A Powerful Comparison of Deep Learning Frameworks for Arabic Sentiment Analysis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Intro to Tensorflow 2.0 MBL, August 2019
Intro to TensorFlow 2.0 MBL, August 2019 Josh Gordon (@random_forests) 1 Agenda 1 of 2 Exercises ● Fashion MNIST with dense layers ● CIFAR-10 with convolutional layers Concepts (as many as we can intro in this short time) ● Gradient descent, dense layers, loss, softmax, convolution Games ● QuickDraw Agenda 2 of 2 Walkthroughs and new tutorials ● Deep Dream and Style Transfer ● Time series forecasting Games ● Sketch RNN Learning more ● Book recommendations Deep Learning is representation learning Image link Image link Latest tutorials and guides tensorflow.org/beta News and updates medium.com/tensorflow twitter.com/tensorflow Demo PoseNet and BodyPix bit.ly/pose-net bit.ly/body-pix TensorFlow for JavaScript, Swift, Android, and iOS tensorflow.org/js tensorflow.org/swift tensorflow.org/lite Minimal MNIST in TF 2.0 A linear model, neural network, and deep neural network - then a short exercise. bit.ly/mnist-seq ... ... ... Softmax model = Sequential() model.add(Dense(256, activation='relu',input_shape=(784,))) model.add(Dense(128, activation='relu')) model.add(Dense(10, activation='softmax')) Linear model Neural network Deep neural network ... ... Softmax activation After training, select all the weights connected to this output. model.layers[0].get_weights() # Your code here # Select the weights for a single output # ... img = weights.reshape(28,28) plt.imshow(img, cmap = plt.get_cmap('seismic')) ... ... Softmax activation After training, select all the weights connected to this output. Exercise 1 (option #1) Exercise: bit.ly/mnist-seq Reference: tensorflow.org/beta/tutorials/keras/basic_classification TODO: Add a validation set. Add code to plot loss vs epochs (next slide). Exercise 1 (option #2) bit.ly/ijcav_adv Answers: next slide. -
Part Vi Neural Machine Translation, Seq2seq and Attention 2
CS224n: Natural Language Processing with Deep 1 Learning 1 Course Instructors: Christopher Lecture Notes: Part VI Manning, Richard Socher 2 Neural Machine Translation, Seq2seq and Attention 2 Authors: Guillaume Genthial, Lucas Liu, Barak Oshri, Kushal Ranjan Winter 2019 Keyphrases: Seq2Seq and Attention Mechanisms, Neural Machine Translation, Speech Processing 1 Neural Machine Translation with Seq2Seq So far in this class, we’ve dealt with problems of predicting a single output: an NER label for a word, the single most likely next word in a sentence given the past few, and so on. However, there’s a whole class of NLP tasks that rely on sequential output, or outputs that are sequences of potentially varying length. For example, • Translation: taking a sentence in one language as input and out- putting the same sentence in another language. • Conversation: taking a statement or question as input and re- sponding to it. • Summarization: taking a large body of text as input and out- putting a summary of it. In these notes, we’ll look at sequence-to-sequence models, a deep learning-based framework for handling these types of problems. This framework proved to be very effective, and has, in fewer than 3 years, become the standard for machine translation. 1.1 Brief Note on Historical Approaches In the past, translation systems were based on probabilistic models constructed from: •a translation model, telling us what a sentence/phrase in a source language most likely translates into •a language model, telling us how likely a given sentence/phrase is overall. These components were used to build translation systems based on words or phrases. -
Ways to Use Machine Learning Approaches for Software Development
Ways to use Machine Learning approaches for software development Nicklas Jonsson Nicklas Jonsson VT 2018 Examensarbete, 30 hp Supervisor: Eddie wadbro Extern Supervisor: C4 Contexture Examiner: Henrik Bjorklund¨ Master of Science Programme in Computing Science and Engineering, 300 hp Abstract With the rise of machine learning and in particular deep learning enter- ing all different types of fields, including software development. It could be a bit hard to know where to begin to search for the tools when some- one wants to use machine learning for a one’s problems. This thesis has looked at some available technologies of today for applying machine learning to one’s applications. This thesis has looked at some of the available cloud services, frame- works, and libraries for machine learning and it presents three different implementation structures that can be used with these technologies for the problem of image classification. Acknowledgements I want to thank C4 Contexture for giving me the thesis idea, support, and supplying me with a working station. I also want to thank Lantmannen¨ for supplying me with the image data that was used for this thesis. Finally, I want to thank Eddie Wadbro for his guidance during this thesis and of course a big thanks to my family and friends for their support during this period of my life. 1(45) Content 1 Introduction 3 1.1 The Client 3 1.1.1 C4 Contexture PIM software 4 1.2 The data 4 1.3 Goal 5 1.4 Limitation 5 2 Background 7 2.1 Artificial intelligence, machine learning and deep learning. -
Deep Transformer Models for Time Series Forecasting:The Influenza
Deep Transformer Models for Time Series Forecasting: The Influenza Prevalence Case Neo Wu 1 Bradley Green 1 Xue Ben 1 Shawn O’Banion 1 Abstract ods. Mechanistic modeling is based on the understanding of In this paper, we present a new approach to time underlying disease infection dynamics. For example, com- series forecasting. Time series data are preva- partmental methods such as SIR are popular approaches to lent in many scientific and engineering disciplines. simulating disease spreading dynamics. Time series forecasting is a crucial task in mod- Statistical and machine learning methods leverage the eling time series data, and is an important area ground truth data to learn the trends and patterns. One of machine learning. In this work we developed popular family of methods includes auto-regression (AR), a novel method that employs Transformer-based autoregressive moving average (ARMA), and autoregressive machine learning models to forecast time series integrated moving average (ARIMA). Additionally, deep data. This approach works by leveraging self- learning approaches based on convolutional and recurrent attention mechanisms to learn complex patterns neural networks have been developed to model ILI data. and dynamics from time series data. Moreover, These sequence-aligned models are natural choices for mod- it is a generic framework and can be applied to eling time series data. However, due to “gradient vanishing univariate and multivariate time series data, as and exploding” problems in RNNs and the limits of convo- well as time series embeddings. Using influenza- lutional filters, these methods have limitations in modeling like illness (ILI) forecasting as a case study, we long-term and complex relations in the sequence data. -
Keras2c: a Library for Converting Keras Neural Networks to Real-Time Compatible C
Keras2c: A library for converting Keras neural networks to real-time compatible C Rory Conlina,∗, Keith Ericksonb, Joeseph Abbatec, Egemen Kolemena,b,∗ aDepartment of Mechanical and Aerospace Engineering, Princeton University, Princeton NJ 08544, USA bPrinceton Plasma Physics Laboratory, Princeton NJ 08544, USA cDepartment of Astrophysical Sciences at Princeton University, Princeton NJ 08544, USA Abstract With the growth of machine learning models and neural networks in mea- surement and control systems comes the need to deploy these models in a way that is compatible with existing systems. Existing options for deploying neural networks either introduce very high latency, require expensive and time con- suming work to integrate into existing code bases, or only support a very lim- ited subset of model types. We have therefore developed a new method called Keras2c, which is a simple library for converting Keras/TensorFlow neural net- work models into real-time compatible C code. It supports a wide range of Keras layers and model types including multidimensional convolutions, recurrent lay- ers, multi-input/output models, and shared layers. Keras2c re-implements the core components of Keras/TensorFlow required for predictive forward passes through neural networks in pure C, relying only on standard library functions considered safe for real-time use. The core functionality consists of ∼ 1500 lines of code, making it lightweight and easy to integrate into existing codebases. Keras2c has been successfully tested in experiments and is currently in use on the plasma control system at the DIII-D National Fusion Facility at General Atomics in San Diego. 1. Motivation TensorFlow[1] is one of the most popular libraries for developing and training neural networks. -
Deep Learning
CSI 436/536 Introduction to Machine Learning Deep Learning Professor Siwei Lyu Computer Science University at Albany, State University of New York the up and downs of NN • first high wave 1960s: simple one layer perceptron CHAPTER• first 1. INTRODUCTION down wave 1970s: show of limitations of one layer perception • second high wave 1980s: development of BP and many uses (and abuses) • second down wave late 1990s to 2006: overfitting problem and vanishing gradient 0.000250 cybernetics 0.000200 (connectionism + neural networks) 0.000150 0.000100 0.000050 Frequency of Word0.000000 or Phrase 1940 1950 1960 1970 1980 1990 2000 Year Figure 1.7: The figure shows two of the three historical waves of artificial neural nets research, as measured by the frequency of the phrases “cybernetics” and “connectionism” or “neural networks” according to Google Books (the third wave is too recent to appear). The first wave started with cybernetics in the 1940s–1960s, with the development of theories of biological learning (McCulloch and Pitts, 1943; Hebb, 1949)andimplementationsof the first models such as the perceptron (Rosenblatt, 1958) allowing the training of a single neuron. The second wave started with the connectionist approach of the 1980–1995 period, with back-propagation (Rumelhart et al., 1986a) to train a neural network with one or two hidden layers. The current and third wave, deep learning, started around 2006 (Hinton et al., 2006; Bengio et al., 2007; Ranzato et al., 2007a), and is just now appearing in book form as of 2016. The other two waves similarly appeared in book form much later than the corresponding scientific activity occurred. -
Autograph: Imperative-Style Coding with Graph-Based Performance
AUTOGRAPH:IMPERATIVE-STYLE CODING WITH GRAPH-BASED PERFORMANCE Dan Moldovan 1 James M Decker 2 Fei Wang 2 Andrew A Johnson 1 Brian K Lee 1 Zachary Nado 1 D Sculley 1 Tiark Rompf 2 Alexander B Wiltschko 1 ABSTRACT There is a perceived trade-off between machine learning code that is easy to write, and machine learning code that is scalable or fast to execute. In machine learning, imperative style libraries like Autograd and PyTorch are easy to write, but suffer from high interpretive overhead and are not easily deployable in production or mobile settings. Graph-based libraries like TensorFlow and Theano benefit from whole-program optimization and can be deployed broadly, but make expressing complex models more cumbersome. We describe how the use of staged programming in Python, via source code transformation, offers a midpoint between these two library design patterns, capturing the benefits of both. A key insight is to delay all type-dependent decisions until runtime, similar to dynamic dispatch. We instantiate these principles in AutoGraph, a software system that improves the programming experience of the TensorFlow library, and demonstrate usability improvements with no loss in performance compared to native TensorFlow graphs. We also show that our system is backend agnostic, targeting an alternate IR with characteristics not found in TensorFlow graphs. 1 PROGRAMMING PARADIGMS FOR code directly, building up a representation of the user’s pro- MACHINE LEARNING gram incrementally for either automatic differentiation or compilation. TensorFlow also supports imperative-style cod- Programming platforms specialized for machine learning ing via “eager execution”, where user-written Python code (ML) are undergoing widespread adoption, as ML mod- immediately executes TensorFlow kernels, without a graph els such as neural networks demonstrate state-of-the-art being built. -
Tensorflow, Theano, Keras, Torch, Caffe Vicky Kalogeiton, Stéphane Lathuilière, Pauline Luc, Thomas Lucas, Konstantin Shmelkov Introduction
TensorFlow, Theano, Keras, Torch, Caffe Vicky Kalogeiton, Stéphane Lathuilière, Pauline Luc, Thomas Lucas, Konstantin Shmelkov Introduction TensorFlow Google Brain, 2015 (rewritten DistBelief) Theano University of Montréal, 2009 Keras François Chollet, 2015 (now at Google) Torch Facebook AI Research, Twitter, Google DeepMind Caffe Berkeley Vision and Learning Center (BVLC), 2013 Outline 1. Introduction of each framework a. TensorFlow b. Theano c. Keras d. Torch e. Caffe 2. Further comparison a. Code + models b. Community and documentation c. Performance d. Model deployment e. Extra features 3. Which framework to choose when ..? Introduction of each framework TensorFlow architecture 1) Low-level core (C++/CUDA) 2) Simple Python API to define the computational graph 3) High-level API (TF-Learn, TF-Slim, soon Keras…) TensorFlow computational graph - auto-differentiation! - easy multi-GPU/multi-node - native C++ multithreading - device-efficient implementation for most ops - whole pipeline in the graph: data loading, preprocessing, prefetching... TensorBoard TensorFlow development + bleeding edge (GitHub yay!) + division in core and contrib => very quick merging of new hotness + a lot of new related API: CRF, BayesFlow, SparseTensor, audio IO, CTC, seq2seq + so it can easily handle images, videos, audio, text... + if you really need a new native op, you can load a dynamic lib - sometimes contrib stuff disappears or moves - recently introduced bells and whistles are barely documented Presentation of Theano: - Maintained by Montréal University group. - Pioneered the use of a computational graph. - General machine learning tool -> Use of Lasagne and Keras. - Very popular in the research community, but not elsewhere. Falling behind. What is it like to start using Theano? - Read tutorials until you no longer can, then keep going. -
Convolutional Attention-Based Seq2seq Neural Network for End-To-End ASR
Thesis for the Degree of Master Convolutional Attention-based Seq2Seq Neural Network for End-to-End ASR by Dan Lim Department of Computer Science and Engineering Korea University Graduate School arXiv:1710.04515v1 [cs.CL] 12 Oct 2017 Abstract Traditional approach in artificial intelligence (AI) have been solving the problem that is difficult for human but relatively easy for computer if it could be formulated as mathematical rules or formal languages. However, their symbol, rule-based approach failed in the problem where human being solves intuitively like image recognition, natural language understanding and speech recognition. Therefore the machine learning, which is subfield of AI, have tackled this intuitive problems by making the computer learn from data automatically instead of human efforts of extracting complicated rules. Especially the deep learning which is a particular kind of machine learning as well as central theme of this thesis, have shown great popularity and usefulness recently. It has been known that the powerful computer, large dataset and algo- rithmic improvement have made recent success of the deep learning. And this factors have enabled recent research to train deeper network achieving significant performance improvement. Those current research trends moti- vated me to quest deeper architecture for the end-to-end speech recognition. In this thesis, I experimentally showed that the proposed deep neural net- work achieves state-of-the-art results on `TIMIT' speech recognition bench- mark dataset. Specifically, the convolutional attention-based sequence-to- sequence model which has the deep stacked convolutional layers in the attention-based seq2seq framework achieved 15.8% phoneme error rate. -
Deep Learning with Keras I
Deep Learning with Keras i Deep Learning with Keras About the Tutorial Deep Learning essentially means training an Artificial Neural Network (ANN) with a huge amount of data. In deep learning, the network learns by itself and thus requires humongous data for learning. In this tutorial, you will learn the use of Keras in building deep neural networks. We shall look at the practical examples for teaching. Audience This tutorial is prepared for professionals who are aspiring to make a career in the field of deep learning and neural network framework. This tutorial is intended to make you comfortable in getting started with the Keras framework concepts. Prerequisites Before proceeding with the various types of concepts given in this tutorial, we assume that the readers have basic understanding of deep learning framework. In addition to this, it will be very helpful, if the readers have a sound knowledge of Python and Machine Learning. Copyright & Disclaimer Copyright 2019 by Tutorials Point (I) Pvt. Ltd. All the content and graphics published in this e-book are the property of Tutorials Point (I) Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish any contents or a part of contents of this e-book in any manner without written consent of the publisher. We strive to update the contents of our website and tutorials as timely and as precisely as possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt. Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our website or its contents including this tutorial. -
Setting up Your Environment for the TF Developer Certificate Exam
Set up your environment to take the TensorFlow Developer Ceicate Exam Questions? Email [email protected]. Last Updated: June 23, 2021 This document describes how to get your environment ready to take the TensorFlow Developer Ceicate exam. It does not discuss what the exam is or how to take it. For more information about the TensorFlow Developer Ceicate program, please go to tensolow.org/ceicate. Contents Before you begin Refund policy Install Python 3.8 Install PyCharm Get your environment ready for the exam What libraries will the exam infrastructure install? Make sure that PyCharm isn't subject to le-loading controls Windows and Linux Users: Check your GPU drivers Mac Users: Ensure you have Python 3.8 All Users: Create a Test Viual Environment that uses TensorFlow in PyCharm Create a new PyCharm project Install TensorFlow and related packages Check the suppoed version of Python in PyCharm Practice training TensorFlow models Setup your environment for the TensorFlow Developer Certificate exam 1 FAQs How do I sta the exam? What version of TensorFlow is used in the exam? Is there a minimum hardware requirement? Where is the candidate handbook? Before you begin The TensorFlow ceicate exam runs inside PyCharm. The exam uses TensorFlow 2.5.0. You must use Python 3.8 to ensure accurate grading of your models. The exam has been tested with Python 3.8.0 and TensorFlow 2.5.0. Before you sta the exam, make sure your environment is ready: ❏ Make sure you have Python 3.8 installed on your computer. ❏ Check that your system meets the installation requirements for PyCharm here. -
Tensorflow and Keras Installation Steps for Deep Learning Applications in Rstudio Ricardo Dalagnol1 and Fabien Wagner 1. Install
Version 1.0 – 03 July 2020 Tensorflow and Keras installation steps for Deep Learning applications in Rstudio Ricardo Dalagnol1 and Fabien Wagner 1. Install OSGEO (https://trac.osgeo.org/osgeo4w/) to have GDAL utilities and QGIS. Do not modify the installation path. 2. Install ImageMagick (https://imagemagick.org/index.php) for image visualization. 3. Install the latest Miniconda (https://docs.conda.io/en/latest/miniconda.html) 4. Install Visual Studio a. Install the 2019 or 2017 free version. The free version is called ‘Community’. b. During installation, select the box to include C++ development 5. Install the latest Nvidia driver for your GPU card from the official Nvidia site 6. Install CUDA NVIDIA a. I installed CUDA Toolkit 10.1 update2, to check if the installed or available NVIDIA driver is compatible with the CUDA version (check this in the cuDNN page https://docs.nvidia.com/deeplearning/sdk/cudnn-support- matrix/index.html) b. Downloaded from NVIDIA website, searched for CUDA NVIDIA download in google: https://developer.nvidia.com/cuda-10.1-download-archive-update2 (list of all archives here https://developer.nvidia.com/cuda-toolkit-archive) 7. Install cuDNN (deep neural network library) – I have installed cudnn-10.1- windows10-x64-v7.6.5.32 for CUDA 10.1, the last version https://docs.nvidia.com/deeplearning/sdk/cudnn-install/#install-windows a. To download you have to create/login an account with NVIDIA Developer b. Before installing, check the NVIDIA driver version if it is compatible c. To install on windows, follow the instructions at section 3.3 https://docs.nvidia.com/deeplearning/sdk/cudnn-install/#install-windows d.