO, Japan Science and Technology Agency (JST), 332-0012 Saitama, Japan. 3School of Chemical Engineering and Technology, Harbin Institute of Technology, 150001 Harbin, China. 4Laboratory of Inorganic Synthesis and Catalysis, Institute of Chemical Science and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland. 5Laboratory for Computational Molecular Design, Institute of Chemical Science and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland. 6Department of Physics, Freie Universität Berlin, 14195 Berlin, Germany. 1 Abstract. [Fe]-Hydrogenase catalyzes the reversible hydrogenation of a methenyl- tetrahydromethanopterin substrate, which is an intermediate step during methanogenesis from CO2 and H2. The active site contains an iron-guanylylpyridinol (FeGP) cofactor, in which Fe2+ is coordinated by two CO ligands, as well as an acyl carbon atom and a pyridinyl nitrogen atom from a 3,4,5,6-substituted 2-pyridinol ligand. However, the mechanism of H2 activation by [Fe]-hydrogenase is unclear. Here, we report reconstitution of [Fe]-hydrogenase from an apoenzyme using two FeGP cofactor mimics to create semi-synthetic enzymes. The small molecule mimics reproduce the ligand environment of the active site, but are inactive towards H2 binding and activation on their own. We show that reconstituting the enzyme using a mimic containing a 2-hydroxy pyridine group restores activity, whilst an analogous experiment with a 2-methoxy-pyridine complex was essentially inactive. -
Perspectives
PERSPECTIVES in a number of enzymes such as [FeFe]- hydrogenase, [FeNi]-hydrogenase, Natural inspirations for metal–ligand [Fe]-hydrogenase, lactate racemase and alcohol dehydrogenase. In this Perspective, cooperative catalysis we discuss these examples of biological cooperative catalysis and how, inspired by these naturally occurring systems, chemists Matthew D. Wodrich and Xile Hu have sought to create functional analogues. Abstract | In conventional homogeneous catalysis, supporting ligands act as We also speculate that cooperative catalysis spectators that do not interact directly with substrates. However, in metal–ligand may be at play in [NiFe]-carbon monoxide cooperative catalysis, ligands are involved in facilitating reaction pathways that dehydrogenase ([NiFe]-CODHase), which may inspire the design of synthetic CO2 would be less favourable were they to occur solely at the metal centre. This reduction catalysts making use of these catalysis paradigm has been known for some time, in part because it is at play motifs. Each section in the following in enzyme catalysis. For example, studies of hydrogenative and dehydrogenative discussion is devoted to an enzyme and its enzymes have revealed striking details of metal–ligand cooperative catalysis synthetic models. that involve functional groups proximal to metal active sites. In addition to [FeFe]- and [NiFe]-hydrogenase the more well-known [FeFe]-hydrogenase and [NiFe]-hydrogenase enzymes, Hydrogenases are enzymes that catalyse [Fe]-hydrogenase, lactate racemase and alcohol dehydrogenase each makes use (REF. 5) the production and utilization of H2 . of cooperative catalysis. This Perspective highlights these enzymatic examples of Three variants of hydrogenase enzymes exist metal–ligand cooperative catalysis and describes functional bioinspired which are named [FeFe]-, [NiFe]- and [Fe]-hydrogenase because their active molecular catalysts that also make use of these motifs. -
The Development of a Diiron Hydrogenase Mimic Catalyst for Efficient Dihydrogen Production
University of New Hampshire University of New Hampshire Scholars' Repository Master's Theses and Capstones Student Scholarship Spring 2017 THE DEVELOPMENT OF A DIIRON HYDROGENASE MIMIC CATALYST FOR EFFICIENT DIHYDROGEN PRODUCTION David S. Danico University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/thesis Recommended Citation Danico, David S., "THE DEVELOPMENT OF A DIIRON HYDROGENASE MIMIC CATALYST FOR EFFICIENT DIHYDROGEN PRODUCTION" (2017). Master's Theses and Capstones. 1112. https://scholars.unh.edu/thesis/1112 This Thesis is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Master's Theses and Capstones by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. THE DEVELOPMENT OF A DIIRON HYDROGENASE MIMIC CATALYST FOR EFFICIENT DIHYDROGEN PRODUCTION By David Scott Danico B.S., Worcester Polytechnic Institute, 2012 Thesis Submitted to the University of New Hampshire In Partial Fulfillment of the Requirement for the Degree of Master of Science In Chemistry May, 2017 This thesis has been examined and approved in partial fulfillment of the requirements for the degree of Master of Science in Chemistry by: Thesis Director, Samuel Pazicni, Associate Professor of Chemistry Christine Caputo, Assistant Professor of Chemistry Sterling Tomellini, Professor of Chemistry On April 14, 2017 Original approval signatures are on file with the University of New Hampshire Graduate School. Dedication To my parents, Scott and Susan, who have given me all their love, support, and encouragement throughout my academic career. -
Hydrogenase and Ferredoxin:NADP -Oxidoreductase (FNR)
Photosynthetic electron partitioning between [FeFe]- hydrogenase and ferredoxin:NADPþ-oxidoreductase (FNR) enzymes in vitro Iftach Yacobya,1, Sergii Pochekailova, Hila Toporikb, Maria L. Ghirardic, Paul W. Kingc,1, and Shuguang Zhanga,1 aCenter for Biomedical Engineering NE47-379, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307; cBiosciences Center, National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, CO 80401-3305; and bDepartment of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel Edited by Alan R. Fersht, Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom, and approved April 28, 2011 (receivedfor review March 5, 2011) Photosynthetic water splitting, coupled to hydrogenase-catalyzed hydrogen production, is considered a promising clean, renewable source of energy. It is widely accepted that the oxygen sensitivity of hydrogen production, combined with competition between hydrogenases and NADPH-dependent carbon dioxide fixation are the main limitations for its commercialization. Here we provide evi- dence that, under the anaerobic conditions that support hydrogen production, there is a significant loss of photosynthetic electrons toward NADPH production in vitro. To elucidate the basis for com- petition, we bioengineered a ferredoxin-hydrogenase fusion and characterized hydrogen production kinetics in the presence of Fd, ferredoxin:NADPþ-oxidoreductase (FNR), and NADPþ. Replacing the hydrogenase with a ferredoxin-hydrogenase fusion switched the bias of electron transfer from FNR to hydrogenase and resulted in an increased rate of hydrogen photoproduction. These results suggest a new direction for improvement of biohydrogen produc- tion and a means to further resolve the mechanisms that control partitioning of photosynthetic electron transport. -
NMR Characterization and Solution Structure Determination of the Oxidized Cytochrome C7 from Desulfuromonas Acetoxidans
Proc. Natl. Acad. Sci. USA Vol. 93, pp. 14396–14400, December 1996 Biochemistry NMR characterization and solution structure determination of the oxidized cytochrome c7 from Desulfuromonas acetoxidans LUCIA BANCI*, IVANO BERTINI*†,MIREILLE BRUSCHI‡,PORNTHEP SOMPORNPISUT*, AND PAOLA TURANO* *Department of Chemistry, University of Florence, Via Gino Capponi 7, 50121 Florence, Italy; and ‡Unite de Bioenergetique et d’Ingenierie des Proteins, Centre National de la Recherche Scientifique, 13402 Marseille Cedex, France Communicated by Harry B. Gray, California Institute of Technology, Pasadena, CA, August 13, 1996 (received for review May 6, 1996) ABSTRACT The solution structure of the three-heme meric class III c-type cytochrome containing three hemes. Its electron transfer protein cytochrome c7 from Desulfuromonas sequence is somewhat homologous to many tetraheme Cyt c3 acetoxidans is reported. The determination of the structure is from Desulfovibrio organisms (8, 9). The sequence of Cyt c7 obtained through NMR spectroscopy on the fully oxidized, from D. acetoxidans has been aligned with those of some Cyt paramagnetic form. The richness of structural motifs and the c3 (9). It was assumed that Cyt c7 has a deletion in the protein presence of three prosthetic groups in a protein of 68 residues segment binding heme II (residues 44–67); with this assump- is discussed in comparison with the four-heme cytochromes c3 tion the sequence homology is about 38% (10). Up to now no already characterized through x-ray crystallography. In par- explanation has been proposed for the reasons why one heme ticular, the orientation of the three hemes present in cyto- is missing in Cyt c7 with respect to Cyt c3.InCytc7, two of the chrome c7 is similar to that of three out of four hemes of heme groups have a reduction potential of 2177 mV and the cytochromes c3. -
Kinetic Mechanism of the Hydrogen-Oxidizing Hydrogenase from Soybean Nodule Bacteroids?
2234 Biochemistry 1981, 20, 2234-2240 Kinetic Mechanism of the Hydrogen-Oxidizing Hydrogenase from Soybean Nodule Bacteroids? Daniel J. Arp and Robert H. Burris* ABSTRACT: The kinetic mechanism of the unidirectional petitive vs. H2 and noncompetitive vs. methylene blue. Hyd- H2-oxidizing hydrogenase from soybean nodule bacteroids has rogenase was not inhibited by C2H2;preincubation under C2H2 been investigated with highly purified enzyme. Measurements inactivates the enzyme. Reduced methyl and benzyl viologens of the K, for H2 vary from 0.97 to 2.6 pM, and the K,,, for support low rates of H2 evolution by the hydrogenase. The methylene blue varies from 6 to 17 pM. With H2 and K, for reduced methyl viologen is 11 pM. H2 is a potent methylene blue as substrates, the initial velocity patterns are inhibitor of H2evolution: the inhibition is noncompetitive vs. intersecting. High levels of methylene blue are inhibitory (KI reduced methyl viologen. The hydrogenase will catalyze a low = 2.4 mM): the inhibition is competitive vs. H2. CO is a rate of exchange in the reaction between D2 and H20to form competitive inhibitor of H2 (KI= 157 pM) and noncompetitive both HD and H2. We propa two-site ping-pong mechanism vs. methylene blue. O2inactivates the enzyme (tl12- 1 h) but for the enzyme in which H2is reversibly activated at one site also is a reversible inhibitor of hydrogenase activity upon short and e- carriers interact at the second site. exposure to low concentrations. Inhibition by O2is uncom- Hydrogenase is an iron-sulfur protein that catalyzes the from soybean root nodules.