ENGINEERING AND OPTIMIZING FUNCTIONALIZED T4 BACTERIOPHAGE FOR DIAGNOSTIC AND THERAPEUTIC APPLICATIONS

A Dissertation Presented to the Faculty of the Graduate School of Cornell University In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Michelle Minh Duong December 2020

© 2020 Michelle Minh Duong

ENGINEERING AND OPTIMIZING FUNCTIONALIZED T4 BACTERIOPHAGE FOR DIAGNOSTIC AND THERAPEUTIC APPLICATIONS

Michelle Minh Duong, Ph. D. Cornell University 2020

ABSTRACT

Food and waterborne pathogens are the leading causes of illnesses worldwide. However, the

current protocols for pathogen detection are expensive and time consuming. Bacteriophages

(phages) are viruses that selectively infect bacterial species, resulting in lysis and self-propagation

in a targeted and efficient manner. Therefore, using phages as a new bacterial detection platform

reduces cost and time and improves detection specificity. The T4 phage has a broad host range for detecting E. coli, making it an ideal candidate to engineer for use as a biorecognition element.

However, the T4 phage genome is complex and has compounded modifications such as cytosine hydroxylmethylation and glucosylation; thus, classical phage engineering approaches are ineffective or inefficient in permitting insertions of reporter probes or modifications of host range.

Here, the CRISPR- system is adapted to mediate genome engineering of the T4 phage, resulting in >99% editing efficiency. Furthermore, reporter T4 phage were transcriptionally optimized, resulting in a 6-fold increase in the output signal, a marked improvement of phage- based bio-detection platform.

BIOGRAPHICAL SKETCH

Michelle Minh Duong is a PhD holder from the Department of Food Science at Cornell

University specializing in bioengineering and . Born in a small fishing village in

Vietnam, Michelle has been driven from an early age by a love of learning and experimenting.

From ages 5-9, she recovered broken VCRs and TVs from junkyards and would harvest parts to

assemble fully working units so her mother could resell them. In her formative years in the United

States, she collected over 20 trophies at the science fair for her design and fabrication of the best

engineered airplane, most accurate trebuchet, fastest balloon cart, and so forth. She would like to

say that this led to a successful engineering career working for NASA building rockets and spaceships, but alas, she was lured into becoming a bioengineering research scientist career for good or ill.

At a young age, Michelle came to the United States with her single mother and settled in

New York City. She underwent a rapid and bumpy acclimation to U.S. culture, trebuchet engineering impressing her friends and teachers notwithstanding, but despite this, Michelle persevered through her formative years in the Big Apple and graduated top of her high school class. She decamped a few miles north for Vassar College in Poughkeepsie, New York, where she graduated with honors and research distinction in Chemistry.

Finally resisting the urges of New York state, Michelle took a job after graduation with the

Thomas Jefferson University Hospital in Philadelphia as a clinical research specialist within the

Korman Lung Center. Her love for learning and research was converted into a love for translational research via the adapting of basic science discoveries and knowledge to applications that improved human health during her time at Thomas Jefferson. This motivated her to pursue a PhD with Dr.

Sam Nugen in Cornell University’s Food Science Department.

During her PhD candidacy, Michelle worked to develop cost effective and rapid diagnostic tools to detect food-borne and water-borne pathogens in low-resource settings. Her work was included in a successful collaborative field test with Gates Ventures in Kenya to detect E. coli in drinking water, which pleased her engineering background to see that her research was applied in a practical and useful way that achieved real world permanence. Aside from her research, Michelle served as a graduate student ambassador for Cornell and a philanthropy student ambassador for the Department of Food Science, in which she liaised in both roles with industry partners on behalf of her department and the university.

Beyond being a productive and focused scientist, Michelle enjoys reproducing recipes from various Michelin-starred restaurants that she visited, usually with delicious fruit and vegetable inputs from her gardening work that she shares with friends and family. She is also a fearless skydiver, something her husband took egregious advantage of in proposing to her at the landing of one of their jumps. Lastly, Michelle still tries to do her best to impart her love of research to others and engages in STEM-related community outreach to elementary school students, especially female students of color.

Michelle currently lives in the San Francisco Bay Area with her beloved husband and adopted dog, Eloise.

MICHELLE MINH DUONG 204 Stocking Hall Ithaca, NY 14853 [email protected]

EDUCATION 12/2020 PhD, Cornell University, Ithaca, NY 14853 Specializing in Bioengineering Microbiology, and Food Safety Department of Food Science 05/2012 B.A., Vassar College, Poughkeepsie, NY 12604 Structural Chemistry with honors Department of Chemistry

POSITIONS HELD Timeline Title Affiliation 2015-2020 Graduate Research Cornell University, Department of Food Assistant Science 2017-2018 Food Safety and Strategy Cornell SMART – Dirkosh Consultant 2016-2018 President of Food Science Cornell University Product Development Club 2016-2017 PhD Student Representative Cornell University, Department of Food Science Fall 2017 Teaching Assistant-Kosher, Cornell University, Department of Food Halal, and Food Regulation Science Summer Research Development and Mondelez International 2017 Quality Intern Spring 2017 Teaching Assistant-Wine Cornell University, Department of Food Microbiology Science 2013- 2015 Senior Editor and Boat People SOS Immigration Center- Translator Philadelphia Chapter 2013-2015 Pulmonary Research Thomas Jefferson University Hospital, Specialist Center for Translational Medicine 2013-2015 Advisor of Student Life and University of Pennsylvania, Housing Director Office of Sorority and Fraternity 2012-2013 Adjunct Instructor of Pennsylvania Institute of Technology, Chemistry Department of Chemistry 2011 U RSI Research Fellow University Roma Tre, Rome, Italy 2011-2012 Chemistry Major Vassar College, Department of Chemistry Committee Chair 2010 Supplemental Student Vassar College, Department of Chemistry Instructor 2009-2011 Assistant Teacher Wimpfheimer Nursery School 2009 Structural Chemistry Vassar College, Department of Chemistry Research Intern

HONORS AND AWARDS Year Award Affiliation 2019- USDA-NIFA Predoctoral United States Department of Agriculture 2021 Fellowship 2019 Unilever Graduate Award Unilever

2019 3M Thesis Competition-3rd Cornell University – Cornell Graduate School Place 2019 CIFS Industry Partners Cornell Institute for Food Systems Industry Fellowship Partnership Program 2018 Deep Amin Fellowship Cornell University – Department of Food Science

2018 The Kosi Award Cornell University – Department of Food Science

2018 Vitasoy and Lo Fellowship Cornell University – Department of Food Science - Vitasoy and Lo Fellowship 2018 Kinsella Memorial Award Cornell University – Department of Food Science - John E. Kinsella Fund 2017 Community Engagement Cornell Community-Engaged Student Travel Grant Travel Grant Program 2017 Excellence in Food Science Western New York Food Institute of Food Technology 2017 30 under 30-Young Female in Cathedral High School, The Archdiocese of New Science York 2016 Grand Prize New Dairy Product Innovation Competition

2016 2nd prize American Society of Baking Product Development Competition 2015 Dean’s Excellence Graduate Cornell University – Cornell Graduate School Fellowship 2014 Jefferson Honors Thomas Jefferson University Hospital 2012 The Olive M. Lambert Prize Vassar College – Department of Chemistry for Excellence in Chemistry 2012 Competitive Travel Award The American Society for Biochemistry and Molecular Biology in San Diego, CA 2011 Undergraduate Award in The American Chemical Society Inorganic Chemistry 2011 Competitive Travel Award The American Society for Biochemistry and Molecular Biology in Washington, DC

2010 The Howard Hughes Howard Hughes Medical Institute Collaborative Undergraduate Research Award 2009- The Sherman Fairchild The Sherman Fairchild Foundation 2011 Foundation Award 2010 The Dean’s Academic Vassar College Enrichment Award 2008- Questbridge Scholar The QuestBridge Foundation; awarded for 2012 academic excellence and leadership potential excellence and leadership potential

2008 The New York Times The New York Times Scholarship Finalist

PEER-REVIEWED PUBLICATIONS

1. M. Duong, C. Carmody, Q. Ma, J. Peters, S. Nugen. Optimization of T4 phage engineering via CRISPR/Cas9. 2020. Scientific Reports. In Press. 2. M. Duong, C. Carmody, S. Nugen. Phage-based biosensors: In vivo Analysis of Native T4 Phage Promoters to Enhance Reporter Enzyme Expression. 2020. Analyst. 145, 6291-6297. 3. H. Zurier, M. Duong, S. Nugen. Engineering Biorthogonal Phage-Based Nanobots for Ultrasensitive, In Situ Bacteria Detection. 2020. ACS Applied Bio Materials. 3:9, 5824- 5831. 4. D. Shah, F. Romero, M. Duong, N. Wang, B. Paudyal, B.T. Suratt, C.B. Kallen, J. Sun, Y. Zhu, K. Walsh, R. Summer. Obesity-induced adipokine imbalance impairs mouse pulmonary vascular endothelial function and primes the lung for injury. 2015. Scientific Reports. 5, 11362: 1-13. 5. D. Shah, F. Romero, Y. Zhu, M. Duong, J. Sun, K. Walsh, R. Summer, C1q Deficiency Promotes Pulmonary Vascular Inflammation and Enhances the Susceptibility of the Lung Endothelium to Injury. 2015. J. Biol. Chem. 290, 29642-29651. 6. F. Romero, D. Shah, M. Duong, R. Penn, M. Fessler, J. Madenspacher, W. Stafstrom, M. Kavuru, B. Lu, C. Kallen, K. Walsh, R. Summer. A pneumocyte-macrophage paracrine lipid axis drives the lung toward fibrosis. 2014. Am J Respir Cell Mol Biol. 53:1, 74-86. 7. D. Shah, F. Romero, W. Stafstrom, M. Duong, R. Summer, Extracellular ATP mediates the late phase of neutrophil recruitment to the lung in murine models of acute lung injury. 2014. Am J Physiol Lung Cell Mol Physiol. 306: L152–L161. 8. S. Belli, M.Rossi, N. Molasky, L. Middleton, M. Duong, E. Gibbs, A. Caldwell, F. Caruso. Effective and Novel Application of Hydrodynamic Voltammetry to the Study of Superoxide Radical Scavenging by Natural Phenolic Antioxidants. 2019. Antioxidants. 4, 8(1):14. 9. M. Rossi, F. Caruso, E. Crespi, J. Pedersen, G. Nakano, M. Duong, C. Mckee, S. Lee, M. Jiwrajka, C. Caldwell, F. Baffour , D. Karlin, G. Lidoff, S. Leone, V. Balducci , J. Miler,

S. Incerpi. Probing antioxidant activity of 2-hydroxychalcones: Crystal and molecular structures, in vitro antiproliferative studies and in vivo effects on glucose regulation. 2013. Biochimie. 95(10):1954-63. 10. M. Rossi, M. Duong, F. Caruso, How many molecules can you crystallize in one experiment? The role of hydrogen bonding in chalcone-flavanone isomerization. 2011. Acta Crystallography. A67, C665. 11. M. Duong, J. Tanski, 4-Bromo-N -(4-bromophenyl)aniline. 2011. Acta Crystallography. E67, o755.

SELECTED ABSTRACTS & CONFERENCE PRESENTATIONS

M. Duong, S. Nugen. Efficient Engineering of T4-nanoluc Bacteriophage via CRISPR-Cas9. National Meeting-American Chemical Society, San Diego Convention Center, San Diego, CA – August 24th, 2019.

M. Duong, S. Nugen. Bacteriophage-based nanoprobes enable rapid and low cost testing for Escherichia coli in drinking water. National Meeting-American Chemical Society, San Diego Convention Center, San Diego, CA – August 27th, 2019.

C. Carmody, M. Duong, S. Nugen. Engineering Bacteriophage T4 for a Magnetic Cellulose Particle Delivered Biosensor. 23rd Biennial Evergreen International Phage Meeting. Evergreen State College, Olympia, WA – August 4th , 2019.

M. Duong, F. Caruso, M. Rossi. Relating X-ray structure to measured antioxidant activity on natural compounds using cyclic voltammetry. Mid-Hudson American Chemical Society Undergraduate Research Symposium, Bard College – April 23, 2010.

M. Duong, M. Jiwrajka, F. Caruso, J. Pedersen, S. Incerpi, M. Rossi. Understanding The Chemical Biology Of Plant Antioxidants: Experimental, Theoretical And Biological Studies On 2,2’,5’- Trihydroxychalcone Activity. Italian-Indian Conference, Chemistry and Biology of Antioxidants, New Delhi, India – November 2010.

M. Rossi, M. Duong, S. Belli, F. Caruso. Antioxidant and free radical scavenging properties of natural products as studied by cyclic voltammetry: method development and results. Italian- Indian Conference, Chemistry and Biology of Antioxidants, New Delhi, India – November 2011.

M. Duong, K. Susman, F. Caruso, M. Rossi. Experimental Studies On The Antioxidant Effects Of Chalcone On Oxidatively Stressed Caenorhabditis Elegans. ASBMB Annual Meeting 2012, San Diego, CA – April 21, 2012.

D. Shah, M. Duong, F. Romero, W. Stafstrom, R. Summer. Extracellular ATP Regulates the Late Phase of Neutrophil Recruitment to the Lung After LPS Induced Injury. Conference on Obesity and Metabolic Diseases, University of Vermont, Burlington, VT – September 30, 2013.

D. Shah, M. Duong, F. Romero, W. Stafstrom, R. Summer. Obesity Predisposes to the Development of LPS-Induced Acute Lung Injury in Mice. Conference on Obesity and Metabolic Diseases, University of Vermont, Burlington, VT – September 30, 2013.

F. Romero, M. Duong, D. Shah, G. George, W. Stafstrom, R. Summer. Silica Promotes Endoplasmic Reticulum Stress and Induces Alveolar Epithelial Apoptotic Cell Death in the Lung. American College of Chest Physicians Conference, Austin Convention Center, Austin, TX – October 29, 2014.

DEDICATION

To my future children, may you always chase knowledge gleefully and look back satisfied at the path that took you to where you are now.

xi

ACKNOWLEDGMENTS

My PhD would have not been possible without the guidance of my advisor, Professor Sam Nugen, who gave me a second chance at pursuing my passion for scientific research. I would like to also thank my committee member Dr. Joe Peters for being a patient and kind teacher, especially when science is just plain hard and confusing. Thank you as well to Dr. Randy Worobo, for his witty comments and positivity. Thank you to Dr. Joe Regenstein aka my ice cream buddy, for his friendship and piercing yet entertaining questions at the graduate student seminars. I would like to thank the staff within the food science department for making this journey more memorable; thank you, Janette, Erin, Shawna, Karen, and Matt, for your administrative support. I am also grateful for the many friendships made during this journey; thank you, Brenda, Shaun, Jer Lin, Jiai, Yifan, Thuy Tien, Linran, Andreea, Pedro, Hoang, Emily, Ola, Hanyu, Emma, Johnson, Jan, Mark, Juhong, Mariely and many others who have made this scientific pursuit more refreshing. This journey would have not begun if not for the mentorship and encouragement from my college advisor, Professor Miriam Rossi. I would like to express my deepest gratitude to my family for all the sacrifices that they have made so that I can freely pursuit my passion. And most importantly my husband, Ben, who helped navigate me through this challenging process and never failed to provide cheer and comfort.

xii

Table of Contents ABSTRACT ...... iii BIOGRAPHICAL SKETCH ...... iv DEDICATION ...... xi ACKNOWLEDGMENTS ...... xii LIST OF TABLES ...... xv LIST OF FIGURES ...... xvi CHAPTER 1 ...... 18 OVERCOMING THE LIMITATIONS OF ENGINEERING PHAGES ...... 18 METHODS FOR ENGINEERING PHAGES ...... 20 Homologous Recombination ...... 20 Lambda Red Recombination...... 21 In Vitro Assembly of Phage Genome ...... 21 CRISPR-Cas Mediated Phage Engineering ...... 22 REFERENCES ...... 26 CHAPTER 2 ...... 29 OPTIMIZATION OF T4 PHAGE ENGINEERING VIA CRISPR/CAS9 ...... 29 ABSTRACT ...... 29 INTRODUCTION ...... 30 MATERIALS AND METHODS ...... 33 Cultures, Materials, and Reagents ...... 33 crRNAs Design and CRISPR/Cas9 Targeting Plasmids ...... 33 Donor Plasmid Construction ...... 34 Efficiency of Plating ...... 34 Homologous Recombination Rate Screening ...... 34 ImageJ Analysis ...... 35 RESULTS AND DISCUSSION ...... 35 CRISPR/Cas9 plasmid selection ...... 35 Scoring methods...... 37 CONCLUSION ...... 43 REFERENCES ...... 45 CHAPTER 3 ...... 48 PHAGE-BASED BIOSENSORS: IN VIVO ANALYSIS OF NATIVE T4 PHAGE PROMOTERS TO ENHANCE REPORTER ENZYME EXPRESSION ...... 48 ABSTRACT ...... 48

xiii

INTRODUCTION ...... 49 MATERIALS AND METHODS ...... 52 Bacteria, phage and plasmids ...... 52 Materials and reagents ...... 52 Donor plasmid construction ...... 52 Recombinant phage construction ...... 53 Luminescent assay procedure ...... 54 RESULTS AND DISCUSSION ...... 54 Selection Criteria of T4 Promoters ...... 54 Vector Design to Evaluate T4 Promoters ...... 55 Evaluation of Promoter Strength Based on Luminescence ...... 57 CONCLUSION ...... 59 REFERENCES ...... 61 CHAPTER 4 ...... 63 GENOME SEQUENCE OF ENTEROBACTERIA PHAGE Mi ...... 63 Phage Propagation ...... 63 Phage Genome Extraction and WGS ...... 63 Mi Genomic Characteristics— ...... 64 Mi ASSEMBLY...... 69 APPENDIX ...... 113 Supplementary Materials ...... 113 CHAPTER 2 ...... 113 CHAPTER 3 ...... 122

xiv

LIST OF TABLES

TABLE 3. 1. PROMOTER SELECTION TABLE ...... 54

TABLE 4. 1. CODING GENES OF THE MI PHAGE PREDICTED VIA BIOINFORMATIC ANALYSIS...... 64

TABLE 4. 2. TRNAS IDENTIFIED WITHIN THE MI PHAGE GENOME...... 68

xv

LIST OF FIGURES

FIGURE 2. 1. CRISPR/CAS9 T4 PHAGE ENGINEERING WORKFLOW. CANDIDATE CRRNAS TARGETING THE T4 GENE OF INTEREST WERE VALIDATED BY A PLAQUE ASSAY. THE MOST EFFECTIVE CRRNA WAS SELECTED BASED ON LARGEST REDUCTION IN EFFICIENCY OF PLATING (EOP) AND INSERTED INTO THE SYNTHETIC CRISPR ARRAY IN PCRISPR. THE DONOR INSERT WAS DESIGNED TO CONTAIN A REPORTER GENE FLANKED BY REGIONS OF HOMOLOGY TO THE CRRNA RECOGNITION SEQUENCE AND CLONED INTO PCRISPR. A STRAIN CONTAINING PCAS9 AND PCRISPR WAS INFECTED WITH T4 PHAGES. CRISPR/CAS9-MEDIATED T4 GENOME CLEAVAGE FOLLOWED BY HOMOLOGOUS RECOMBINATION WITH THE DONOR PLASMID RESULTED IN GENOMIC INCORPORATION OF THE REPORTER GENE. NANOGLO SCREENING WAS USED FOR LUMINESCENT DETECTION OF RECOMBINANT PHAGES BY ADDITION OF THE REPORTER ENZYME SUBSTRATE TO PHAGE PLAQUES...... 32

FIGURE 2. 2. DOENCH SCORING IS NOT A GOOD PREDICTIVE MEASUREMENT FOR SELECTING EFFECTIVE CRRNAS. EXPERIMENTAL EFFICACY OF DNA CLEAVAGE VIA EOP AS EVALUATED IN THE SOC, HOC, GP36, AND GP38 GENES IN T4 PHAGES DOES NOT ALIGN WITH THEORETICAL PROJECTION. A) DOENCH SCORING (0-1) TO THEORETICALLY ASSESS CRRNAS ON-TARGET ACTIVITY AND OFF-TARGET SITES IN WHICH VALUES CLOSER TO 1 RESEMBLE THE MOST POTENT CRRNA. THE CRRNAS ARE RANKED IN DESCENDING EFFICACY ORDER. B) VALIDATION OF THE CRRNAS’ THEORETICAL SELECTION VIA PLAQUE ASSAY AS DEMONSTRATED BY THE EOPS FOR SOC, HOC, GP36, AND GP38. ERROR BARS INDICATE STANDARD DEVIATION OF THREE EXPERIMENTAL REPLICATES. LOWER EOP VALUE REPRESENTS BETTER T4 PHAGE DNA CLEAVAGE...... 40

FIGURE 2. 3. NLUC INSERTION IN T4 PHAGES PROVIDES VISUAL SCREENING FOR RECOMBINANT PHAGES. COMPARING THE EFFICIENCY OF HOMOLOGOUS RECOMBINATION VERSUS CRISPR/CAS9 ASSISTED RECOMBINATION. THE SCHEMATIC OUTLINES THE DOUBLE PLAQUE ASSAY OF T4 PHAGE INFECTION (A) OF HOMOLOGOUS RECOMBINATION AND (B) OF CRISPR/CAS9 ASSISTED RECOMBINATION (REPRESENTATIVE IMAGES). THE NANO-GLO LUCIFERASE ASSAY SYSTEM ON THE RIGHT DEMONSTRATES SUCCESSFUL ENGINEERING OF T4 PHAGES (C) FOR HOMOLOGOUS RECOMBINATION (ARROW) AND (D) FOR CRISPR/CAS9- ASSISTED RECOMBINATION...... 41

FIGURE 2. 4. CRISPR/CAS9-ASSISTED RECOMBINATION RESULTED IN >99% RECOMBINATION FREQUENCY. A) SOC WAS ENGINEERED USING THE CRISPR/CAS9 ASSISTED PLATFORM WITH A 5 LOG EOP REDUCTION CRRNA, RESULTING IN THE PRODUCTION OF >99% RECOMBINANT PHAGES. THE CRISPR/CAS9 ASSISTED RECOMBINATION FREQUENCY IS SIGNIFICANTLY HIGHER THAN THE NATURAL HOMOLOGOUS OBSERVED IN THE CONTROL (P<0.0001, N=1007 PLAQUES) B) HOC ENGINEERED USING THE CRISPR/CAS9-ASSISTED PLATFORM WITH A 1 LOG EOP REDUCTION CRRNA AND A 2 LOG EOP REDUCTION CRRNA ALSO RESULTED IN SIGNIFICANTLY HIGHER RECOMBINATION FREQUENCY THAN THE CONTROL (P<0.0001, N=1102 PLAQUES). ASTERISKS INDICATE SIGNIFICANCE (**** = P < 0.0001) BY CHI-SQUARE TEST...... 43

FIGURE 3. 1. EXPERIMENTAL OVERVIEW. A) NATIVE STRONG PROMOTERS WERE SELECTED FROM T4 PHAGES AND CLASSIFIED INTO EARLY, MIDDLE, AND LATE PROMOTER CLASSES. B) AN INDIVIDUAL PROMOTER WAS SEAMLESSLY INCORPORATED INTO THE PCRISPR DONOR PLASMID

xvi

VIA GOLDEN GATE CLONING. THE DONOR PLASMID IS TAILORED FOR CRISPR/CAS9 MEDIATED ENGINEERING AND CONTAINS A NLUC-CBM REPORTER GENE FLANKED BY REGIONS OF HOMOLOGY TO THE CRRNA RECOGNITION SEQUENCE. C) CRISPR/CAS9 MEDITATED T4-PHAGE ENGINEERING RESULTING IN NLUC-PHAGES EACH CONTAINS A NEWLY ADDED T4 PHAGE NATIVE PROMOTER. D) THE LUMINESCENT SIGNAL FROM EACH NLUC PHAGE WAS MEASURED FROM TIME ZERO TO 90 MINUTES...... 51

FIGURE 3. 2. EVALUATION OF NATIVE T4 PROMOTERS AS INDICATED BY LUMINESCENT OUTPUT FROM REPORTER MUTANT PHAGES. A) CUMULATIVE LUMINESCENT OUTPUT OF THE 15 TESTED NATIVE PROMOTERS CATEGORIZED INTO THREE CLASSES: EARLY, MIDDLE, AND LATE. LUMINESCENT OUTPUT IS MEASURED IN RLU OVER 90 MINS. B) AUC AS A QUANTITATIVE DETERMINATION OF TOTAL RLU AS A FUNCTION OF RLU OVER TIME (90 MINS). ERROR BARS INDICATE STANDARD DEVIATION OF THREE EXPERIMENTAL REPLICATES. LETTERS AND STARS INDICATE SIGNIFICANCE (NS = P > 0.05; * = P < 0.05; ** = P < 0.01; *** = P < 0.001; **** = P< 0.0001) BY ONE-WAY ANOVA AND A POST-HOC DUNNETT’S TEST VERSUS A CONTROL WERE USED TO DETERMINE SIGNIFICANCE AT P < .05...... 56

xvii

CHAPTER 1 OVERCOMING THE LIMITATIONS OF ENGINEERING PHAGES

Modern day food safety and medical needs have inspired a litany of novel solutions from academia, industry and elsewhere to combat prevalent problems otherwise resistant to traditional approaches but few solutions are more applicable and relevant to today’s challenges in this space than bacteriophages (phages). For instance, the presence of E. coli, Salmonella and Listeria in the food supply chain and clinical infections resulting from antibiotic resistant bacteria each stymie traditional diagnostic approaches but are sensitive to phage-based methods. Phages are a type of virus that only infect bacteria and are among the most prolific biological entities with approximately 1031 virions currently present on Earth. During infection, phages undergo 1) a lytic cycle in which phage replication occurs leading to lysis and release of new phage particles and/or

2) a lysogenic cycle in which viral nucleic acid is incorporated into the host genome, remains dormant, replicates along with the host, and when bacterial host is under stress, reroutes to the lytic cycle. Currently, lytic phages are more developed in the biotechnological space because of its ability to terminate targeted bacterial pathogens. Lytic phages populate by infecting specific bacterial host through a general five-step process1–6:

1. Attachment, whereby a phage virion adsorbs to a bacterial surface through specific receptor

recognition.

2. Phage DNA injection into the host cell.

3. Redirection and reprogramming of host metabolism for phage DNA replication and phage

protein synthesis.

4. Phage assembly and DNA packaging.

18

5. Host lysis assisted by phage-encoded lysis protein(s) concluding replication with release

of phage progeny.

The inherent host specificity of phages, as indicated in step one above, is one of several features of phages that give rise to several competitive advantages over other biorecognition factors. These competitive advantages include the following attributes 1–5,7,8: (1) phage binding is

bacteria-specific and, upon infection, kills host bacteria in an average of 30 minutes; (2) phages

overcome bacterial resistance, thus combating antibiotics resistance; (3) phages distinguish

between live and dead bacterial cells, reducing the number of false positives; (4) long shelf-life plus stability at high pH and a broad range of temperatures, reducing storage cost and improving effectiveness in low-resource settings; (5) inexpensive and easy to produce with mass production in bacterial hosts; (6) safe for humans, animals and plants; and (7) phages can be genetically engineered, functionalizing phages for downstream applications.

These key competitive advantages of phages enable them to be broadly utilized in food safety applications, including use as biorecognition factors within biosensors to detect foodborne pathogens9–14, and acting as biocontrol methods within agricultural and aquaculture supply

chains15–19. Phage biocontrol products have been FDA-approved and commercialized to reduce the incidence of bacterial pathogens in packaged meats, fish, fresh produce and dairy

products15,16,18. Intralytix, Inc. (Baltimore, MD, USA) and Passport Food Safety Solutions (West

Des Moines, IA, USA) are examples of US-based companies that have successfully delivered

phage-based biocontrol products.

Outside of food and agricultural settings, phages are gaining traction as an alternative or

synergistic agent to antibiotics in clinical environments. In particular, phage therapy has been a

promising option in mitigating the risk of infectious diseases resulting from multidrug antibiotic

19

resistant bacteria, which has otherwise been difficult to treat with more conventional methods. To

date, there have been 29 published cases with over 2,000 patients worldwide whose clinical

conditions have noticeably improved through phage therapy. For instance, the University of

California, San Diego successfully treated a 68-year-old patient with a multi-drug resistant

Acinetobacter baumannii isolate via a phage cocktail20. Beyond phage therapy uses, phages are

also being broadly developed for medical purposes such as medical device coating, bio-detection,

and phage-mediated immunomodulation for vaccine development. Altogether, there is strong

evidence suggesting that phages present novel alternative solutions to a diverse, interdisciplinary

set of global problems.

Currently, commercial and clinical phages are generally present in cocktail form in which

the individual phage is isolated from the environment, cultured, and characterized, a process that

is often labor intensive due to phage hunting. Environmental phages often have limited host range,

restricting their application in industrial and medical applications. For instance, the limiting factor

in phage therapy is the time required to source, screen, and prepare an individualized phage

portfolio with respect to the bacterial target, thus prolonging medical treatment and often

exacerbating the clinical indicators in already compromised patients. As is plain, lifting this

limiting factor requires efficient platforms to engineer recombinant phages and functionalize them

for downstream applications. Several methods of phage genetic engineering are discussed below,

particularly their respective efficiency to best engage and resolve the limiting factor.

METHODS FOR ENGINEERING PHAGES

Homologous Recombination Traditionally, phages are engineered via classical allelic exchange assisted by homologous recombination during a phage infection where the host carries a donor plasmid containing the

20

modified nucleic acid and regions of homology. However, homologous recombination is extremely inefficient21,22 (<1% recombination frequency) and requires lengthy homologous arms

(~1000bp) to identify successful recombination events23. Homologous recombination is now often coupled with other editing techniques to achieve higher recombination frequency. Coupled phage engineering techniques involving homologous recombination with other techniques will be discussed later in this review.

Lambda Red Recombination Lambda red system aka recombineering is an upgraded version of homologous recombination assisted by the Red proteins, Gam-Beta-Exo. The trio of Red proteins are required when working with dsDNA substrates but only Beta is necessary for cloning ssDNA. In vitro phage recombineering involves co-electroporating the desired dsDNA sequences (phage and modified sequences), into electrocompetent bacterial cells carrying a plasmid that encodes the

Gam, Exo, and Beta proteins. Gam protects linear DNA substrates from being digested by inhibiting RecBCD nuclease activity. Exo is a 5’→3’ dsDNA-dependent exonuclease that digests the dsDNA substrates to produce ssDNA 3’ overhangs. Beta is an annealing protein that binds to the ssDNA and promote complementary strand pairing24. Similarly, the in vivo recombineering system involves phage infection of the electroporated bacterial strain that carries allelic exchange substrates and the red system that is often cloned onto a heat sensitive plasmid. Recombineering frequency have been shown to be more successful with ssDNA substrates (0.1-10%) while maintaining similar success frequency as homologous recombination alone when dsDNA substrates are used25–27.

In Vitro Assembly of Phage Genome Synthetic whole genome assembly was demonstrated successively by Craig Venter and peers28,29. In vitro phage genome construction has resulted in the successful synthesis of

21

recombinant T7 and ϕX174 phages28,30,31. Phages’ genomes are relatively small such that the

genomic assembly can be constructed within a bacterial host. For phages with larger genomes, in

vitro assembly is alternatively accomplished inside a yeast system to minimize the toxic effects

toward the host cells32. In vitro assembly typically starts with a pool of synthetic oligos or PCR

fragments of phage DNA where the fragments are designed with successive overlaps that enable

constructive annealing similar to assembling a classic jigsaw puzzle. A modified whole phage

genome is successively transformed whole into a bacterial host and then rebooted to produce phage

progeny. This method enables seamless addition or deletion at various points within the newly

constructed genome. However, previous works show that recombinant phages created with this

method have reduced fitness as evident by lower infectivity28,31. This method is also limited by the

potential mutations introduced during PCR or when the host cannot reboot because of the failed

whole genome transformation.

CRISPR-Cas Mediated Phage Engineering CRISPR-Cas (clustered regularly interspaced short palindromic repeats and associated Cas protein) is a microbial adaptive immune system classically developed by bacteria to evade phage

infection. The CRISPR-Cas system is generally classified into two classes and six types. Class 1

is a multi-subunit effector complex that encompasses type 1(Cas3), type 3 (Cas10), and type 4

(Csf1). Class 2 is a single multi-domain effector consisting of type 2 (Cas9), type 5 (Cpf1 or

Cas12a and other Cas12 subtypes), and type 6 (Cas13).

CRISPR-Cas has become the clear leader among genome editing tools across both

prokaryotic and eukaryotic systems. In particular, CRISPR-Cas mediated phage engineering,

although a relative neophyte among the veteran phage genome editing platforms, has distinguished

itself as the most efficient phage genome editing platform. Among the six CRISPR-Cas types, type

1, 2, 3 and 5 have shown promising efficiencies in generating synthetic phages. The section below

22

summarizes major developments that CRISPR-Cas have made to the field of phage engineering categorized by the primary associated Cas protein.

1. CRISPR-Cas3 (aka CRISPR Type 1E) has been primarily used as a selection tool in

conjunction with another phage editing platform. The Cas3 nuclease functions as a positive

selection for mutant phages and degrades the DNA of non-mutant phages, thus improving

recombinant phage screening and selection. This system was successfully employed in

selecting for mutant T7 phage with an alp (alkaline phosphatase) gene insertion to enable

the phage for colorimetric detection of E. coli33. Furthermore, it was employed in to create

knock-out models in various studies involving T7 and V. cholerae lytic phages34,35.

2. CRISPR-Cas9 is the most recognized editing system among all the Cas associated proteins.

It has been successfully employed in editing T4,T2, T7, Klebsiella, and lactococcal phages

with up to 100% editing frequency36–42. In this system, the Cas9 nuclease is guided by the

crRNA to the cut site, resulting in a dsDNA cleavage of the phage genome. The phage

DNA is repaired by homologous recombination via the presence of a donor plasmid to

facilitate phage genomic edits. Initially, CRISPR-Cas9 editing capability was thought to

be thwarted by the presence of a modified phage genome42. However, in later experiments

it was corroborated that CRISPR-Cas9 is not retarded by cytosine hydroxylmethylated or

glucosylated modified DNA36,43. The efficient editing rate afforded by CRISPR-Cas9

removes the primary bottleneck in the engineering of synthetic phages for phage-based

applications.

3. CRISPR-Cas10 has been successfully employed to create a silent mutation in the Andhra

and ISP phages from the Podoviridae and Myoviridae families respectively. The silent

mutations introduced to the two named phages resulted in 100% efficiency, further

23

elevating CRISPR-Cas’ status as the nonpareil platform for phage genome editing44,45. As

Cas10 system is transcription dependent, however, it is most likely to work best with lytic

phages and not temperate phages.

4. CRISPR-Cas12 has four primary advantages over the more ubiquitous Cas9: (1) it targets

AT rich regions (a feature of many phages genomes), (2) Cas12 is smaller in size (800-

1300 aa), making it easier to shuttle into cells or integrate into phage genome without

affecting a phage’s packaging, (3) Cas12 makes staggered cuts on the DNA, allowing

further flexibility for insertion if NHEJ (non-homologous end joining pathway) is

employed, and (4) the cut occurs between 18-23 bp downstream from the PAM

(protospacer adjacent motif) site, allowing for multiple rounds of DNA cleavage since the

PAM site is not disrupted. As CRISPR-Cas12 subtypes have already shown to be proficient

at editing various platforms from E. coli to human genome46–48; moreover, this system

could be adapted to modify phage DNA.

Beyond the genomic editing capability of CRISPR-Cas, it has also been adapted to deliver point of care testing and function as bio-detection platforms. Early on, fabrications of the CRISPR-

Cas9 based nucleic acid detection system were successfully utilized to identify the Zika virus,

African swine fever virus, Listeria monocytogenes, Mycobacterium tuberculosis, methicillin- resistant Staphylococcus aureus (MRSA)49–54. More recently, three other CRISPR-Cas types were tailored for diagnostic uses: CRISPR-Cas12, Cas13, and Cas14. Platforms such as SHERLOCK

(specific high-sensitivity enzymatic reporter unlocking) and DETECTR (DNA endonuclease targeted CRISPR trans-reporter) capitalized on the collateral enzymatic activity of Cas12, Cas13, and Cas14 to recognize and cleave ssDNA and ssRNA to generate a detectable output.

Collectively, among the named engineering methods for phages, CRISPR-Cas-based tools

24

have proved to be the most efficient editing platform (with up to 100% efficiency). And although the CRISPR-Cas system is still evolving, it already provides a plethora of possibilities that advance the field of phage engineering. Most importantly with respect to phage engineering, the system offers multi-loci edits at significantly higher recombinant frequencies, which makes several of the previous limitations in creating synthetic phages a thing of the past. Synthetic phages can now be seamlessly concocted to optimize their functionality for medical, industrial, and agricultural needs and the possible universe of applications is seemingly endless. For instance, by using CRISPR-

Cas mediated engineering, a phage’s host range can be reprogrammed to broaden its specificity to detect and lyse targeted pathogens by making edits to the phage tail components. Alternatively, structural edits to the phage capsid via CRISPR-Cas present a promising avenue for vaccine development through phage display. Other applications include adapting phages to function as drug delivery vessels, dissolve biofilms, eliminate or monitor pathogens in preharvest and post- harvest settings to improve yield and quality, or improve animal health in farm settings. And with the seamless creation of recombinant phages made possible by CRISPR-Cas mediated engineering, phages are well-equipped to become a go-to tool to address future challenges in the food, agricultural and medical spaces.

25

REFERENCES

1. Alexander, M. Advances in microbial ecology. (I-XII + 2, (1977). 2. Dennehy, J. J. & Abedon, S. T. Adsorption: Phage Acquisition of Bacteria. Bacteriophages 1–25 (2020). doi:10.1007/978-3-319-40598-8_2-1 3. Dennehy, J. J. & Abedon, S. T. Phage Infection and Lysis. Bacteriophages (2020). doi:10.1007/978-3-319-40598-8_53-1 4. Kutter, E. & Goldman, E. Introduction to bacteriophages. Pract. Handb. Microbiol. Third Ed. 855–882 (2015). doi:10.1201/b17871 5. Ofir, G. & Sorek, R. Contemporary Phage Biology: From Classic Models to New Insights. Cell 172, 1260–1270 (2018). 6. Brüssow, H. & Hendrix, R. W. Phage Genomics: Small is beautiful. Cell 108, 13–16 (2002). 7. Jurczak-Kurek, A. et al. Biodiversity of bacteriophages: Morphological and biological properties of a large group of phages isolated from urban sewage. Sci. Rep. 6, 1–17 (2016). 8. Lemire, S., Yehl, K. M. & Lu, T. K. Phage-Based Applications in Synthetic Biology. Annu. Rev. Virol. 5, 453–476 (2018). 9. Alcaine, S. D. et al. Phage-protease-peptide: a novel trifecta enabling multiplex detection of viable bacterial pathogens. Appl. Microbiol. Biotechnol. 99, 8177–8185 (2015). 10. Wang, D., Wang, Z., Chen, J., Kinchla, A. J. & Nugen, S. R. Rapid detection of Salmonella using a redox cycling-based electrochemical method. Food Control 62, 81–88 (2016). 11. Denyes, J. M. et al. Modified bacteriophage S16 long tail fiber proteins for rapid and specific immobilization and detection of Salmonella cells. Appl. Environ. Microbiol. 83, 1– 15 (2017). 12. Law, J. W. F., Mutalib, N. S. A., Chan, K. G. & Lee, L. H. Rapid metho ds for the detection of foodborne bacterial pathogens: Principles, applications, advantages and limitations. Front. Microbiol. (2014). doi:10.3389/fmicb.2014.00770 13. Gervais, L. et al. Immobilization of biotinylated bacteriophages on biosensor surfaces. Sensors Actuators, B Chem. 125, 615–621 (2007). 14. Vinay, M. et al. Phage-based fluorescent biosensor prototypes to specifically detect enteric bacteria such as E. coli and Salmonella enterica Typhimurium. PLoS One 10, 1–17 (2015). 15. Sukumaran, A. T., Nannapaneni, R., Kiess, A. & Sharma, C. S. Reduction of Salmonella on chicken breast fillets stored under aerobic or modified atmosphere packaging by the application of lytic bacteriophage preparation SalmoFreshTM. Poult. Sci. 95, 668–675 (2016). 16. Sukumaran, A. T., Nannapaneni, R., Kiess, A. & Sharma, C. S. Reduction of Salmonella on chicken meat and chicken skin by combined or sequential application of lytic bacteriophage with chemical antimicrobials. Int. J. Food Microbiol. 207, 8–15 (2015). 17. Carlton, R. M., Noordman, W. H., Biswas, B., De Meester, E. D. & Loessner, M. J. Bacteriophage P100 for control of Listeria monocytogenes in foods: Genome sequence, bioinformatic analyses, oral toxicity study, and application. Regul. Toxicol. Pharmacol. 43, 301–312 (2005). 18. Perera, M. N., Abuladze, T., Li, M., Woolston, J. & Sulakvelidze, A. Bacteriophage cocktail significantly reduces or eliminates Listeria monocytogenes contamination on lettuce, apples, cheese, smoked salmon and frozen foods. Food Microbiol. 52, 42–48 (2015). 19. Abuladze, T. et al. Bacteriophages reduce experimental contamination of hard surfaces, tomato, spinach, broccoli, and ground beef by Escherichia coli O157:H7. Appl. Environ.

26

Microbiol. 74, 6230–6238 (2008). 20. LaVergne, S. et al. Phage Therapy for a Multidrug-Resistant Acinetobacter baumannii Craniectomy Site Infection. Open Forum Infect. Dis. 5, 1–3 (2018). 21. Calendar, R. The Bacteriophages. (Plenum Press, 1988). 22. Loessner, M. J., Rees, C. E. D., Stewart, G. S. A. B. & Scherer, S. Construction of luciferase reporter bacteriophage A511::luxAB for rapid and sensitive detection of viable Listeria cells. Appl. Environ. Microbiol. 62, 1133–1140 (1996). 23. TAO, P., Wu, X., Tang, W., Zhu, J. & Rao, V. Engineering of Bacteriophage T4 Genome Using CRISPR-Cas9. ACS Synth. Biol. acssynbio.7b00179 (2017). doi:10.1021/acssynbio.7b00179 24. Snyder, L., Peters, J. E., Henkin, T. M. & Champness, W. Molecular Genetics of Bacteria. (ASM Press, 2013). doi:10.1128/9781555817168 25. Sharan, S. K., Thomason, L. C., Kuznetsov, S. G. & Court, D. L. Recombineering: A Homologous Recmbination-Based Method of Genetic Engineering. Nat. Protoc. 4, 206– 223 (2009). 26. Thomason, L. C., Sawitzke, J. A., Li, X., Costantino, N. & Court, D. L. Recombineering: Genetic engineering in bacteria using homologous recombination. Current Protocols in Molecular Biology 2014, (2014). 27. Fehér, T., Karcagi, I., Blattner, F. R. & Pósfai, G. Bacteriophage recombineering in the lytic state using the lambda red recombinases. Microb. Biotechnol. 5, 466–476 (2012). 28. Smith, H. O., Hutchison, C. A., Pfannkoch, C. & Venter, J. C. Generating a synthetic genome by whole genome assembly: φX174 bacteriophage from synthetic oligonucleotides. Proc. Natl. Acad. Sci. U. S. A. 100, 15440–15445 (2003). 29. Gibson, D. G. et al. Creation of a bacterial cell controlled by a chemically synthesized genome. Science (80-. ). 329, 52–56 (2010). 30. Pulkkinen, E. M., Hinkley, T. C. & Nugen, S. R. Utilizing in vitro DNA assembly to engineer a synthetic T7 Nanoluc reporter phage for Escherichia coli detection. Integr. Biol. 11, 63–68 (2019). 31. Chan, L. Y., Kosuri, S. & Endy, D. Refactoring bacteriophage T7. Mol. Syst. Biol. 1, 1–10 (2005). 32. Ando, H., Lemire, S., Pires, D. P. & Lu, T. K. Engineering Modular Viral Scaffolds for Targeted Bacterial Population Editing. Cell Syst. 1, 187–196 (2015). 33. Jackson, A. A., Hinkley, T. C., Talbert, J. N., Nugen, S. R. & Sela, D. A. Genetic optimization of a bacteriophage-delivered alkaline phosphatase reporter to detect Escherichia coli. Analyst 1–6 (2016). doi:10.1039/C6AN00479B 34. Kiro, R., Shitrit, D. & Qimron, U. Efficient engineering of a bacteriophage genome using the type I-E CRISPR-Cas system. RNA Biol. 11, 42–44 (2014). 35. Box, A. M., McGuffie, M. J., O’Hara, B. J. & Seed, K. D. Functional analysis of bacteriophage immunity through a Type I-E CRISPR-Cas system in Vibrio cholerae and its application in bacteriophage genome engineering. J. Bacteriol. 198, 578–590 (2016). 36. Duong, M. M., Carmody, C. M., Qinqin, M., Peters, J. E., Nugen, S. R. Optimization of T4 Phage Engineering via CRISPR/Cas9. Sci. Rep. submitted (2020). doi:10.1038/s41598-020- 75426-6 37. Lemay, M. L., Tremblay, D. M. & Moineau, S. Genome Engineering of Virulent Lactococcal Phages Using CRISPR-Cas9. ACS Synth. Biol. 6, 1351–1358 (2017). 38. Rousset, F. et al. Genome-wide CRISPR-dCas9 screens in E. coli identify essential genes

27

and phage host factors. PLoS Genet. 14, 1–28 (2018). 39. Hoshiga, F., Yoshizaki, K., Takao, N., Miyanaga, K. & Tanji, Y. Modification of T2 phage infectivity toward Escherichia coli O157:H7 via using CRISPR/Cas9. FEMS Microbiol. Lett. 366, 1–7 (2019). 40. Lemay, M.-L., Renaud, A., Rousseau, G. & Moineau, S. Targeted Genome Editing of Virulent Phages Using CRISPR-Cas9. Bio-Protocol 8, 1–19 (2018). 41. Shen, J., Zhou, J., Chen, G.-Q. & Xiu, Z.-L. Efficient Genome Engineering of a Virulent Klebsiella. J. Virol. 92, 1–20 (2018). 42. Tao, P., Wu, X., Tang, W. C., Zhu, J. & Rao, V. Engineering of Bacteriophage T4 Genome Using CRISPR-Cas9. ACS Synth. Biol. 6, 1952–1961 (2017). 43. Yaung, S. J., Esvelt, K. M. & Church, G. M. CRISPR/Cas9-mediated phage resistance is not impeded by the DNA modifications of phage T4. PLoS One 9, 3–9 (2014). 44. Nayeemul Bari, S. M. & Hatoum-Aslan, A. CRISPR–Cas10 assisted editing of virulent staphylococcal phages. Methods in Enzymology 616, (Elsevier Inc., 2019). 45. Bari, S. M. N., Walker, F. C., Cater, K., Aslan, B. & Hatoum-Aslan, A. Strategies for Editing Virulent Staphylococcal Phages Using CRISPR-Cas10. ACS Synth. Biol. 6, 2316– 2325 (2017). 46. Geng, Y. et al. A highly efficient in vivo plasmid editing tool based on CRISPR-Cas12a and phage λ Red recombineering. J. Genet. Genomics 46, 455–458 (2019). 47. Strecker, J. et al. Engineering of CRISPR-Cas12b for human genome editing. Nat. Commun. 10, (2019). 48. Rusk, N. Spotlight on Cas12. Nat. Methods 16, 2019 (2018). 49. Guk, K. et al. A facile, rapid and sensitive detection of MRSA using a CRISPR-mediated DNA FISH method, antibody-like dCas9/sgRNA complex. Biosens. Bioelectron. 95, 67–71 (2017). 50. Zhang, Y. et al. Paired Design of dCas9 as a Systematic Platform for the Detection of Featured Nucleic Acid Sequences in Pathogenic Strains. ACS Synth. Biol. 6, 211–216 (2017). 51. Wang, X. et al. Clustered Regularly Interspaced Short Palindromic Repeats/Cas9-Mediated Lateral Flow Nucleic Acid Assay. ACS Nano 14, 2497–2508 (2020). 52. Huang, M., Zhou, X., Wang, H. & Xing, D. Clustered Regularly Interspaced Short Palindromic Repeats/Cas9 Triggered Isothermal Amplification for Site-Specific Nucleic Acid Detection. Anal. Chem. 90, 2193–2200 (2018). 53. Zhang, B. et al. Detection of target DNA with a novel Cas9/sgRNAs-associated reverse PCR (CARP) technique. Anal. Bioanal. Chem. 410, 2889–2900 (2018). 54. Pardee, K. et al. Rapid, Low-Cost Detection of Zika Virus Using Programmable Biomolecular Components. Cell 165, 1255–1266 (2016).

28

CHAPTER 2 OPTIMIZATION OF T4 PHAGE ENGINEERING VIA CRISPR/CAS91

ABSTRACT

A major limitation hindering the widespread use of synthetic phages in medical and

industrial settings is the lack of an efficient phage-engineering platform. Classical T4 phage engineering and several newly proposed methods are often inefficient and time consuming and consequently, only able to produce an inconsistent range of genomic editing rate between 0.03-

3%. Here, we review and present new understandings of the CRISPR/Cas9 assisted genome engineering technique that significantly improves the genomic editing rate of T4 phages. Our results indicate that crRNAs selection is a major rate limiting factor in T4 phage engineering via

CRISPR/Cas9. We were able to achieve an editing rate of >99% for multiple genes that functionalizes the phages for further applications. We envision that this improved phage- engineering platform will accelerate the fields of individualized phage therapy, biocontrol, and rapid diagnostics.

1 Duong MM, Carmody CM, Ma Q, Peters JE, Nugen SR. Optimization of T4 phage engineering via CRISPR/Cas9. Sci Rep. 2020 Oct 26;10(1):18229. doi: 10.1038/s41598-020-75426-6. PMID: 33106580; PMCID: PMC7588440.

29

INTRODUCTION

Bacteriophages (phages) present a novel solution to several persistent problems in the fields of food safety, agriculture, and medicine. Phages are viruses that specifically infect bacterial species, resulting in lysis and self-propagation in a targeted and efficient manner. A panoply of previous studies suggest that phages have broad application toward a variety of pressing issues, including providing promising solutions in treating infectious diseases1–6, serving as the primary engine within biosensors to detect foodborne pathogens7–13, and acting as biocontrol methods within the agricultural and aquaculture supply chain14–21. For example, infectious diseases resulting from multidrug antibiotic resistant bacteria have been a particularly persistent issue that has been mitigated via phage therapy. More recently, genetically engineered phages were therapeutically used for the first time to treat a mycobacterial infection that displayed lower susceptibility to wild type phage treatment22. Altogether, there is strong supporting evidence suggesting that phages present promising alternative solutions to a diverse set of global problems.

The chief limiting factor in the widespread adoption of phages for medical and industrial purposes, however, is the arduous task of phage hunting23 and the limited host range of wild type phages. Being able to dispose of or dampen this limiting factor by efficiently bioengineering synthetic phages and effectively tailoring phage-bacteria target specificity will significantly broaden the impact of phage therapy in daily application. Early works prior to 2014 were successful in bioengineering a wide range of wild type phages, including K11, M13, PPO1, ɸX174,

T3, and T7 phages, but at a very inefficient genomic editing rate of 5×10-3 (0.05%) or lower24–27.

There has been notable progress in improving the genomic editing rate as the field steadily moves from traditional techniques for engineering phages such as classical homologous recombination to an improved recombineering approach with the introduction of Lambda Red (λ-Red)

30

recombination28,29. Other innovative approaches include using type I-E CRISPR/Cas30 as a counter

selection tool and more recently, whole phage genome reconstruction in vitro or within yeast31,32.

While these techniques have certain useful applications, there are issues that commonly arise when

they are used to engineer large DNA genomes due to the existence of modified bases, errors during

the recombination of targeted regions, and the overall impurity of samples when isolating from in

vitro systems. Despite representing novel approaches to bioengineering phages, these techniques

remain inefficient, further highlighting the need for an improved method with higher editing

efficiency.

One promising lead in this respect is CRISPR/Cas9 (clustered regularly interspaced short

palindromic repeats-Cas associated protein 9), which has been a successful tool in engineering

prokaryotic and eukaryotic systems. Given its success of genetic engineering in a variety of other

models, the use of CRISPR/Cas9 has promising applications for phage engineering. The

CRISPR/Cas9 system was successfully employed by the Moineau group to introduce point

mutations, deletions, and insertions to a lactococcal phage p233. More recently, CRISPR/Cas9

facilitated an insertion of a red fluorescent protein to a Klebsiella phage phiKpS2 with an

efficiency of 87.5%34. However, there have been conflicting evidence regarding CRISPR/Cas9

effectiveness at editing phages with extensive base modifications. In 2017, Tao et al also employed

CRISPR/Cas9 to engineer T4 phages but found low and varying editing efficiency of 0.03 - 3%35.

In addition, this group observed that CRISPR/Cas9 is ineffective at cleaving the cytosine

hydroxylmethylated and glucosylated modified T4 genome; this contradicts an earlier finding by

Church et al27, highlighting a need to further evaluate the role of CRISPR/Cas9 in editing phages

with modified bases.

Here, we review the CRISPR/Cas9 phage engineering approach to broaden our

31

understanding of this editing tool on T4 phages. We streamlined the CRISPR/Cas9 system in order

to synthetically engineer T4 phages and provide a foundation for engineering in other phage

families (Figure 1). Our results indicate that the rate limiting factor in T4 phage engineering using

CRISPR/Cas9 is crRNA selection; effective crRNAs can overcome barriers otherwise imposed by the DNA modifications in T4 phages. While exploring several CRISPR/Cas9 resources that were successful in engineering both eukaryotic and prokaryotic systems, we were able to achieve a

recombination efficiency of >99% in T4 phages.

Figure 2. 1. CRISPR/Cas9 T4 Phage Engineering Workflow. Candidate crRNAs targeting the T4 gene of interest were validated by a plaque assay. The most effective crRNA was selected based on largest reduction in Efficiency of Plating (EOP) and inserted into the synthetic CRISPR array in pCRISPR. The donor insert was designed to contain a reporter gene flanked by regions of homology to the crRNA recognition sequence and cloned into pCRISPR. A strain containing pCas9 and pCRISPR was infected with T4 phages. CRISPR/Cas9-mediated T4 genome cleavage followed by homologous recombination with the donor plasmid resulted in genomic incorporation of the reporter gene. NanoGlo screening was used for luminescent detection of recombinant phages by addition of the reporter enzyme substrate to phage plaques.

32

MATERIALS AND METHODS

Cultures, Materials, and Reagents E. coli DH5α and T4 phages were obtained from ATCC (Manassas, VA USA). Both plasmids pCAS9 (Addgene no.42876) and pCRISPR (Addgene no. 42875) were obtained from

Addgene (Watertown, MA, USA). Bacteria overnight cultures (37 °C, 150 rpm, 17 hours) were grown in Luria-Bertani (LB) broth with the appropriate antibiotic (50 µg/mL Kanamycin for pCRISPR, 25 μg/mL Chloramphenicol for pCas9). Both plasmids pCAS9 (Addgene no.42876) and pCRISPR (Addgene no. 42875) were obtained from Addgene (Watertown, MA, USA). All ligation enzymes and reagents were purchased from New England Biolabs (Ipswich, MA USA) unless otherwise indicated. All electro-competent cells were made in house according to standard lab protocol. T4 phages were propagated and maintained as described by Bonilla et al.46 Nano-Glo luminescent reagent was purchased from Promega (Madison, WI, USA) and prepared immediately before use according to the manufacturer’s recommendations. Luminescent images from the Nano-

Glo assay were captured using a DSLR camera (Rebel T6, Canon, Melville, NY, USA) set to 30 second exposure in a dark box (LTE-13, Newport Corporation, Irvine, CA, USA).

crRNAs Design and CRISPR/Cas9 Targeting Plasmids The crRNAs were designed and compiled via Geneious® (Biomatters, Ltd., Auckland, NZ).

The resulting crRNAs were filtered based on two criteria: 1. Doench score (0-1, highest values closer to 1 were chosen); 2. Zhang Specificity Score (0-100, all crRNAs chosen were 100).

CRISPR/Cas9 targeting plasmids consist of 1. pCAS9 (a Cas9 nuclease expression plasmid), and

2. pCRISPR (a crRNA expression plasmid for targeting a specific sequence). crRNAs were individually cloned into pCRISPR based on the method described by Marraffini et al37. Each ligated product was transformed into house made electrocompetent DH5α cells. Correctly

33

assembled pCRISPR with respective crRNA were screened and confirmed via colony PCR and

Sanger sequencing. All crRNAs used in the experiment are listed in Table S1 of the supplemental material.

Donor Plasmid Construction Donor DNA expression cassettes containing nanoLuc luciferase (nluc), carbohydrate binding module (CBM), and regions of homology to soc and hoc in T4 phages were codon optimized for E. coli and synthesized as gBlocks (IDT, Leuven, Belgium). Stitching regions were added via PCR to the respective gBlocks to ensure successful Gibson Assembly Cloning and annealed to pCRISPR via NEBuilder HiFi DNA Assembly per manufacturer’s instructions. All constructed donor plasmids were screened and confirmed via colony PCR and Sanger sequencing.

For nucleotide sequences information, see Fig. S1. Refer to Table S2 for all primers used in

NEBuilder HiFi DNA Assembly.

Efficiency of Plating The efficacy of crRNA to cleave the gene of interest was determined by measuring the reduction in efficiency of plating (EOP). An overnight culture (200 µL) of E. coli DH5α containing pCRISPR (crRNA) and pCas9 or control pCRISPR (no crRNA) and pCas9 were added to molten

0.8% LB top agar containing the appropriate antibiotics and mixed. Then T4 phage dilutions (100

µL) previously determined by drop assay to achieve single plaques for each condition were added to the same molten tube, mixed, and poured onto an LB plate. Plates were incubated overnight at

37 °C. The EOP was calculated by dividing plaque forming units (PFU) produced by the input

PFU. The EOP for each crRNA was compared to the control to determine the reduction in EOP.

Homologous Recombination Rate Screening Day 1 – Creating T4 Mutants: Overnight culture (200 µL) of E. coli DH5α containing pCRISPR (gRNA + donor) and pCas9 or only pCRISPR (gRNA + donor) were added to molten

34

0.8% LB top agar containing the appropriate antibiotics and mixed. 100 µL of 106 PFU/mL WT

T4 phages were added to the same molten tube, mixed, and poured onto an LB plate. Plates were

then incubated overnight at 37 °C.

Day 2 – Background Removal: A spot over assay was done via plaque transfer to minimize

endogenous background from the plasmid containing DH5α. Overnight culture (200 µL) of E. coli

DH5α without any plasmids was added to molten 0.8% LB top agar, mixed, and poured onto a

gridline square LB plate. A sterile 10 µL pipette tip was used to transfer plaques resulting from

the previous day's plaque assay over to the gridline square spot assay plate. Plates were then

incubated overnight at 37 °C.

Day 3 – Screening for T4 Mutants: Nano-Glo reagent (2 µL) was added directly onto each

plaque on the gridline square spot assay plates. Plates were imaged in a dark box using a DSLR

camera set to 30 second exposure to capture luminescence. Plate images were analyzed with

ImageJ particle analysis software to count luminescent plaques.

ImageJ Analysis ImageJ software was used to analyze luminescent plate photos. All images are converted

to 8-bit with the threshold set to 10-20%. To identify plaques as positive or negative for luminescence, the particle analyzer feature was used with a size range of >400 and no cut off for particle shape irregularity. DH5α cells were used as controls to identify threshold values for

background luminescence. Refer to Table S3 for raw ImageJ data.

RESULTS AND DISCUSSION

CRISPR/Cas9 plasmid selection contributes to cleaving success. To improve the

efficiency of employing the CRISPR/Cas9 system to bioengineer T4 phages we reviewed and

evaluated the pre-existing plasmids targeted for this system. Initially we genetically engineered T4

35

phages by using the single DS-SPCas (Addgene no. 48645) plasmid CRISPR/Cas9 system35,36 in

which the crRNA sequences are individually cloned into this vector. This single plasmid system

subsequently generates the Cas9:crRNA complex to cleave T4 phage DNA. Furthermore, we

tested the duo plasmid system reported in Yaung et al. This group designed and employed the DS-

SPCas (Addgene no. 48645) and the PM-SP!TB (Addgene no. 48650) plasmids in which Cas9 and

the crRNA exist on separate plasmids27,36. Finally, we evaluated the dual plasmid system introduced by Marraffini et al. consisting of pCas9 (Addgene no.42876) and pCRISPR (Addgene

no. 42875)37. In our early experiments we found that the single plasmid system and the duo plasmid

proposed by Yaung et al. gave lower recombination frequencies, so we focused on the system

designed by the Marraffini group which immediately gave higher rates of recombination.

Assembly of a CRISPR RNA library via multiple scoring methods. An additional factor

that we investigated in order to improve the CRISPR/Cas9 editing mechanism is selecting for

potent crRNAs. Fundamentally, the Cas9 endonuclease within the CRISPR system cleaves DNA

via a target sequence specific RNA guide. Cas9 cleavage activity is dependent on the crRNA

sequence base paring with the target DNA38,39, hence developing a comprehensive crRNA library and selecting for high cleaving efficiency will improve the downstream probability of homology

directed repair to generate mutant phages. Here we pooled findings from both eukaryote and

prokaryote crRNA modeling systems to maximize the on-target binding (high sensitivity) and

minimize the off-target binding (high specificity) of the crRNA to recognize and target the cut

site40–42. The design of crRNA contained three specific considerations: 1) Protospacer adjacent

motif (PAM) site, which allows us to identify all possible Cas9 cleavage sites within our region of

interest; 2) Zhang specificity score to evaluate off-target binding; and 3) Doench activity score for

on-target binding. Geneious® (Biomatters, Ltd., Auckland, NZ), was used to streamline crRNA

36

comparison and selection. Our three preconditions allowed us to develop a comprehensive library of crRNA candidates. The majority of crRNAs from our library have an 100% specificity score but vary in their Doench score on a 0-1 scale. Therefore, we selected the crRNAs with the highest

Doench score in an attempt to maximize crRNA recognition and targeting efficiency (Table S1).

Scoring methods are not good predictive measurements for selecting effective crRNAs. We screened 44 crRNAs spanning across four different genes in T4 phages, including both essential and non-essential genes. Due to their utility in synthetic phage therapy, phage display, and host range expansion, the soc (small outer capsid), hoc (highly immunogenic outer capsid), gp36 (long tail fiber gene 36), gp38 (tail fiber adhesin gene 38) were selected for this study. Among the three theoretical preconditions for selecting crRNAs, initial experiments suggested the Doench score was the only precondition that provided a comparative analysis tool in determining crRNA strength. All 44 crRNAs used have the highest Doench score among the

~200 possible crRNA sites identified across four tested genes, dovetailing with our original hypothesis that computational scoring through use of the Doench score is a good predictive indicator. However, through our experiments we discovered that the Doench score did not serve as a good computational predictor of crRNA targeting efficiency for T4 (Figure 2). For instance, as illustrated with hoc, there was zero log drop in EOP among six of the nine tested crRNAs despite the Doench score for these crRNAs predicting a high cutting efficiency. Interestingly, the crRNA with the lowest Doench score had the highest cutting efficiency resulting in a 3 log drop in EOP.

This lack of correlation between Doench score and cutting efficiency is consistently observed among the four genes that we evaluated. As a result, we found no correlation between crRNAs efficacy as determined by plaque assays relative to that of the Doench score.

37

The Doench score was developed in murine and human model systems and it is possible

that the Doench score’s predictive capability cannot be extended to phages. We recognize that

there are other non-phage crRNA predictive models that we did not evaluate and their application

to phage genomes remains unknown. Concurrently, we did not identify any distinguishable

characteristics in the nucleotide composition between the efficient and inefficient crRNAs that

were screened. Factors such as crRNA accessibility to the targeted area due to DNA modifications,

formation of crRNA secondary structures, phage specific on-target and off-target crRNA scoring,

or viral genome variations are all constructive elements that will help to design a better predictive

model for phage genome editing via CRISPR/Cas9.

This notwithstanding, an alternative modeling system that is effective for selecting crRNA

directed at phage DNA does not currently exist. We were able to nonetheless experimentally screen

for efficient crRNAs as measured in a log reduction of EOP. Among the four genes, we were able

to identify a potent crRNA for soc, in which it induced a 5-log reduction in EOP, an indicator that the crRNA is effective at targeting and directing Cas9 to induce a DNA double-strand break (DSB) hence killing T4 phages resulting in fewer plaques. crRNA screening from hoc, gp36, and gp38 were less impressive with observable 1-3 log reduction in EOP (Figure 2). Furthermore, we chose the best crRNA among the ones screened for soc and hoc to further evaluate how well

CRISPR/Cas9 can assist homologous recombination to generate mutant T4 phages as indicated by

the recombination frequency. Since a majority of the crRNAs screened presented a 1 log drop in

EOP, we further investigated how efficiently the CRISPR/Cas9 assisted genome edit would

perform with a weak crRNA; we evaluated this using hoc crRNA.

We suggest a shotgun approach to screen and select crRNAs for future workflows: a

minimum initial screening of five crRNAs for each target site would in most cases circumvent the

38

selection of an ineffective crRNA. This shotgun approach is preferred since 55% of the crRNAs tested in our study exhibit zero cutting activity, so there is a need to widely screen in order to select active crRNAs. A potent crRNA such as the one we have identified for soc will not only help with improving recombination but also serves as a strong negative selection tool against wild type phages post lysis.

39

Figure 2. 2. Doench scoring is not a good predictive measurement for selecting effective crRNAs. Experimental efficacy of DNA cleavage via EOP as evaluated in the soc, hoc, gp36, and gp38 genes in T4 phages does not align with theoretical projection. A) Doench scoring (0-1) to theoretically assess crRNAs on-target activity and off-target sites in which values closer to 1 resemble the most potent crRNA. The crRNAs are ranked in descending efficacy order. B) Validation of the crRNAs’ theoretical selection via plaque assay as demonstrated by the EOPs for soc, hoc, gp36, and gp38. Error bars indicate standard deviation of three experimental replicates. Lower EOP value represents better T4 phage DNA cleavage.

40

Figure 2. 3. nluc insertion in T4 phages provides visual screening for recombinant phages. Comparing the efficiency of homologous recombination versus CRISPR/Cas9 assisted recombination. The schematic outlines the double plaque assay of T4 phage infection (A) of homologous recombination and (B) of CRISPR/Cas9 assisted recombination (representative images). The Nano-Glo luciferase assay system on the right demonstrates successful engineering of T4 phages (C) for homologous recombination (arrow) and (D) for CRISPR/Cas9-assisted recombination.

The dual role of CRISPR/Cas9 in the experiments here is first, to induce a double-strand

DNA cleavage that facilitates nluc insertion, and second, to act as an efficient negative selection tool, both roles resulting in 99.8% and 99.59% recombinants from the respective soc and hoc

deletion. The natural homologous recombination control produced a higher than expected number

of recombinants, 1.79% and 14.74% for soc and hoc respectively. This could be due to T4 phage's

recombination-dependent DNA replication pathways such as the “join-copy” and “join-cut-copy”

pathways used for starting replication forks during the infection process43,44. Even with high

41

amounts of natural homologous recombination, CRISPR/Cas9-assisted homologous

recombination resulted in significantly higher homologous recombination rates than the control

(p<0.0001) for both soc and hoc, demonstrating that CRISPR/Cas9 can be an useful tool in T4

phage genetic engineering with proper crRNA selection (Figure 4). Ultimately, screening for

recombinants without Cas9-directed cleavage showed significantly lower recombinants following

screening of >1000 isolates; however, using our vetted crRNA candidates, >99% of the isolates

were correct. Overall, we successfully created four mutant T4 phages using the CRISPR/Cas9

assisted genome engineering system labeled NRGp16, NRGp17, NRGp18, and NRGp20. The

NRGp16 and NRGp17 phages each have a soc deletion with a replacement by either nluc or

nluc:CBM (Nluc with a C-terminus carbohydrate binding module fusion) respectively. The

NRGp18 phages have a hoc deletion with a nluc:CBM replacement. The NRGp20 phages have an

N-terminus CBM fusion to the Hoc protein. Nluc:CBM has previously been shown to be a sensitive reporter for detecting E. coli45 and therefore is a pragmatic insertion to functionalize the

phages for downstream applications. Genetic engineering of all four phages were confirmed

through whole genome sequencing. The mutant T4 phages developed in this experiment were able

to infect targeted hosts and propagate to generate similar end titers as the wild type.

42

Figure 2. 4. CRISPR/Cas9-assisted recombination resulted in >99% recombination frequency. A) soc was engineered using the CRISPR/Cas9 assisted platform with a 5 log EOP reduction crRNA, resulting in the production of >99% recombinant phages. The CRISPR/Cas9 assisted recombination frequency is significantly higher than the natural homologous observed in the control (p<0.0001, n=1007 plaques) B) hoc engineered using the CRISPR/Cas9-assisted platform with a 1 log EOP reduction crRNA and a 2 log EOP reduction crRNA also resulted in significantly higher recombination frequency than the control (p<0.0001, n=1102 plaques). Asterisks indicate significance (**** = p < 0.0001) by Chi-square Test.

CONCLUSION

We have streamlined the CRISPR/Cas9-mediated genome engineering method and utilized it to efficiently edit T4 phages. More specifically, we developed an effective crRNA library against both non-essential and essential genes in T4 phages (soc, hoc, gp36, and gp38). Furthermore, the crRNAs were successfully used within the CRISPR/Cas9 system to facilitate homologous recombination and generation of mutant T4 phages at an impressive rate of >99%, well above that of past methods, which only achieved a rate of 0.04 - 0.3%. Although the Doench scoring system, one of the predictive methods we explored, was shown to be a nonideal benchmark for selecting effective crRNAs, we were still able to achieve approximately 50% recombination frequency with

43

ineffective crRNAs that have a demonstrated EOP of 1 log reduction. We successfully translated

this technique to create T2, T6, and P22 mutant phages (data not shown).

The recombination efficiency rate we achieved through the use of CRISPR/Cas9-mediated

system has broad application for phage genome engineering, including experiments broadening

host range, further functionalizing phages for use in biosensors, optimizing individualized phage

therapy and many more applications. In addition, our method incorporates an efficient CRISPR- based counterselection system to produce a recombination efficiency rate consistently >99%.

Multi-loci edits are also possible, reducing the need to perform step wise phage genome engineering. As with other in vivo methods, CRISPR/Cas9-assisted phage engineering does not

circumvent the host toxicity issue. This is especially relevant when the engineered region encodes

a toxic gene that is harmful to the bacteria host, a factor that complicates phage genome

engineering.

While the use of phages to combat potentially harmful bacteria dates back decades, the use

of genetically engineered phages is still in its infancy. The combination of effective and efficient

engineering of wild type phages granted by CRISPR/Cas9 removes a chief current limitation in

generating synthetic phages for broader applications. The ability to genetically engineer phages

will not only provide new and novel tools in this fight, but also advance our general understanding

of phages and their host interactions.

44

REFERENCES

1. Mertz, L. Battling superbugs: how phage therapy went from obscure to promising. IEEE Pulse 10, 3–9 (2019). 2. Chan, B. K., Abedon, S. T. & Loc-Carrillo, C. Phage cocktails and the future of phage therapy. Fut. Microbiol. 8, 769–783 (2013). 3. Loc-Carrillo, C. & Abedon, S. T. Pros and cons of phage therapy. Bacteriophage 1, 111– 114 (2011). 4. Westwater, C. et al. Use of genetically engineered phage to deliver antimicrobial agents to bacteria: an alternative therapy for treatment 1. of bacterial infections. Antimicrob. Agents Chemother. 47, 1301–1307 (2003). 5. LaVergne, S. et al. Phage therapy for a multidrug-resistant acinetobacter baumannii craniectomy site infection. Open Forum Infect. 2. Dis. 5, 1–3 (2018). 6. McCallin, S., Sacher, J. C., Zheng, J. & Chan, B. K. Current state of compassionate phage therapy. Viruses 11, 1–14 (2019). 7. Fernandes, E. et al. A bacteriophage detection tool for viability assessment of Salmonella cells. Biosens. Bioelectron. 52, 239–246 3. (2013). 8. Uttenthaler, E., Schräml, M., Mandel, J. & Drost, S. Ultrasensitive quartz crystal microbalance sensors for detection of M13-Phages 4. in liquids. Biosens. Bioelectron. 16, 735–743 (2001). 9. Hengerer, A. et al. Quartz crystal microbalance (QCM) as a device for the screening of phage libraries. Biosens. Bioelectron. 14, 5. 139–144 (1999). 10. Mcgrath, T. F., Elliott, C. T. & Fodey, T. L. Biosensors for the analysis of microbiological and chemical contaminants in food. Anal 6. Bioanal. Chem. 403, 75–92. https ://doi.org/10.1007/s0021 6-011-5685-9 (2012). 11. Qian, X.-M. & Nie, S. M. Single-molecule and single-nanoparticle SERS: from fundamental mechanisms to biomedical applications. 7. Chem. Soc. Rev. 37, 912–920. https ://doi.org/10.1039/b7088 39f (2008). 12. Tay, L.-L. et al. Silica encapsulated SERS nanoprobe conjugated to the bacteriophage tailspike protein for targeted detection of 8. Salmonellaw. Chem. Commun. Chem. Commun 48, 1024–1026 (2012). 13. Singh, A., Poshtiban, S. & Evoy, S. Recent advances in bacteriophage based biosensors for food-borne pathogen detection. Sensors 9. (Switzerland) 13, 1763–1786 (2013). 14. Sukumaran, A. T., Nannapaneni, R., Kiess, A. & Sharma, C. S. Reduction of Salmonella on chicken breast fillets stored under aerobic

45

10. or modified atmosphere packaging by the application of lytic bacteriophage preparation SalmoFresh. Poult. Sci. 95, 668–675 11. (2016). 15. Sukumaran, A. T., Nannapaneni, R., Kiess, A. & Sharma, C. S. Reduction of Salmonella on chicken meat and chicken skin by combined or sequential application of lytic bacteriophage with chemical antimicrobials. Int. J. Food Microbiol. 207, 8–15 (2015). 16. Carlton, R. M., Noordman, W. H., Biswas, B., De Meester, E. D. & Loessner, M. J. Bacteriophage P100 for control of Listeria monocytogenes in foods: Genome sequence, bioinformatic analyses, oral toxicity study, and application. Regul. Toxicol. Pharmacol. 43, 301–312 (2005). 17. Perera, M. N., Abuladze, T., Li, M., Woolston, J. & Sulakvelidze, A. Bacteriophage cocktail significantly reduces or eliminates Listeria monocytogenes contamination on lettuce, apples, cheese, smoked salmon and frozen foods. Food Microbiol. 52, 42–48 (2015). 18. Abuladze, T. et al. Bacteriophages reduce experimental contamination of hard surfaces, tomato, spinach, broccoli, and ground beef by Escherichia coli O157:H7. Appl. Environ. Microbiol. 74, 6230–6238 (2008). 19. Moye, Z. D., Woolston, J. & Sulakvelidze, A. Bacteriophage applications for food production and processing. Viruses 10, 1–22 (2018). 20. Jones, J. B. et al. Bacteriophages for plant disease control. Annu. Rev. Phytopathol. 45, 245–262 (2007). 21. Nagy, J. K., Király, L. & Schwarczinger, I. Phage therapy for plant disease control with a focus on fire blight. Cent. Eur. J. Biol. 7,1–12 (2012). 22. Dedrick, R. M. et al. Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacteriumabscessus. Nat. Med. 25, 730–733 (2019). 23. Weber-Dabrowska, B. et al. Bacteriophage procurement for therapeutic purposes. Front. Microbiol. 7, 1–14 (2016). 24. Sarkis, G. J., Jacobs, W. R. & Hatfuii, G. F. L5 luciferase reporters mycobacteriphages: a sensitive tool for the detection and assay of live mycobacteria. Mol. Microbiol. 15, 1055– 1067 (1995). 25. Tanji, Y. et al. Escherichia coli detection by GFP-labeled lysozyme-inactivated T4 bacteriophage. J. Biotechnol. 114, 11–20 (2004). 26. Oda, M., Morita, M., Unno, H. & Tanji, Y. Rapid detection of Escherichia coli O157:H7 by using green fluorescent protein-labeled PP01 bacteriophage. Appl. Environ. Micro. 70, 527–534 (2004). 27. Yaung, S. J., Esvelt, K. M. & Church, G. M. CRISPR/Cas9-mediated phage resistance is not impeded by the DNA modifications Of phage T4. PLoS ONE 9, 3–9 (2014). 28. Oppenheim, A. B., Rattray, A. J., Bubunenko, M., Thomason, L. C. & Court, D. L. In vivo recombineering of bacteriophage λ by PCR fragments and single-strand oligonucleotides. Virology 319, 185–189 (2004).

46

29. Marinelli, L. J. et al. BRED: a simple and powerful tool for constructing mutant and recombinant bacteriophage genomes. PLoS ONE 3, e3957 (2008). 30. Jackson, A. A., Hinkley, T. C., Talbert, J. N., Nugen, S. R. & Sela, D. A. Genetic optimization of a bacteriophage-delivered alkaline phosphatase reporter to detect: Escherichia coli. Analyst 141, 5543–5548 (2016). 31. Pulkkinen, E. M., Hinkley, T. C. & Nugen, S. R. Utilizing in vitro DNA assembly to engineer a synthetic T7 Nanoluc reporter phage for Escherichia coli detection. Integr. Biol. 11, 63–68 (2019). 32. Ando, H., Lemire, S., Pires, D. P. & Lu, T. K. Engineering modular viral scaffolds for targeted bacterial population editing. Cell Syst. 1, 187–196 (2015). 33. Martel, B. & Moineau, S. CRISPR-Cas: an efficient tool for genome engineering of virulent bacteriophages. Nucl. Acids Res. 42, 9504–9513 (2014). 34. Shen, J., Zhou, J., Chen, G.-Q. & Xiu, Z.-L. Efficient genome engineering of a virulent klebsiella. J. Virol. 92, 1–20 (2018). 35. Tao, P., Wu, X., Tang, W., Zhu, J. & Rao, V. Engineering of bacteriophage t4 genome using CRISPR-Cas9. ACS Synth. Biol. 6, 1952–1961. https ://doi.org/10.1021/acssy nbio.7b001 79 (2017). 36. Esvelt, K. M. et al. Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nat. Methods 10, 1116–1123 (2013). 37. Jiang, W., Bikard, D., Cox, D., Zhang, F. & Marraffini, L. A. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat. Biotechnol. 31, 233–239 (2013). 38. Wright, A. V. et al. Rational design of a split-Cas9 enzyme complex. Proc. Natl. Acad. Sci. USA 112, 2984–2989 (2015). 39. Jiang, F. & Doudna, J. A. CRISPR: Cas9 structures and mechanisms. Ann. Rev. Biophys. 46, 505–531 (2017). 40. Xu, H. et al. Sequence determinants of improved CRISPR sgRNA design. Genome Res. 25, 1147–1157 (2015). 41. Doench, J. G. et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat. Biotechnol. 34, 184–191 (2016). 42. Fonslow, B. R. et al. Rational design of highly active sgRNAs for CRISPR-Cas9: mediated gene inactivation. Nat. Biotechnol. 32, 1262–1267 (2014). 43. Mosig, G. Recombination and recombination-dependent DNA replication in bacteriophage T4. Annu. Rev. Genet. 32, 379–413 (1998). 44. Mosig, G., Gewin, J., Luder, A., Colowick, N. & Vo, D. Two recombination-dependent DNA replication pathways of bacteriophage T4, and their roles in mutagenesis and horizontal gene transfer. Proc. Natl. Acad. Sci. USA 98, 8306–8311 (2001). 45. Hinkley, T. C. et al. A phage-based assay for the rapid, quantitative, and single CFU visualization of E. coli (ECOR #13) in drinking water. Sci. Rep. 8, 1–8 (2018). 46. Bonilla, N. et al. Phage on tap-a quick and efficient protocol for the preparation of bacteriophage laboratory stocks. PeerJ 4, e2261 (2016).

47

CHAPTER 3 PHAGE-BASED BIOSENSORS: IN VIVO ANALYSIS OF NATIVE T4 PHAGE PROMOTERS TO ENHANCE REPORTER ENZYME EXPRESSION2

ABSTRACT

Phage-based biosensors have shown significant promise in meeting the present needs of the food and agricultural industries due to a combination of sufficient portability, speed, ease of use, sensitivity, and low production cost. Although current phage-based methods do not meet the bacteria detection limit imposed by the EPA, FDA, and USDA, a better understanding of phage genetics can significantly increase their sensitivity as biosensors. In the current study, the signal sensitivity of a T4 phage-based detection system was improved via transcriptional upregulation of the reporter enzyme Nanoluc luciferase (Nluc). An efficient platform to evaluate the promoter activity of reporter T4 phages was developed. The ability to upregulate Nluc within T4 phages was evaluated using 15 native T4 promoters. Data indicates a six-fold increase in reporter enzyme signal from integration of the selected promoters. Collectively, this work demonstrates that fine tuning the expression of reporter enzymes such as Nluc through optimization of transcription can significantly reduce the limits of detection.

2 Duong MM, Carmody CM , Nugen SR . Phage-based biosensors: in vivo analysis of native T4 phage promoters to enhance reporter enzyme expression. Analyst. 2020 Sep 28;145(19):6291- 6297. doi: 10.1039/d0an01413c. PMID: 32945826.

48

INTRODUCTION

Bacteriophages (phages) are viruses that are non-infectious towards animals, plants, or humans, instead infecting specific bacteria strains. As such, phages are a promising option to use as a biorecognition factor to detect their host bacteria. Phages, which are ubiquitous in the environment, have evolved to survive broad temperature and pH conditions.1–3 These inherent properties provide a unique advantage for biosensor applications, resulting in phage-based tools that not only can be used in a variety of sample matrices, but also allow for storage conditions in low-resource settings.4–6 For industrial applications, phage strains with desirable host ranges can be propagated in bioreactors for large-scale production, which is adaptable for commercialization.7 In addition, phages have a wide compatibility with frequently utilized biosensor platforms such as PCR,8 microfluidics,9 nanoparticle-based,10,11 lateral flow,12,13 filter- based,14,15 surface plasmon resonance,16,17 and flow cytometry.18,19

A bacteria detection assay must be sufficiently sensitive to ensure reliability, particularly in circumstances in which the targeted bacteria have a low infectious dose or are present in low concentrations. Many phage-based biosensors utilize “reporter phages” that produce an exogenous protein during phage infection, resulting in a measurable signal for the detection of only viable host bacteria.20 Luciferase reporters have been utilized as bioreceptors in phage-based biosensing platforms to increase assay sensitivity.21–24 Due to a relatively low background signal, a bioluminescent signal achieves superior sensitivity compared to other enzyme reporters such as beta-galactosidase, chloramphenicol acetyltransferase, and fluorescent proteins.25–

27 An Oplophorus gracilirostris derived luciferase, NanoLuc luciferase (nluc),14,26,28 is desirable for its small size and ability to produce >150 fold stronger signal compared to traditional luciferases,29 making it a superior luminescent marker well suited for phage-based biosensors.30–

49

32 In a previous study, Nluc-phages were successfully used to detect 5 CFU/40 mL of Escherichia coli (E. coli) O157:H7 in both LB broth (7 hours) and ground beef samples (9 hours).32

The rate-limiting factor hindering the practical use of phages for on-site diagnostic tests is the time required to achieve a detectable amount of analyte due to the extended sample preparation process involved.33 The standard preparation process varies depending on sample origin and complexity, but generally involves steps for increasing the number of target bacteria (enrichment), removing matrix inhibitors, and possibly decreasing sample volume. Additional steps that can be incorporated into the process include (1) filtration steps to selectively capture and concentrate the signal,14 (2) separation steps utilizing magnetic nanoparticle conjugated phages to capture and concentrate the host bacteria into a smaller sample volume resulting in a stronger signal output,34 and (3) initial pre-enrichment steps to bring the target bacteria into log phase as well as to help improve the limit of detection of the overall assay by increasing bacterial counts. A combination of these steps has been used to approach the Environmental Protection Agency (EPA) mandated limit of detection of a single CFU of E. coli in 100 ml of drinking water.34 While this strategy increases assay sensitivity, the need to perform pre-enrichment of the sample increases the overall detection time.

The objective of this study is to improve the sensitivity and thus the detection time of phage-based biosensors by manipulating the promoter region that regulates transcription of the reporter enzyme. Here, we present a novel platform to investigate and quantify promoter activity in vivo by evaluating 15 different native T4 phage promoters. We employed a lytic E. coli infecting

T4 phage engineered to produce a Nluc reporter as our baseline. As a model, T4 is one of the best- studied phages,35 providing ample information on its mechanisms of gene expression to evaluate promoter strength in vivo. T4 phages have three classes of promoter: early, middle, and late that

50

initiate transcription by host RNA polymerases at various stages of the infection cycle.35 T4 phages complete their infection cycle within approximately 30 minutes; therefore, upregulation of the reporter transcript during this allotted time improves signal production and potentially permits earlier detection of luminescent markers in live bacterial cells. This work successfully identifies potent promoters within each class and improves output Nluc signal by six-fold as compared to our previously reported phage biosensors.

Figure 3. 1. Experimental Overview. a) Native strong promoters were selected from T4 phages and classified into early, middle, and late promoter classes. b) An individual promoter was seamlessly incorporated into the pCRISPR donor plasmid via golden gate cloning. The donor plasmid is tailored for CRISPR/Cas9 mediated engineering and contains a nluc-cbm reporter gene flanked by regions of homology to the crRNA recognition sequence. c) CRISPR/Cas9 meditated T4-phage engineering resulting in nluc-phages each contains a newly added T4 phage native promoter. d) The luminescent signal from each nluc phage was measured from time zero to 90 minutes.

51

MATERIALS AND METHODS

Bacteria, phage and plasmids E. coli DH5α was obtained from ATCC #68233 (Manassas, VA USA). pCas9 and pCRISPR were gifts from Luciano Marraffini (Addgene plasmid # 42876 and # 42875; http://n2t.net/addgene:42876; RRID:Addgene_42876; http://n2t.net/addgene:42875;

RRID:Addgene_42875). Bacteria overnight cultures (37 °C, 150 rpm, 17 hours) were grown in

Luria–Bertani (LB) broth with the appropriate antibiotic (50 μg/ mL Kanamycin for pCRISPR, 25

μg/mL Chloramphenicol for pCas9). Wild type T4 phage were obtained from ATCC # 11303-B4

(Manassas, VA USA), propagated, and maintained as described by Bonilla et al.36 T4 phage titers were determined via double layer plaque assay.

Materials and reagents All cloning reagents were purchased from New England Biolabs (Ipswich, MA, USA). All other reagents were purchased from Thermo Fisher Scientific (Waltham, MA, USA). E. coli DH5α electro-competent cells were made in house according to the Untergasser protocol.37 Nano-Glo luminescent reagent was purchased from Promega (Madison, WI, USA) and prepared immediately before use according to the manufacturer's recommendations. Luminescent signal was monitored via Synergy Neo 2 Hybrid Multimode Reader (Biotek Instruments, Winooski, VT,

USA) for 90 minutes at 1-minute intervals paired with microplate orbital shaking also at 1-minute intervals via the Synergy Neo software.

Donor plasmid construction The donor DNA expression cassette containing golden gate cloning sites, native RBS

(Ribosomal Binding Sequence), nanoLuc luciferase (nluc), carbohydrate binding module (CBM), synthetic terminator, and regions of homology to soc in T4 phages were codon optimized for E. coli and synthesized as a gBlock gene fragment (IDT, Coralville, IA, USA) (Fig. 1). Gibson

52

Assembly Cloning was employed with NEBuilder HiFi DNA Assembly Master Mix to insert gBlocks into pCRISPR, per manufacturer's instructions. All 15 promoters were individually cloned into the golden gate site using BsaI restriction enzyme. All constructed donor plasmids were screened and confirmed via colony PCR and Sanger sequencing. Sanger sequencing was performed by the Cornell University Institute of , Biotechnology Resource Center

(Ithaca, NY, USA) using Applied Biosystems Automated 3730xl DNA Analyzers, Big Dye

Terminator chemistry, and AmpliTaq FSDNA Polymerase. For nucleotide sequence information, see Fig. S1.† Refer to Table S1† for all cloning promoter sequence design.

Recombinant phage construction CRISPR/Cas9 mediated engineering was used to construct recombinant phages as previously reported.38 The system utilizes pCAS9 to generate the Cas9 endonuclease and pCRISPR to provide the donor DNA sequence and a potent crRNA

(TGTGAACGTCAGAATAAAGA) targeting soc, the small outer capsid gene. Soc is a nonessential and decorative structural protein with a relatively high copy number of 870/phage particle and therefore is an ideal candidate for genetic modification. Fifteen reporter T4 phages were created, each with an uniquely added promoter (NRGp25-27 and NRGp30-41) (Table 1) and one reporter control phage without an added promoter sequence (NRGp42). All recombinant phages were confirmed via Sanger and Whole Genome Sequencing (WGS). WGS was performed by Cornell University College of Veterinary Medicine Animal Health Diagnostic Center,

Department of Molecular Diagnostics (Ithaca, NY, USA) via the Illumina MiSeq platform and

Illumina Basespace Sequence Hub for data acquisition and quality control analysis. All sequencing data were analyzed in Geneious® (Biomatters, Ltd, Auckland, NZ).

53

Table 3. 1. Promoter selection table

Promoter Abbreviated Associated Selection criteria Bioengineered class name gene phage name Early E1 motB Promoter 4 NRGp25 E2 gp55 strength (pKWIII 6 NRGp30 E3 ipl units) 2.7 NRGp31 E4 DNA ligase 2.6 NRGp32 E5 ndd 3 NRGp33 Middle M1 gp34i Protein size 140.4 NRGp26 M2 gp43 (kDa) 103.6 NRGp34 M3 gp46 82.9 NRGp35 M4 rllA 63.6 NRGp36 M5 tRNAscl N/A NRGp37 Late L1 gp18 Protein copy 144 NRGp27 L2 gp22 number 576 NRGp38 L3 gp23 960 NRGp39 L4 gp67 341 NRGp40 L5 soc 870 NRGp41

Luminescent assay procedure Phage titers (~1.5 × 108 PFU/mL), E. coli DH5α (~1.5 × 107 CFU/mL), and a multiplicity of infection (MOI) of 10 were standardized across all experiments. DH5α,

Nano-Glo, and a phage sample (1:2:1 ratio) were added to 96-well white microplate in this order, bringing the final assay volume to 200 µL. All samples were performed in duplicate.

The microplate assay was immediately and continuously monitored using the Synergy Neo

2 Hybrid Multimode Reader from time 0 to 90 minutes. The output luminescent signal was quantified as RLU (relative luminescent unit). Assays were repeated with three additional experimental replicates.

RESULTS AND DISCUSSION

Selection Criteria of T4 Promoters We sought to identify promoters that will boost the rate of reporter gene transcription

54

initiation and therefore increase the level of mRNA transcripts that are subsequently translated into

reporter enzymes. Higher levels of reporter protein will magnify the output signal coming from

the phage-based biosensor and thus reduce the pre-enrichment time and total assay time. T4 phages

have three classes of promoter: early, middle, and late and each uniquely redirects the host RNA

polymerase (RNAP) to successfully transcribe its genome. Fifteen native promoters (Table 1) were

selected based on the annotated T4 genome among all three classes of promoter.35

The early promoters are well studied and have been quantitatively evaluated for promoter

strength based on in vitro expression of β-lactamase and 6-phosphogalactosidase via the pKWIII

probe vector model. The pKWIII probe vector promoter strength analysis is based on the

enzymatic turnover of ampicillin and ONPG-6-P by β-lactamase and 6-

phosphogalactosidase.39 The five early native T4 promoters with the highest pKWIII value were

selected for this study (Table 1). The middle promoters are less widely studied and as a result, five

native middle promoters were selected based on canonical inference of translated protein product

size. All proteins that are transcribed and translated via the initiation of the middle promoters were

compared (Table 1).

Finally, five strong late promoters were selected among the 20 known strong late

promoters.40 The late promoter candidates were selected based on the protein copy number under

the assumption that protein level and transcription level behave linearly. Collectively, we used

estimates of promoter strengths from several studies which focused separately on early, middle, or

late promoters.

Vector Design to Evaluate T4 Promoters

A donor DNA construct was designed to include a unique promoter upstream of the reporter gene, nluc:cbm. The reporter is composed of NanoLuc® luciferase (Nluc) fused to

55

a carbohydrate binding module (cbm) for cellulose filter signal capture.42, 43 In addition, a strong synthetic terminator is added downstream to isolate the output luminescent signal.

The reporter sequence was flanked by ~1000 bp regions of homology adjacent to soc to provide a template for homologous recombination following CRISPR/Cas9 soc cleavage.

Golden gate cloning with BsaI restriction sites was added upstream of nluc:cbm to allow

for seamless incorporation of unique promoter sequences into the base vector construct.

Overall, CRISPR/Cas9 mediated phage engineering via the donor vector design creates a homogeneous comparison platform of the upregulation in Nluc production across all 15 inserted promoters.

Figure 3. 2. Evaluation of native T4 promoters as indicated by luminescent output from reporter mutant phages. a) Cumulative luminescent output of the 15 tested native promoters categorized into three classes: early, middle, and late. Luminescent output is measured in RLU over 90 mins. b) AUC as a quantitative determination of total RLU as a function of RLU over time (90 mins). Error bars indicate standard deviation of three experimental replicates. Letters and stars indicate significance (ns = p > 0.05; * = p < 0.05; ** = p < 0.01; *** = p < 0.001; **** = p< 0.0001) by one-way ANOVA and a post-hoc Dunnett’s test versus a control were used to determine significance at p < .05.

56

Evaluation of Promoter Strength Based on Luminescence

Sixteen mutant T4 phages were created in this study, one control reporter T4 phage

(NRGp42) without an added promoter and fifteen additional T4 phages (NRGp25–27 and

NRGp30–41), each with a uniquely added promoter sequence spanning across three classes of promoter. All mutant phages were further categorized and analyzed within its promoter class. The genetic engineering of all phages was confirmed with whole genome sequencing.

Early— The luminescent outputs of the reporter phages with an added early promoter were compared to the promoter strength reported by Wilkens and Ruger.39 The Relative Luminescence

Unit (RLU) outputs from this study do not correspond with the promoter strength evaluation from previous in vitro experiments, an indication that our in vivo platform is providing a more accurate depiction of the systemic effect of promoter-dependent reporter protein upregulation compared to the in vitro system. Among the five evaluated early promoters, the promoter sequence that initiates motB (E1) transcription generates the highest Nluc signal, resulting in a six-fold increase relative to the control. Upregulation by the added motB (E1) promoter generates a luminescent signal with an area under the curve (AUC) of 4.67 × 108 relative to the control, which has an AUC of 7.63 × 107. The promoter sequence for ndd (E5) also improves the luminescent output by 5-fold with an AUC of 4.02 × 108 (Fig. 2).

Middle— Overall, the middle promoters are the least effective at improving the RLU relative to the early and late promoters with AUC ranging from 2.36 × 107 to 1.21 × 108 (Fig. 2).

Among the five middle promoters, the promoter sequence of gp34i (M1) yields the maximum signal output and improved Nluc signal by 50% as compared to the control. There are several possible reasons why the middle promoters do not perform as well relative to the early or the late promoters: (1) in general, there are fewer middle promoters (30) identified within the T4 phage's

57

genome, as opposed to early promoters (39), and late promoters (50), (2) middle gene transcription is protein-dependent on two essential protein products (Asia and MotA) from early gene transcription and (3) as demonstrated in previous work, late promoters outcompete middle promoters,43 namely that phage encoding proteins gp33, gp45, and the σ factor gp55 direct the

RNA polymerase to late promoters and outcompete the AsiA-σ70 heterodimers required for middle gene transcription.

Late— The luminescent outputs from the added late promoters unexpectedly do not correspond with the copy number selection criteria. Initially, we hypothesized a linear behavior in the rate of gene transcription and protein translation, hence promoters that correspond to a higher protein copy number would best magnify the Nluc signal. Hypothetically, promoters that initiate gp23 (L3) and soc (L5) would generate the highest Nluc signal. However, these two promoters suppress Nluc production and generated less luminescent signal relative to the control reporter phage. On the other hand, the promoter that initiates transcription of gp18 (L1) was the best performing among the five promoters but also has the lowest protein copy number. The addition of promoter sequence of gp18 (L1) resulted in RLU that is six-fold brighter than the control and all the other promoter sequences in its class with an AUC of 4.75 × 108 (Fig. 2). We previously expected that the promoter sequences for capsid structural proteins such as gp23 (L3) and soc (L5) would magnify Nluc output based on the high copy number required to assemble the phage particle; however, our overall results indicate otherwise. This phenomenon could be explained by the nonlinear relationship between transcription and translation.

Furthermore, we employed nluc as a normalizing factor in our study and thus we were able to attribute the differences in Nluc expression to promoter strength. In addition, we normalized the stability of the nluc transcript by using a universal RBS. It is possible that the gp18 transcript is

58

natively unstable due to a weaker RBS or other stabilization factors, resulting in a lower translation initiation rate and frequency relative to that of soc or gp23, and further explaining the lower protein copy number.

CONCLUSION

There is currently a need to improve phage-based biosensors with greater sensitivity to meet regulatory detection limits. We sought to address this need by improving the signal sensitivity of our reporter T4 phages by upregulating transcription of nluc. As part of our process, we developed an effective platform to evaluate and compare multiple native promoter activities within our reporter T4 phages. The combination of CRISPR/Cas9 assisted T4 phage engineering coupled with golden gate cloning allows for seamless integration of selected promoters and enables in vivo evaluation of promoter activity. As a result, we were able to upregulate Nluc signal by six- fold from the individual addition of a native promoter upstream of the reporter gene. This successful upregulation further optimizes the applicability of reporter phages in phage-based biosensors.

T4 phage gene expression is precisely controlled and is classified into early, middle, and late temporal class. Combining T4 phage promoter activity data from this study with the current classification system will allow us to manipulate the timeline of signal production for phage-based biosensors. We previously engineered a Nluc T4 phage that could detect <10 CFU/100 mL of E. coli in drinking water in approximately 7 hours in which nluc replaced the nonessential soc gene and hence also regulated by the native promoter of soc.34 The results presented in this study suggest that upregulating transcription via an added promoter will improve the assay sensitivity by six-fold, further reducing the current limit of detection and the 7-hour assay time. Collectively, initial in vivo promoter analyses indicate that when the reporter gene is placed under a multiplex

59

promoter system, reduced detection times and intensified detection signals throughout the infection cycle are possible.

Overall, our work provides a novel platform that enhances the applicability of phage-based biosensors to mitigate bacterial threats in our food and water systems. As phage-based biosensors are still in early stages of development, increased sensitivity will offer further innovations to this platform for practical application. With respect to T4 phages, transcription and translation regulation is complex and other factors in addition to the ones proposed in this paper should be considered to further upregulate protein output. Evaluation of native promoter activity is an initial effort at improving the downstream reporter signal of a phage-based biosensor. Inputting other factors involved in transcription and translation can further improve biosensor sensitivity; for instance, evaluating native and synthetic RBS to directly upregulate protein translation, utilizing the overexpression of enhancers or integrating synthetic or heterologous promoters each is a promising future path to further maximize signal sensitivity.

As a better understanding of phage molecular biology is obtained through evaluation of such factors, new frontiers in phage engineering will become available, such as fabricating customized phages for medical applications such as phage therapy and vaccine development.

Collectively, this work begins to tap and actualize the wide application potential and versatility of engineered phages to help address an array of bacterial threats.

60

REFERENCES

1. E. Jończyk, M. Kłak, R. Międzybrodzki and A. Górski, Folia Microbiol., 2011, 56, 191– 200. 2. Z. Wang, D. Wang, A. J. Kinchla, D. A. Sela and S. R. Nugen, Anal. Bioanal. Chem., 2016, 408, 4169–4178. 3. M. Breitbart, L. Wegley, S. Leeds, T. Schoenfeld and F. Rohwer, Appl. Environ. Microbiol., 2004, 70, 1633–1640. 4. J. Bai, Y. T. Kim, S. Ryu and J. H. Lee, Front. Microbiol., 2016, 7. 5. D. Schofield, N. J. Sharp and C. Westwater, Bacteriophages, 2012, 2, 105–121. 6. P. Yager, G. J. Domingo and J. Gerdes, Annu. Rev. Biomed. Eng., 2008, 10, 107–144. 7. R. García, S. Latz, J. Romero, G. Higuera, K. García and R. Bastías, Front. Microbiol., 2019, 10, 1187. 8. Z. Wang, D. Wang, J. Chen, D. A. Sela and S. R. Nugen, Analyst, 2016, 141, 1009–1016. 9. F. He, J. Grimes, S. D. Alcaine and S. R. Nugen, Analyst, 2014, 139, 3002–3008. 10. J. Chen, S. D. Alcaine, Z. Jiang, V. M. Rotello and S. R. Nugen, Anal. Chem., 2015, 87, 8977–8984. 11. D. Wang, T. Hinkley, J. Chen, J. N. Talbert and S. R. Nugen, Analyst, 2019, 144, 1345– 1352. 12. M. Adhikari, U. Strych, J. Kim, H. Goux, S. Dhamane, M.-V. Poongavanam, A. E. Hagström, K. Kourentzi, J. C. Conrad and R. C. Willson, Anal. Chem., 2015, 87, 11660– 11665. 13. S. D. Alcaine, K. Law, S. Ho, A. J. Kinchla, D. A. Sela and S. R. Nugen, Biosens. Bioelectron., 2016, 82, 14–19. 14. T. C. Hinkley, S. Singh, S. Garing, A.-L. M. Le Ny, K. P. Nichols, J. E. Peters, J. N. Talbert and S. R. Nugen, Sci. Rep., 2018, 8, 14630. 15. R. Derda, M. R. Lockett, S. K. Y. Tang, R. C. Fuller, E. J. Maxwell, B. Breiten, C. A. Cuddemi, A. Ozdogan and G. M. Whitesides, Anal. Chem., 2013, 85, 7213–7220. 16. N. Tawil, E. Sacher, R. Mandeville and M. Meunier, Biosens. Bioelectron., 2012, 37, 24– 29. 17. H. Baccar, M. Mejri, I. Hafaiedh, T. Ktari, M. Aouni and A. Abdelghani, Talanta, 2010, 82, 810–814. 18. M. Vinay, N. Franche, G. Grégori, J.-R. Fantino, F. Pouillot and M. Ansaldi, PLoS One, 2015, 10, e0131466. 19. L. Goodridge, J. Chen and M. Griffiths, Appl. Environ. Microbiol., 1999, 65, 1397–1404. 20. Z. Aliakbar Ahovan, A. Hashemi, L. M. De Plano, M. Gholipourmalekabadi and A. Seifalian, Nanomaterials, 2020, 10, 501. 21. D. A. Schofield, C. T. Bull, I. Rubio, W. P. Wechter, C. Westwater and I. J. Molineux, Appl. Environ. Microbiol., 2012, 78, 3592–3598. 22. Y. Born, L. Fieseler, V. Thöny, N. Leimer, B. Duffy and M. J. Loessner, Appl. Environ. Microbiol., 2017, 83, e00341–e00317. 23. S. Kim, M. Kim and S. Ryu, Anal. Chem., 2014, 86, 5858–5864. 24. C. Carrière, P. F. Riska, O. Zimhony, J. Kriakov, S. Bardarov, J. Burns, J. Chan and W. R. Jacobs, J. Clin. Microbiol., 1997, 35, 3232–3239. 25. L. H. Naylor, Biochem. Pharmacol., 1999, 58, 749–757.

61

26. M. P. Hall, J. Unch, B. F. Binkowski, M. P. Valley, B. L. Butler, M. G. Wood, P. Otto, K. Zimmerman, G. Vidugiris, T. Machleidt, M. B. Robers, H. A. Benink, C. T. Eggers, M. R. Slater, P. L. Meisenheimer, D. H. Klaubert, F. Fan, L. P. Encell and K. V. Wood, ACS Chem. Biol., 2012, 7, 1848–1857. 27. J. D. Willford, B. Bisha, K. E. Bolenbaugh and L. D. Goodridge, Bacteriophages, 2011, 1, 101–110. 28. T. C. Hinkley, S. Garing, P. Jain, J. Williford, A.-L. M. Le Ny, K. P. Nichols, J. E. Peters, J. N. Talbert and S. R. Nugen, Sensors, 2020, 20, 1953. 29. C. G. England, E. B. Ehlerding and W. Cai, Bioconjugate Chem., 2016, 27, 1175–1187. 30. S. Meile, A. Sarbach, J. Du, M. Schuppler, C. Saez, M. J. Loessner and S. Kilcher, Appl. Environ. Microbiol., 2020, 86. 31. J. M. Loh and T. Proft, Biotechnol. Lett., 2014, 36, 829–834. 32. D. Zhang, C. P. Coronel-Aguilera, P. L. Romero, L. Perry, U. Minocha, C. Rosenfield, A. G. Gehring, G. C. Paoli, A. K. Bhunia and B. Applegate, Sci. Rep., 2016, 6, 33235. 33. M. L. Sin, K. E. Mach, P. K. Wong and J. C. Liao, Expert Rev. Mol. Diagn., 2014, 14, 225– 244. 34. H. Zurier, M. Duong, J. M. Goddard and S. R. Nugen, ACS Appl. Bio Mater., 2020, 3, 9, 5824–5831. 35. E. S. Miller, E. Kutter, G. Mosig, F. Arisaka, T. Kunisawa and W. Ruger, Microbiol. Mol. Biol. Rev., 2003, 67, 86–156. 36. N. Bonilla, M. I. Rojas, G. N. F. Cruz, S.-H. Hung, F. Rohwer and J. J. Barr, PeerJ, 2016, 4, e2261. 37. A. Untergasser, Preparation of Electro-Competent Cells, http://www.untergasser.de/lab/protocols/competent_cells_electro_v1_0.htm. 38. W. Jiang, D. Bikard, D. Cox, F. Zhang and L. A. Marraffini, Nat. Biotechnol., 2013, 31, 233. 39. K. Wilkens and W. Ruger, Plasmid, 1996, 35, 108–120. 40. K. Williams, G. Kassavetis, D. Herendeen and P. Geiduschek, in Molecular biology of bacteriophage T4, ed. J. D. Karam and J. W. Drake, American Society for Microbiology, Washington, DC, 1994. 41. J. M. Greenwood, N. R. Gilkes, R. C. Miller, D. G. Kilburn and R. A. J. Warren, Biotechnol. Bioeng., 1994, 44, 1295–1305. 42. S. Myung, X. Z. Zhang and Y. H. Zhang, Biotechnol. Prog., 2011, 27, 969–975. 43. S. Kolesky, M. Ouhammouch, E. N. Brody and E. P. Geiduschek, J. Mol. Biol., 1999, 291, 267–281.

62

CHAPTER 4 GENOME SEQUENCE OF ENTEROBACTERIA PHAGE Mi

The Mi-phage was first reported by Trojet et al. 20111 and was identified as part of the T- even phage family (T2,T4,T6, etc.). Thus far, only the sequence of gene 38 for the Mi phage has

been reported. This short communication provides a complete genomic sequence and annotation

for the Mi phage. The complete genomic sequence will allow researchers to examine selected

genes and proteins from the Mi phage to broadly understand phages’ overall evolution, structure, and function.

The Nugen Research group received the Mi phage as part of a collaborative effort from the

Krisch Group in Toulouse, France.

Phage Propagation—The Mi phage was propagated using E. coli bacteria K12 under aerobic

condition at 37 °C. Mi phage propagation was performed via a double-agar overlay assay2 where

the soft agar overlay contains a mixture of the phage and the host, K12. After a 24-hour incubation

period, the soft agar lawn was harvested. The sample was subsequently centrifuged at 1000 rpm

for 30 minutes and the supernatant harvested containing the phage. The supernatant was filtered through a 0.22 µM membrane, tittered, and stored for future use.

Phage Genome Extraction and WGS—1 mL Mi phage containing approximately 1×1010

PFU/mL was processed using the manufacturer’s recommendation with the Norgen Phage DNA

Isolation Kit (Cat. 46800, 46850). 1.5 µg of phage DNA was submitted to the Cornell University

College of Veterinary Medicine Animal Health Diagnostic Center, Department of Molecular

Diagnostics for WGS (whole genome sequencing). The whole genome sequencing was performed

using the Illumina mySeq platform and Illumina Basespace Sequence Hub for data acquisition and

quality control analysis.

63

Mi Genomic Characteristics—WGS annotation was performed using Geneious Prime Software.

Reads were trimmed and filtered using the default error probability limit of 0.05. Subsequently, the sequence was “Error Correct and Normalized” using the default setting with the BBNorm plugin. Results indicate that the Mi phage is a T4-like phage and has 169,389 base pairs with a

38.1% GC content. Annotation prediction determines that Mi has 185 coding genes and eight tRNAs. BLASTn results confirm that the Mi phage is most similar to the T4 phage (99.87% identity) and is also closely related to RB59 phage (99.86% identity) as well as other phages such as RB18, T2, and GiZh within the Enterobacteria phage family. In addition, the Mi sequence also shows significant alignments to the Citrobacter phages such as PhiZZ6 and PhiZZ23.

Table 4. 1. Coding genes of the Mi phage predicted via bioinformatic analysis.

Name Minimum Maximum Length Direction nrdB.1 gene 156779 157030 252 forward nrdA.1 gene 153751 154077 327 forward nrdA.2 gene 153534 153797 264 forward I-TevI gene 152317 153054 738 forward frd.1 gene 150745 150987 243 forward frd.2 gene 150220 150606 387 forward frd.3 gene 149947 150174 228 forward SegG gene 148208 148840 633 forward 59 gene 147553 148206 654 forward 33 gene 147218 147556 339 forward dsbA gene 146971 147240 270 forward rnh gene 146045 146962 918 forward 36 gene 140216 140881 666 reverse t gene 135871 136527 657 reverse asiA gene 135598 135870 273 forward asiA.1 gene 135433 135585 153 forward arn gene 135158 135436 279 forward arn.1 gene 134943 135074 132 forward arn.2 gene 134576 134872 297 forward arn.3 gene 134118 134576 459 forward motA gene 133146 133781 636 forward motA.1 gene 132869 133018 150 forward 52 gene 131544 132872 1329 forward

64

52.1 gene 131399 131539 141 forward ac gene 131251 131406 156 forward stp gene 131163 131243 81 forward ndd gene 130708 131163 456 forward ndd.1 gene 130432 130647 216 forward ndd.2 gene 130313 130423 111 forward ndd.2a gene 130194 130316 123 forward ndd.4 gene 129983 130111 129 forward ndd.5 gene 129834 129932 99 forward ndd.6 gene 129751 129837 87 forward denB gene 129087 129644 558 forward rIIB gene 127842 128780 939 forward rIIA.1 gene 125439 125642 204 forward 60 gene 124852 125384 533 forward goF gene 121588 122013 426 forward cef gene 121373 121588 216 forward motB gene 120714 121202 489 forward motB.2 gene 119695 120195 501 forward dexA gene 118948 119631 684 forward dexA.1 gene 118706 118948 243 forward dexA.2 gene 118468 118713 246 forward dda.1 gene 116819 117130 312 forward srd gene 116071 116817 747 forward modA gene 115346 115948 603 forward modB gene 114726 115349 624 forward modA.2 gene 114476 114658 183 forward modA.3 gene 113997 114467 471 forward modA.3 gene 113997 >114025 >29 forward modA.4 gene 113840 114004 165 forward srh gene 113640 113843 204 forward mrh gene 113180 113665 486 forward mrh.1 gene 112830 113171 342 forward soc gene 112283 112525 243 forward soc gene 112283 >112522 >240 forward segF gene 111576 112250 675 forward sp gene 107805 108098 294 forward 61.4 gene 107487 107744 258 forward dmd gene 107303 107485 183 forward 41 gene 105817 107244 1428 forward uvsX gene 104295 105470 1176 forward b-gt gene 102401 103456 1056 forward 42 gene 101637 102377 741 forward imm gene 101232 101483 252 forward

65

43 gene 97963 100659 2697 forward regA gene 97516 97884 369 forward 62 gene 96951 97514 564 forward 45 gene 95252 95938 687 forward rpbA gene 94807 95196 390 forward 45.2 gene 94609 94797 189 forward 46 gene 92871 94553 1683 forward 46.1 gene 92668 92874 207 forward 46.2 gene 92424 92687 264 forward 47 gene 91408 92427 1020 forward 47.1 gene 91271 91411 141 forward a-gt gene 90029 91231 1203 forward mobB gene 89176 89970 795 forward a-gt.2 gene 88933 89124 192 forward a-gt.3 gene 88745 88948 204 forward a-gt.4 gene 88459 88776 318 forward a-gt.5 gene 88239 88457 219 forward 55 gene 87698 88255 558 forward 55.4 gene 86686 86817 132 forward 55.5 gene 86385 86678 294 forward 55.6 gene 86210 86392 183 forward nrdH gene 85743 86051 309 forward 55.8 gene 85528 85740 213 forward nrdG gene 84939 85409 471 forward mobC gene 84317 84949 633 forward I-TevII gene 82243 83019 777 forward nrdD gene 81470 84320 2851 forward 49 gene 81156 81473 318 forward 49 gene 81000 81473 474 forward pin gene 80473 80958 486 forward 49.1 gene 80334 80489 156 forward 49.2 gene 80029 80349 321 forward 49.3 gene 79724 80032 309 forward nrdC gene 79464 79727 264 forward nrdC.1 gene 79220 79462 243 forward nrdC.2 gene 78919 79233 315 forward nrdC.4 gene 76940 77941 1002 forward nrdC.5 gene 75860 76882 1023 forward mobD.2 gene 69924 70028 105 forward mobD.3 gene 69506 69700 195 forward mobD.4 gene 69321 69503 183 forward mobD.5 gene 69133 69321 189 forward rI gene 68359 68652 294 forward

66

rI.1 gene 68134 68346 213 forward tk.1 gene 67320 67508 189 forward tk.2 gene 67138 67323 186 forward tk.3 gene 66929 67141 213 forward tk.4 gene 66465 66932 468 forward vs gene 66121 66468 348 forward vs.1 gene 65583 66128 546 forward regB gene 65114 65575 462 forward vs.3 gene 64776 65054 279 forward vs.4 gene 64510 64776 267 forward vs.7 gene 63597 63926 330 forward denV gene 62507 62923 417 forward ipII gene 62144 62446 303 forward ipIII gene 61447 62028 582 forward nudE gene 60372 60827 456 forward e.2 gene 59903 60211 309 forward e.3 gene 59544 59906 363 forward e.4 gene 59170 59562 393 forward e.5 gene 58593 59201 609 forward e.6 gene 57957 58550 594 forward e.7 gene 57559 57894 336 forward e.8 gene 57239 57502 264 forward gene 56816 56954 139 forward gene 56616 56690 75 forward segB gene 55945 56610 666 forward gene 55830 55903 74 forward gene 55753 55828 76 forward gene 55659 55745 87 forward gene 55583 55656 74 forward gene 55499 55572 74 forward gene 55407 55493 87 forward gene 55333 55405 73 forward trna.2 gene 54948 55235 288 forward trna.3 gene 54535 54945 411 forward trna.4 gene 54349 54534 186 forward ipI gene 53985 54272 288 forward 57B gene 53453 53911 459 forward 3 gene 51909 52439 531 forward 2 gene 50978 51802 825 forward 4 gene 50526 50978 453 forward 53 gene 49888 50478 591 reverse repEB gene 49745 49882 138 forward repEA gene 48626 48778 153 forward

67

5.1 gene 47648 48142 495 reverse 5.3 gene 47071 47241 171 reverse 5.4 gene 46790 47083 294 reverse 9 gene 39777 40643 867 reverse 11 gene 37310 37969 660 reverse 15 gene 31677 32495 819 reverse 16 gene 31174 31668 495 reverse 17 gene 29358 31190 1833 reverse 17 gene 29358 30929 1572 reverse 17 gene 29358 30875 1518 reverse 17 gene 29358 30608 1251 reverse 19 gene 26739 27230 492 reverse 20 gene 25081 26655 1575 reverse 67 gene 24839 25081 243 reverse 68 gene 24414 24839 426 reverse 21 gene 23776 >23858 >83 reverse segD gene 20631 21302 672 forward 24 gene <20074 20540 >467 reverse 24 gene 19257 20540 1284 reverse 24.2 gene 17935 18213 279 forward hoc gene 16513 17643 1131 forward inh gene <16457 16503 >47 forward segE gene 15156 15773 618 reverse uvsY.-2 gene 13166 13333 168 forward uvsY.-1 gene 12915 13139 225 forward uvsY gene 12502 12915 414 forward 25 gene 12027 12425 399 forward 26' gene 11740 12027 288 forward 26 gene 11401 12027 627 forward 27 gene 9426 10601 1176 reverse 28 gene 8948 9481 534 reverse 48 gene 6076 7170 1095 reverse alt.-3 gene 4792 5082 291 forward alt.-2 gene 4556 4759 204 forward

Table 4. 2. tRNAs identified within the Mi phage genome.

Name Minimum Maximum Length tRNA-Arg 56616 56690 75 tRNA-Ile 55830 55903 74 tRNA-Thr 55753 55828 76 tRNA-Ser 55659 55745 87 tRNA-Pro 55583 55656 74

68

tRNA-Gly 55499 55572 74 tRNA-Leu 55407 55493 87 tRNA-Gln 55333 55405 73

REFERENCES 1. Trojet, S. N., Caumont-Sarcos, A., Perrody, E., Comeau, A. M. & Krisch, H. M. The gp38 adhesins of the T4 superfamily: A complex modular determinant of the Phage’s host specificity. Genome Biol. Evol. 3, 674–686 (2011). 2. Pawlowski, W. P., Grelon, M. & Armstrong, S. Bacteriophages Methods and Materials. (2013).

Mi ASSEMBLY

1 TTATTGGATGGCTCGAGGGGAGCGTGACAATATTCCAAAAACTGCTCAGCGAGTTTATAC 60 6 1ATGGAATGATGTAGAGAATAAGCTTTTTTCACCAAAGGAAAATAAAGAAAGTTTTGATAG 120 121 TGAAAAAGCTATAAAAGATGTAATTGAGAAGATGATTAAAAACGATTCTTTTCCTTGGAA 180 181 CACTACCTGGAGAACTCCTGGATTTAATCCTTATAATCCATATCATCCATATTATACGCA 240 241 CTCACACCAGATGCATCCATTCCATACATGGAGTTATATTAAGCCTGGCGATGCAGGGTA 300 301 TTTTAATAGACTTACTAGTGGTAGTGGTGATAATATTTTCCAAGGAGCATTCTAATGTTT 360 361 GTTGTTCACACTATTTATGAAAATGAAGGTAATACTACACGTGATTACGGTCACGTAAAT 420 421 CAATTTTTTAGATGCAATCCAGAATTTCGAGCTCAAAAAGACGAACGAATTTTTAAAAAA 480 481 TGCGTAGAGCAAGGTTTCATTTACGTCAAGCACTGGATGCAAGGAAATAAAGTTAGAACC 540 541 ACATATCATAGGTCTTTGACTGAGCTTAATGATGAATTGATTTATAATAGAGCTGTAAAC 600 601 CAAACTCTGAAGGATGAATAATGATTCTTAAAATTCTGAACGAAATAGCATCTATTGGTT 660 661 CAACTAAGCAGAAGCAAGCAATTCTTGAAAAGAATAAAGATAATGAATTGCTTAAACGGG 720 721 TATATCGTCTGACTTATTCTCGTGGATTGCAGTATTATATCAAGAAATGGCCTAAACCTG 780 781 GTATTGCTACCCAGAGTTTTGGAATGTTGACTCTTACCGATATGCTTGACTTCATTGAAT 840 841 TCACGTTAGCTACTCGGAAATTGACTGGAAATGCGGCAATTGAGGAATTAACTGGATATA 900 901 TCGCCGATGGTAAAAAGGATGATGTTGAAGTCTTGCGTCGAGTGATGATGCGAGACCTTG 960 961 AATGCGGTGCTTCAGTATCTATTGCAAACAAAGTTTGGCCAGGTTTAATTCCTGAACAAC 1020 1021 CTCAAATGCTGGCAAGTTCTTATGATGAAAAAGGCATTAATAAGAATATCAAATTTCCAG 1080 1081 CTTTTGCCCAGTTAAAAGCTGATGGGGCTCGGTGCTTTGCCGAAGTCAGAGGTGATGAAT 1140 1141 TAGATGATGTTCGTCTTTTATCACGAGCTGGCAATGAATATTTAGGATTAGATCTTCTTA 1200 1201 AGGAAGAATTAATCAAAATGACCGCTGAGGCCCGCCAGATTCATCCAGAAGGTGTGTTAA 1260 1261 TTGATGGCGAATTGGTATACCATGAGCAAGTTAAAAAGGAGCCAGAAGGCTTAGATTTTC 1320 1321 TTTTTGATGCTTATCCTGAAAACAGTAAAGTTAAAGAATTCGCCGAAGTAGCTGAATCAC 1380 1381 GTACTGCTTCTAATGGAATCGCCAATAAATCTTTAAAGGGAACCATTTCCGAAAAAGAAG 1440 1441 CTCAATGCATGAAGTTTCAGGTCTGGGATTATGTCCCGTTGGTAGAAATATACGGTCTTC 1500 1501 CAGCATTTCGCTTGAAATATGATGTACGTTTTTCTAAATTAGAACAAATGACATCAGGCT 1560 1561 ATGATAAAGTAATTTTAATTGAAAACCAGGTAGTAAATAACCTAGATGAAGCTAAGGTAA 1620 1621 TTTATAAAAAGTATATTGACCAAGGTCTTGAAGGTATTATTCTCAAAAATATCGATGGAT 1680 1681 TATGGGAAAATGCTCGTTCGAAAAATCTCTATAAATTTAAAGAAGTAATTGATGTTGATT 1740 1741 TAAAAATTGTAGGAATTTATCCTCACCGTAAAGACCCTACTAAAGCAGGTGGATTTATTC 1800 1801 TTGAGTCAGAGTGTGGAAAAATTAAGGTAAATGCCGGTTCAGGCTTAAAAGATAAAGTCG 1860 1861 GCGTAAAATCACATGAACTTGACCGTACTCGCATTATGGAAAACCAAAATTATTATATTG 1920 1921 GAAAAATTCTAGAGTGCGAATGTAACGGTTGGTTAAAATCTGATGGCCGCACTGATTACG 1980 1981 TCAAATTATTTCTTCCGATTGCGATTCGTTTACGTGAAGATAAAACTAAAGCTAATACAT 2040 2041 TCGAGGATGTATTTGGTGATTTTCATGAGGTAACTGGTTTATGAAAGCTTACTTAGAAAC 2100 2101 AGTTGTCGTAGCTCAAAAAGAAGGTGGAGATGTTTCTACTTCTGTATCACAAGTCGTTCT 2160 2161 CGAATTTGTAGATGCATATGCTTATAATAAATTTACAGAAACATTTGATGCCTATGAAAA 2220 2221 AGGTCCAAAGTTTGAAATATATCGTACTCTCTTACCACTAGATTATTAAAGGCCTTCGGG 2280 2281 CCTTTAATTTTATAAATAGAATAAACACTAGAGAGGATATGATGGAACTCATTACAGAAT 2340 2341 TATTTGACGAAGATACTACTCTTCCGATTACAAACTTAAATCCAAAGAAGAAAATACCAC 2400 2401 AAATTTTTTCAGTTCACGTTGATGATGCAATTGAACAACCAGGCTTTCGTTTATGTACCT 2460 2461 ATACATCTGGAGGTGATACTAATCGCGATTTAAAAATGGGCGATAAAATGATGCACATTG 2520 2521 TTCCTTTTACATTAACTGCTAAAGGTTCAATTGCTAAATTAAAAGGTCTTGGTCCAAGCC 2580

69

2581 CGATTAATTATATCAATTCAGTTTTTACTGTCGCAATGCAAACAATGCGTCAGTATAAAA 2640 2641 TTGATGCTTGTATGCTTCGTATTCTTAAGTCTAAAACTGCTGGCCAAGCTCGACAAATTC 2700 2701 AAGTTATTGCTGATAGACTTATCCGTAGTCGTTCAGGTGGAAGATACGTCCTTCTTAAGG 2760 2761 AACTCTGGGATTATGATAAAAAGTATGCATATATTCTTATACATCGCAAAAATGTATCAC 2820 2821 TAGAAGACATTCCAGGAGTTCCGGAAATTAGTACCGAGCTCTTTACTAAGGTTGAATCGA 2880 2881 AGGTCGGTGATGTTTATATCAATAAAGATACTGGAGCTCAAGTAACTAAAAACGAGGCAA 2940 2941 TTGCAGCATCTATTGCGCAAGAAAACGATAAACGTTCTGACCAAGCTGTAATCGTTAAAG 3000 3001 TTAAAATTTCCCGTAGAGCAATTGCGCAAAGTCAGTCGTTGGAATCTTCTAGATTTGAAA 3060 3061 CGCCGATGTTTCAAAAATTTGAGGCTTCAGCAGCAGAATTAAATAAACCTGCTGACGCTC 3120 3121 CTTTAATTTCTGATGCTAATGAATTAACTGTTATTTCTACTTCAGGATTTGCACTAGAGA 3180 3181 ATGCTCTTAGCAGTGTTACAGCTGGGATGGCATTCAGAGAAGCTTCTATAATTCCTGAAG 3240 3241 ATAAAGAATCCATTATTAACGCAGAAATAAAAAATAAAGCTTTAGAAAGATTACGAAAAG 3300 3301 AATCTATTACTTCAATAAAAACCTTAGAAACTATTGCTTCTATCGTCGATGATACTTTAG 3360 3361 AAAAATATAAGGGTGCTTGGTTTGAAAGAAATATTAACAAACATTCGCATTTAAACCAAG 3420 3421 ATGCTGCAAATGAGTTAGTACAAAATTCTTGGAATGCAATAAAAACAAAGATTATTCGAA 3480 3481 GAGAATTACGTGGATATGCTCTTACCGCTGGATGGTCATTACATCCTATAGTCGAAAATA 3540 3541 AAGATTCATCTAAATACACACCAGCGCAAAAACGCGGAATTCGTGAATACGTAGGTTCAG 3600 3601 GATATGTAGACATAAATAATGCTCTTTTGGGATTATATAATCCAGATGAGCGTACAAGTA 3660 3661 TTTTGACAGCATCTGACATAGAAAAAGCTATTGATAATTTAGATTCAGCCTTTAAAAATG 3720 3721 GTGAACGATTACCAAAAGGTATTACTTTGTATCGTTCACAACGAATGTTACCTTCAATAT 3780 3781 ACGAAGCAATGGTAAAAAATCGAGTTTTTTATTTTAGAAACTTTGTGTCAACATCATTAT 3840 3841 ATCCAAATATTTTTGGTACTTGGATGACTGATTCATCTATAGGTGTTTTACCAGACGAAA 3900 3901 AGCGTTTAAGCGTTTCTATTGATAAAACTGATGAAGGACTTGTAAATTCTAGCGATAATT 3960 3961 TAGTTGGAATTGGATGGGTTATTACTGGGGCTGATAAGGTCAATGTTGTTTTACCCGGTG 4020 4021 GAAGTTTAGCGCCTTCAAATGAAATGGAAGTCATTTTGCCACGTGGATTAATGGTCAAAG 4080 4081 TTAATAAAATAACCGATGCATCTTACAATGATGGAACAGTTAAAACTAACAACAAGCTTA 4140 4141 TTCAAGCTGAAGTTATGACCACAGAAGAACTCACCGAATCGGTAATCTATGACGGAGACC 4200 4201 ATTTAATGGAAACTGGTGAATTGGTTACAATGACAGGTGATATAGAAGATAGAGTTGACT 4260 4261 TTGCATCATTTGTTTCATCAAATGTTAAACAGAAAGTAGAATCATCTCTTGGAATTATTG 4320 4321 CGTCTTGCATAGATATTGCAAACATGCCTTACAAGTTCGTTCAAGGATAAATCATGGAAC 4380 4381 TTATTACAGAATTATTTGACGGCGCTTCGGCGCCGGTTGTTAACTTAAATCCTAAGCATA 4440 4441 AAATACCACAAATTTTTGCTATTCAAGCCGGTGAAGAAAGTGTACTTCCTGGATTTAGAT 4500 4501 TTTGTACATACACCTCTGGCGGTGATACAAATAAAACGTTAAACCAGGCGATAAAATGAT 4560 4561 GCATATCGTAATGATAGGTGTTAATGAGAAACTATCATTAGTTAAGCTTAAAAACTTGGG 4620 4621 TGGAAATCCAATTGGTGTCATTAATGCTGTTTTTGATACTGCTCTTCAAACAATGAAACA 4680 4681 GTATAAAATCGACGCATGCCTATTACGCGTACTAAAAAGTTCAAAATGTAGTTTACAAGT 4740 4741 CCCTCGTGTTGTGTTATAGTAGTCTTACTAACATAACATGAGGAACACAAAATGAAATCT 4800 4801 TCTTTACGCTTTTTAGGTCAAGAACTTGTAGTTGAAGGCGTTATTCCTGCTGATAATGCT 4860 4861 TTTAACGAAGCGGTTTACGATGAATTTATCAAAATTTTTGGAACAGATAAAAAGTTCGGA 4920 4921 ATTTTTCCTTCTGAAAATTTTTCAAAGCCAGAACAGACTGAAAGTATTTTTCAGGGTGTA 4980 4981 GTAACAGGTAAATTTGAGTCAGAAGCTCCTGTAAAAATTGAAGTTTATATTGAAGACAGT 5040 5041 TTAGTTGCTTCAGTTGCTGCTTTCATTTCATTCCGTAAATAAAAATATGGGGACCTTTCG 5100 5101 GTCCCCATTGTTATATTGCTCCTAATATTTTACTCTGCGAATTGACAATTCCTGTCATAG 5160 5161 TATTAATGTTTGAAATGCTTCCTGCAGTTCCCCCTAATCTACTAAGTCGTGAAAGCGAAT 5220 5221 TAGATAGTCCAGTAACACCTCCACTATTTCCGAGAACGCTTTGAATACCATTTATAGCAG 5280 5281 CAGATTCAAGCCATTCAAGCGCAGCTTGCCTATCAACTGCTCCAGCCTGCATCACTCTGT 5340 5341 ACGCAAAAGTAACATCAAATGTAGTTATTTGGTTATCTCCATCATATGATAACTCAGGAG 5400 5401 CGCTCACTGATATTGGAATGCATCCGGTGAACATCACCGCAGTATGAGGTAATCCATTGC 5460 5461 GAGAATGAAGATTAACCTGAATATCTGCCTCGACATCTTGTGGCAAAGCACGCAGTCCAG 5520 5521 TTACTGGGTCTTGAACGGAGTTAACCCAGTCTTGCATTGCACGATAGTTACAAGCTTCTG 5580 5581 AATCCATTCTAAATGAAATAACCAAAGGGTCTAATTCTCTTCCGGTTATACGAATATTAG 5640 5641 GAGAATTATAGTTCCAGTCAGTTTCATAGGATAATCTATTCTCTGGCATTTTTACAGAGT 5700 5701 ATATCATCAATCCAGATGAGTTATATGCCATGTTAAAGAAGTCAATTAAATATGTACCAA 5760 5761 CTGTAAATGAGCCTAATAAACTTTGAACTGTACGTTGACTCATGGCACCAATAAGATATT 5820 5821 TACTGACTCCTGATTTTCTTATCAGTTTTTGTGTGCCAGCTGTAATTAGCGTGGTAATTC 5880 5881 CCTGATTAATATCACCTTGAGTTAATCCTAACCAATCTGAATTTAGGCCCAAGTTATTAT 5940 5941 AAGAAAAGTTGCTAATTGAACTTATCAACGAAGAGCTTTTAGTTGATGGAGTTGTCGCAA 6000 6001 AAACGCAGCTAAACATATTATTACGTTGGAAATCTGCGTTTATTGCTTGATTATTAAATT 6060 6061 CCTCTAAAGAATACATTAAAAAGTCCCCGCATATAAAGAAGCACGGTTTAACGTGATAAT 6120 6121 TTCTCTCATAGTAATCTCGAGAGTAAATGTACTAGGGAGGTTTGGAGCAATAGCTAATCC 6180 6181 GTTAAAGTTACCATTAGGTGTTTTATCAAATCTAATGCTCTGTATTTGACATGGACCAAA 6240 6241 TATTTCCGTTTTTCCATCAAACTTAGATGTTGCGCCAAAGTTTTTCACCATCCAAACTGT 6300 6301 CGGGTTTGAAACTACTAGAACGTTAGTTAAACTCGATGTCATTTTCTCAAATAGTGTTTT 6360 6361 ATTTTTAGCTGCGTCTTCCGGAGATAAAGGTTCAATTAACGTAGAACGATACCAATCATC 6420 6421 TAAATACCCCTTTATTTCAGCAGCATATTGAGATTTACCCGTTTCACCATAAGAAAAATA 6480 6481 GTTAAAATATTGATAGATATTAATAATAGCCATTAAATCTTCTGTTGAACGTGGAGTCAA 6540

70

6541 ATCCCATGTAAACACTTTAGTTCTATTTTCAGCACCACCATACATACTTCTGGCTGTCGT 6600 6601 ATAAATCTGTTCATTATTATCAGCCATTATACCTTGTGTTATACTTTCCAGTGCCCCAAA 6660 6661 TACTGCGGTTGAAGCAATATTACTTAGCACACCAGTAGCAGTACCTCCGCCTCTACTGAT 6720 6721 AAGGCTTTCTTGAACATCATTAAATCTATGTGATGATGTATCAACATCAGATTTAGATCT 6780 6781 CGGTAAAAGAATGTTTGCGATAGGAGATTTACTTATTGTTCCTGAATTATTATTTGATAT 6840 6841 TAATCCATTTGATAGTTTTGATACTGTACTACTAATAGTGTTTCTAGCTGTACGTAAAAT 6900 6901 ACTCGAAGATGAAGAAGAGTAGTTAGATCTCATCGATCTAAGACTTCCAGAATCCCTAGA 6960 6961 TGACATATTGTATGCAGTAAATAATAATCCATTCTTATATAGATCTGTTACCTGGAAGTC 7020 7021 CTCTGTAGTGTCATTACCACTAGCACGCCCAGTTGGAAACTGGGCTGTGTATGTTTTAGT 7080 7081 TCCTACTTCTGATTTAGTACTCTGTCCGGCTGAAATTTTCTCACCGGACTTTTTAATTAA 7140 7141 ATCAGCAGTTATTTCTTTAACAATTGCCATATTATTCCTTAATTAACTCCAGTCGCATCA 7200 7201 AATACACCAGGAGCAGTCGTGCTCGTTACAGGTGTCATATTATGAACGACAGTATTTTTC 7260 7261 TTAATAACATTATTAGTATTATTGATCGAAGGAGATGCTTGTTGAACAGGAGCTTGCTGT 7320 7321 GCTTTGTTCTTTTCAATCACCTGGACTTGTTTCGCTTCTGGTGATTTAGCAGAAGTTTCA 7380 7381 GGTTTGGCATTAGGCTGATTTTTCTTGAGCTCTTGATAAGTAGCATCAATTTTAGAAAAT 7440 7441 CTAGCAGCAAGTTCTTTTTTAACTGCCGGTGAATTATTTAAATCCGGGTCATCCATCCGT 7500 7501 TTTTTAAGGTCTTCATAGGCAGCTTCAACTGATTTAACCGTTGAGTCTTTACTCATATCA 7560 7561 GCTGAATCGGCATATTTTTCAAAACGAATCATCGCAGCACGAGCTTCATTAGCCTTCATT 7620 7621 AAAGCATTTTTTCTTTCTTCCGGTGAAAGTTGCTTTAATTTTTCTTCTTCTGCCGCACGC 7680 7681 TCTTCGTCGGTAGTCAGCGCTTCTTTATTATCTACACCACGAATCCAGTTAGATGCACGA 7740 7741 GTTTTCCAGTTAGAGATTTTGTCTAGTCCTTCTGCTATTGGGCCAAGGTCTCCATTCATT 7800 7801 CGTTTATCTTGATAATTTGCTACTTTTTCTTGGTCTTCTTTATTGAGAGATGCTCCAGTA 7860 7861 GAATTTTGGAAATTTTCTAATGCTCTTCCTTCTACTTCATCAGCAGTATCCTTCATACCA 7920 7921 GGAATGACTCGAAGAATTGCTGCAGATAATTTAGCCATACCTAATTGAATAAGTTCACCT 7980 7981 AAATTAAAAAGAACCTTTCCAAGCCCTTCAACAATAGCTACTGTCAATCCACCCCAATCT 8040 8041 CCCGCTTCCCAAAGTTGTTTAATTTTATCAATAGAATCAAAGATGCTCTGTAATAAAGGA 8100 8101 CCCCAAGTTCCGGTTTCGCTAGAGAATTTGGTAAAGTCTGTACTAAACAAATCCCAGGCT 8160 8161 TTTGAAAATTTATCTGACCAGTATTTAAAGTGAATCATCAAAAGGTCTATTCCAACAACA 8220 8221 ACAGCCAATATCATTGCAGTCATTTTAGCAGCTTCAATAGCAGCACTGACGGTGTACTTA 8280 8281 AATAGCATGCTTGATATTTTATCAGTAATTGAAATGGATTTTTTAAATCCAAAATCAACA 8340 8341 GTCTTCGTTAATTTATCTAAAGCTTGAGATAATTTTAAGTTAAATGCTTCTTTTTTCTGT 8400 8401 TTTTCTTCTGGTGATTCTTGCTTTGGCTCAACTGGCTGAGGGGTAGGGAAAAAATCAGCG 8460 8461 TCAGGATCATTATTAACTGCTTCAGGAGCTGGTAATAAAGGACCCACAGATTCAGCAGTA 8520 8521 TCATCCTCAACGACTTTAACAGGAATAGCGCTTTCAACCGTAGCTAAACTAGTTCCAGTC 8580 8581 TGTTGAATTCCAGCTGTCTGGATTTTTTGCTCTAGTAAACTTGTTAATTTATCTAATTTG 8640 8641 CTTCCGAGCGATTCACCGATTTCTTTATTAATATTGTTGCCAATTTCGACAGTTTCAGCA 8700 8701 ATTAACTCAGAACCGGCAGTAGTATCACTCACTGCGCTTTCTACATTGTCAATTGCTCCA 8760 8761 ATTATTTCATTCGATTTTTCTTCGACAGTTTGAGCTATTAATTCAGAAGCAGCTTGAGCA 8820 8821 TCATCCAATTTCGTAGATATGTCATTAAGCCCAGATAAAGTATTAGAAGCGGATTTAGCC 8880 8881 GCTTCCTGTGTTGGTTTATTATCTGAAATAACTTTTCTACGCATCGTTTGCATTTCTTGT 8940 8941 GGCTTTTTCATTCAAATAATCCAATAATATTGCCAATTCCAGTTATTGGACCATTAGGGC 9000 9001 CAGGAATTGCTAAAGTTGTAAAAATATCATTTGCCCATTTTAAAACGAATGCTGGCATCT 9060 9061 CAAGAAAATTAATTTCTTTAACTTCATCGTTGACCCTAAGTAAGCATTTAGATAACATAT 9120 9121 CGCTCACCGTTAAAAATTGTTCAAATTTTCCAGGAGGTCTAAAATAAAATGTATTTCCTT 9180 9181 GGTATTGAAATTCCAATCTTTGGCATACATAAACATCATTAATGTCATAAGTATAACCAT 9240 9241 CTATTTCTTTACGAGATTTAATCTTTCCATTAAATTCCAATAAATGAATAGAAACGAAAT 9300 9301 CAACTTCTGCCGGTGATAAATTCGGACAAATAGAATCAATGAGAAGTTTTAAATTTTCAT 9360 9361 CAGGACCTTTAACATCTTTTAAAATGTTATAATGTTTAAGACCCATTTTAGGAATAGAAA 9420 9421 CTTCTTTATTGCTTATTGGAAGAACTACTTTCTTCAGTGGTAGTATCAGATTTAAATTCA 9480 9481 TTTTTAACCTTAACTGGGTCTATTGTTTCCAGTTTCGTTGCATTAGTGAACATATATAGA 9540 9541 TGAGTTACTGAATTATTATTGGATAATTCATGGATAACTTCATCAACGTAAAATTCTGTT 9600 9601 TTAAATTGGTTTTTACTATCATTAAAAATAATTTTAACACCAGGAGTCAAGTTAAAATTA 9660 9661 CCGATAGTAGAACATTTAGCATAGCCGTCATATTGTGCCATAGTTTGAAGACGAATAGCT 9720 9721 TCTTCATATCCATTCCTATAAGTCATTTCAGAATAAGCACCTGACCTTGACACCACAATA 9780 9781 GAGTTTTCACCCTTTCCTGTAGTAATCATTGGTATTGAAGAATCTAAAAATGAATGCGCA 9840 9841 TAGATAGTAGCGTTTTTCATTGGGTCACGTTTGTGAGGATTCGATTTAGTCAACCAAACG 9900 9901 AAATCATATGCTAATGGATATTTTAATTCTTGGATGAATTGACCTATTAAAGATGGCTCA 9960 9961 CCGACAATCATTGGATATGGTTCTTGATTTATCATCATATCATAGTCCATCATGTTAACG 10020 10021 CCCATGATGTCTTGCCATACAAATACAAATTTGTCGCTTCCTACAGCTAGAGCAACTTCT 10080 10081 CTTACATATGACAAATAGTTTTCAAATGTGCTAGTCCATGGAATATCAGGAACATAAGCA 10140 10141 TTTATAGCATTTATTGCTGGAGTTAATAATGTGCGATCCTGATAAATGACACCAAGCATT 10200 10201 TCTTTTATAGATTCACCTGCATCAGGGAAAAATGGTCTACCAAATTTAAGATTTTCTATA 10260 10261 GAATGAATAGTTCCCAATTCAATAGCAATGATGTTATCACCTTTTGAATCTACTGACACG 10320 10321 GAAAAATGCTTACATCCATAAATTCGTGTTTTAACATTATTAATATCATTTGCATTAGCT 10380 10381 ACAGAAATCTGAATTATTTCATTTCCATCCATTTTTGTATGGATGTTTTTAGAATCATAA 10440 10441 AACTGCAGCATTCCTTCATTTCGGCCATAAAGAGAATCCCGCATAGTTAATGTGGTAATA 10500

71

10501 GTAGCAGCTAATTCAACAAATCTATTATTACTCCAAGCGTCGTAGCTATCAAATAATTTA 10560 10561 ACGCTGAGATTTGGATATCCGGGGCGTTGCAACATACTCATTATTGTTTATCCTTCTCAA 10620 10621 TCAGTTTTAATACGAATCCGCGCTCGGCAGGAATCATTTTCATTATTGAATTTAAGCTAT 10680 10681 AATTACTTTTTACGAGTGTGTGATTAATTTGATAAAAAGTAAATATCTCATCTGGGTTAA 10740 10741 CTAATAGCTTAAACACGTCTACTATATCAGTGTATTTTTTAATGTACTTATTACAGCATG 10800 10801 ACATGTGTAGAGTTAAATTAATAGGATTCATTGCATCGAGAATTTTTTCTAATGTTTCTA 10860 10861 TCTCGATGGCGTCAACTAGTTCTATTTGACTGGACTCGCTAATTTCCTTCCAATCATACC 10920 10921 ATATTTCATCTACTTGAACAGAATGAATATTTTCAGTAATCATCTTTGCTTTATTTTCAT 10980 10981 AAAACTCAGAAGGAAACTTTAATTTAATTTTAACATTAGCTACATCAAAAACAGGTTCCT 11040 11041 TTAATTCTTTTTGATATATTTCAAATGGAACTGTCTTTTCTTTTTTACATTTTGGACATA 11100 11101 TAAATGTGACCGGTACTTTAGTTTTACCTATTGACCCTACAAATACCTGCAAAAATATAA 11160 11161 ATGGTTGCCAAGTCTTCGGATAGTCTCCAAAATAATCATCAATTAAATCAGTAATTATTT 11220 11221 CTTTTTGTTCTTGTGGTGACCGATGTTCTATATCGTTTCGAACTAACAAAAAATCTCGAT 11280 11281 AATCTTCTACCGTAAATGGTTTAAAACGATGAACACCATCTGGTAATTTACAACGAATAA 11340 11341 TGTTTGCCATAGATGCTCCTTTTATTCTATTTATAAATATGATAAATAAAGGAGCTAAAT 11400 11401 ATGTATGAATACAAATTTGATGTGAGAGTTGGTTCTAAAATAATCAATTGTCGCGCATTC 11460 11461 ACGCTTAAAGAATATCTAGAACTTATTACTGCCAAAAATAATGGTTCCGTAGAAGTAATT 11520 11521 GTTAAAAAGCTAATCAAAGACTGCACAAATGCAAAAGATTTAAACCGCCAAGAATCAGAA 11580 11581 CTATTGTTGATTCATTTATGGGCACATTCTCTCGGTGAAGTTAATCACGAAAACTCCTGG 11640 11641 AAGTGCACCTGTGGAACTGAAATACCAACCCATATAAATCTATTACATACACAAATAGAT 11700 11701 GCACCAGAAGACCTCTGGTATACACTAGGTGACATTAAAATTAAATTCCGATACCCTAAA 11760 11761 ATTTTTGATGATAAAAATATAGCCCACATGATAGTATCATGTATAGAAACGATTCATGCT 11820 11821 AACGGGGAAAGCATTCCAGTTGAAGACTTAAATGAAAAGGAACTAGAAGATTTATATTCT 11880 11881 ATCATCACAGAGTCAGATATTGTAGCTATAAAAGATATGCTTTTAAAGCCTACCGTTTAT 11940 11941 TTGGCTGTTCCAATTAAGTGTCCAGAGTGTGGAAAAACCCATGCTCACGTAATAAGAGGC 12000 12001 CTCAAAGAGTTCTTTGAGTTACTATAATGGCAAATATTAATAAGCTTTATTCTGATATTG 12060 12061 ACCCGGAAATGAAAATGGATTGGAACAAAGACGTTTCCAGATCGCTTGGATTAAGGTCAA 12120 12121 TTAAAAACAGTCTTTTGGGAATTATTACAACAAGAAAAGGTTCAAGACCGTTTGACCCTG 12180 12181 AATTTGGATGTGATTTATCAGACCAGCTTTTTGAAAATATGACTCCTCTTACTGCTGACA 12240 12241 CGGTTGAACGCAATATCGAAAGCGCAGTAAGAAACTATGAGCCACGTATTGATAAATTAG 12300 12301 CAGTTAATGTGATACCCGTTTATGACGATTATACTCTGATAGTAGAAATACGCTTTTCGG 12360 12361 TCATCGATAATCCTGATGATATTGAGCAGATAAAACTGCAGCTGGCTTCCAGTAATAGAG 12420 12421 TATAATGCTTCACGTTAAAACGTGGTATAATGAATCTAAGTCCATCCAATAACAACCAAT 12480 12481 AACAATTGAATAGAGAACAATATGAGATTAGAAGATCTTCAAGAAGAATTGAAGAAAGAT 12540 12541 GTGTTTATAGATTCGACTAAATTACAGTATGAAGCAGCTAATAATGTGATGTTATATAGT 12600 12601 AAATGGCTTAATAAGCATTCAAGTATTAAAAAGGAAATGCTTAGAATTGAAGCACAGAAA 12660 12661 AAAGTTGCTCTTAAAGCTAGATTAGACTACTACTCGGGACGAGGAGATGGTGATGAATTT 12720 12721 AGTATGGATCGTTACGAGAAATCAGAAATGAAGACAGTTCTATCAGCGGATAAGGATGTT 12780 12781 TTAAAGGTTGATACCTCGTTGCAGTATTGGGGGATTTTATTAGATTTCTGTAGCGGAGCT 12840 12841 CTTGATGCTATTAAATCACGTGGATTTGCTATTAAGCATATTCAAGACATGCGAGCATTT 12900 12901 GAGGCTGGAAAATAATGAGATATAGCATTGATGATGCTTTTAATTATGAAGAAGAATTTG 12960 12961 AAACGGAAATTCAATTCTTAATGAAAAAGCATAATCTTAAGCGTCAGGATATTCGTATCC 13020 13021 TGGCCGACCACCCGTGTGGTGAAGATGTCCTTTATATTAAAGGAAAATTTGCCGGATATC 13080 13081 TTGATGAATATTTTTATTCTAAAGATATGGGCATTGATATGCATATGAGAGTTGTATAAA 13140 13141 TAGATATAATTCAGAGGAGACAATCATGTCAGATAAGATTTGTGTTGTCTGTAAAACTCC 13200 13201 AATCGATTCTGCATTGGTTGTTGAAACAGACAAAGGTCCTGTACATCCTGGGCCTTGCTA 13260 13261 TAATTACATTAAAGAACTACCAGTTTCAGAAAGTTCGGAAGAACAATTAAATGAAACACA 13320 13321 ACTTTTGCTATAGTGTGACCTTTAGTCTATAGTTTTGGCCCTTCCTTTTTGGTTGGGCCT 13380 13381 TTTTTAATTTAAAAGCTTTCTTCTACTTCATCGTCTGAATCTTCTAATTCAGCTCTTTTT 13440 13441 CCTGCCAAAGCATCTCTCACAGAGATGTCATCAGTATCTTTTAATTCAGTTTCTTTGACT 13500 13501 CTTTTCTTATAATAAGCTTCAAGTTCTTCTAAACCTTCTAATGTTTGACAAGAGGCAATT 13560 13561 TTACCCATAAATTCATCAATAGAAGCTTCATAAAGAAATTGTTTAAATTCTAGTAACATC 13620 13621 TTTTTCTCCAAAGGGCCGAAGCCCTTATAAATTAACTGTTTTCATTACGTAATTAAATTT 13680 13681 TTCATCTGCGTAGCGCTGAATACGATCAATGCCGTGTTTTAAAAGATAGTTCAAATGAAC 13740 13741 ATATTTCTTTTTCGTATTAGCAGATTTTGGCTTGACGCCTGCGTCATCTATGAGGTCCCA 13800 13801 GACTGTTGCTATTGTCTTAGAACCATGCTTACGTAATACACGACCGATTGTTTGTAATAC 13860 13861 AATGATTTTTGATTTAACACCGTGCGCTAAAACAACGTGATGCAGATTTTTAACTGAAAT 13920 13921 ACCAGTAGAAAATACACCATAACTAGCTACTATAATTATTCCTTTACCATTTTCAGCTAA 13980 13981 GGTTTTCATTATATTGCGGGTTTCGGTATCAACTTCCCCTGATACGTAATAAACTTTATC 14040 14041 GTATTCATTTTTAATTAAATCGAAAATAGCTTTACCATGCGATACATGTTTAAACATGAC 14100 14101 AAAAGCGTTTTCATCTTTTTGCGCAAGCTTAATAGCTAATTTAGCGATCCATTTATTTCT 14160 14161 TTTACTAAGCCCAGTAATAATTTTTATTTCTTCTTGGTAAGTTTTTCCCTTTAATTTAGT 14220 14221 AGTGAACTCATCGGGATAGCGAAGAAAAATACTATTAATTTTTAGCTCAGTTACTTGTCC 14280 14281 ATCTTCCATTAATTTAGAAGTCGTTACTGGTTTAAATATTTCACCAAACATTCCAACATA 14340 14341 CTGCATGATATTGGCTTTGCCATCACGTAATGAACCAGACAAACCGAATTTGAACATGCA 14400 14401 GTTATTTAAACCTGATATGATAGATGAAATACTTTTTCCTGTAGCAAGATGGCATTCATC 14460

72

14461 ATTCATCATCATTCCAAACTGTGAGAACCATTCTTTCGGTTGTTTTACTACAGTTTGCCA 14520 14521 TGTACCAACAACGACTGGTGCATCATTTTTATATTTATCATCTTTTGATGCTCCGCCACC 14580 14581 AATTTTCTTTATCATTGCATGGCTGAATAAACGATAGTCGACGAAGTCATCAGCCATCTG 14640 14641 AGTTGTCAGAGCAGTTGTTGGAACAATGATAAGAATTTTACCTTCATAATTTTCCAAATA 14700 14701 ATATCGCGCAAGCAAAGCTTGAATTAAAGATTTACCTGCAGATGTTGGAAGATTAAGAAT 14760 14761 TCTACGACGATTAACTAATCCTTCGAACACTGCATCTTTTTGATACCAGTGCGGTTCAAT 14820 14821 TCTTTTATTTCCTGAATAGATTTCTAATTTAGAAAGCCATTCATCAAAATCTTTTCTTGA 14880 14881 TAATTCTTCTTTTTCGTTAATTTGTGGGTCAATCCAGGCTTTATAGCCAAAATTATCACA 14940 14941 GAATTTTTTAATTTGCCCGACTAAGCCGAATGGAAGAAGACGATTATAATCTAAAAGACG 15000 15001 GATTCGTCCATCCCAGTTGCCATATCTGAAGCGAGGATTAAATCTATATCCATCGGCCTC 15060 15061 AAACGAAAAGAAATCTCTTAATTCGTGGAACGTGCTCTCTTCACAATCGATGCGTACATG 15120 15121 ACTGAAGTCGTGAAAATGTACTTTAATATCCATAATTATGCCTTACTAAATTTGCCTTTA 15180 15181 GAATCTCTTTTCATGAGACGACCTTTAATAAATCCGTCGGGAATAATACCGTCTGGTTGT 15240 15241 ATTAATTTATTTATTGCGCCATTATTGACCCAAAAAGTTCCTGTGGTAGTCGGTTTGACT 15300 15301 TTACATCCTTTTCTGGACTTTCTATTAGGATGAACCATCCCTTTTACAAATCCTTCTGGA 15360 15361 ACAAGTTCTCCAGGTTTAATAAAAATATTTTTAGTTCCATTAGTATAACAAGTTTTACCT 15420 15421 AATACCGTGCCCGGTGAGTTTTCAAATCTTTTAGCGGAAGATTCTTTCATCTTTGCTATA 15480 15481 ACATCTGTAGTCATAACAATTCCACCAATTCCACCAGGTTTCATATTATAATAATTTTTG 15540 15541 CTTTTTATTAGTTCAGGAGTTATAATTTCTTCTTCATACATGTACGCTTCTTCGGAAGTT 15600 15601 TTAAACTCTTTTAGTATTGTTCTAGAGAAATTGTTTTCACCATATTTCTTTATAGCCTGC 15660 15661 TGAATTGCCTTACCGGAACCAAGGTAACCATCATTCAAGTCATCAGTAGAGTGCTTTCCT 15720 15721 ATATACTTTTTACCATTTATTAGATTTGTTGTTTCATATACAAAGTGGTACATACTATTT 15780 15781 TCCGAGTAATAAATATATCTATATTTATACTGAGGAAATATTATGATAGATAAAGATTAT 15840 15841 ATTGCAGAGCTGAAGGCTCTTGATGATAACAAAGAAGCTAAAGCTAAATTAGCTGAATAT 15900 15901 GCTGAACAGTTTGGTATAAAGGTCAAAAAGAATAAATCTTTTGATAATATCGTTGTTGAT 15960 15961 ATTGAAGAAGCCCTCCAGAAGCTCGCTAGTGAACCTATGCCAGAGACTGATGGGTTATCT 16020 16021 ATTAAAGACTTAATTGATGCTGCTGATACCGCAGAGGGATTAAAATATGACGATGAAGAA 16080 16081 GTCAATCCAGAAGCAGCACTTCTGATTGATTCTCCGATTAAATCTGACATTAAAATTGAA 16140 16141 GTAGTAGAAACGGATAAAATTCCTGAAAATACCGATGTTTTGATTGAAGATACTCCTTTT 16200 16201 GTTGAAGAAAAATTCGAACAGGCTGTAGCTGAGATTATTGAATCTGAAAAGCCGTCTGTA 16260 16261 TTTACTCTTCCGGAAAACTTTAGTCCGAATCTTCAACTGATTGGAAAAAATCCAGGATTC 16320 16321 TGTACTGTTCCTTGGTGGATTTATCAATGGATTGCTGAAACTCCTGATTGGAAATCTCAC 16380 16381 CCAACTAGTTTTGAACATGCGTCAGCACACCAAACTTTATTTAGCTTAATTTATTACATT 16440 16441 AATCGCGATGGATCAGTTTTAATTCGTGAAACACGCAACTCTTCTTTCGTAACATTAAAA 16500 16501 TAAGGATAACTTATGACTTTTACAGTTGATATAACTCCTAAAACACCTACAGGGGTTATT 16560 16561 GATGAAACTAAGCAGTTTACTGCTACACCCAGTGGTCAAACTGGAGGCGGAACTATTACA 16620 16621 TATGCTTGGAGCGTAGATAATGTTCCACAAGATGGAGCTGAAGCAACTTTTAGTTATGTA 16680 16681 CTAAAAGGACCTGCCGGTCAAAAGACTATTAAAGTAGTTGCAACAAATACACTTTCTGAA 16740 16741 GGAGGCCCGGAAACGGCTGAAGCGACAACAACTATCACAGTTAAAAATAAGACACAGACG 16800 16801 ACTACCTTAGCCGTAACTCCTGCTAGTCCTGCGGCTGGAGTGATTGGAACCCCAGTTCAA 16860 16861 TTTACTGCTGCCTTAGCTTCTCAACCTGATGGAGCATCTGCTACGTATCAGTGGTATGTA 16920 16921 GATGATTCACAAGTTGGTGGAGAAACTAACTCTACATTTAGCTATACTCCAACTACAAGT 16980 16981 GGAGTAAAAAGAATTAAATGCGTAGCCCAAGTAACCGCGACAGATTATGATGCACTAAGC 17040 17041 GTTACTTCTAATGAAGTATCATTAACGGTTAATAAGAAGACAATGAATCCACAGGTTACA 17100 17101 TTGACTCCTCCTTCTATTAATGTTCAGCAAGATGCTTCGGCTACATTTACGGCTAATGTT 17160 17161 ACGGGTGCTCCAGAAGAAGCACAAATTACTTACTCATGGAAGAAAGATTCTTCTCCTGTA 17220 17221 GAAGGGTCAACTAACGTATATACTGTCGATACCTCATCTGTTGGAAGTCAAACTATTGAA 17280 17281 GTTACTGCAACTGTTACTGCTGCAGATTATAACCCTGTAACCGTTACCAAAACTGGTAAT 17340 17341 GTAACAGTCACGGCTAAAGTTGCTCCAGAACCAGAAGGTGAATTACCTTATGTTCATCCT 17400 17401 CTTCCACACCGTAGCTCAGCTTACATCTGGTGCGGTTGGTGGGTTATGGATGAAATCCAA 17460 17461 AAAATGACCGAAGAAGGTAAAGATTGGAAAACTGACGACCCAGATAGTAAATATTACCTG 17520 17521 CATCGTTACACTCTCCAGAAGATGATGAAAGACTATCCAGAAGTTGATGTCCAAGAATCG 17580 17581 CGTAATGGATACATCATTCATAAAACTGCTTTAGAAACTGGTATCATCTATACCTATCCA 17640 17641 TAATCATAAGGGGCTTCGGCCCCTTTCTTCATTTTGAAAGCACACAAAACACAATCAGAA 17700 17701 AATGATGTATATAATGGCACCAACTCGATAACATGAGATTGATTATGAGAACTGAGGTTG 17760 17761 TGGTGTTTACTCTTCATGAGTCTGGAAAGTCATTCATTGAAATTGCTCGTGAATTAAACT 17820 17821 TACAGGCAAAAGAAGTGGCTGTATTATGGGCTCGAGCTATGACTGCTAAGAATAAATTTG 17880 17881 AAACTCGAGAAAAAGTTGTCTATAGAAAAAGACATATCAATAAAAAGGTGAAAAATGGAA 17940 17941 CAGTATGATCTTTATGAAAATGAATCTTTTGCTAATCAATTACGCGAAAAAGCATTAAAA 18000 18001 AGTAAACAGTTTAAGCTAGAGTGTTTTATTAAAGATTTTTCAGAACTTGCTAATAAAGCA 18060 18061 GCTGAACAAGGTAAAACACATTTTAATTATTATTGTATTGCTCGTGATAAATTGATTACA 18120 18121 GAAGAAATTGGTGATTGGCTGAGAAAAGAAGGATTCAGCTTTAAAGTCAATAGTGATCAG 18180 18181 CGTGATGGTGATTGGTTAGAAATTACATTTTGAGGATTAATTATGTTTAAAAAGTATAGC 18240 18241 AGTCTTGAAAATCATTACAACTCTAAATTTATTGAAAAACTTTATAGCTTGGGATTGACT 18300 18301 GGTGGGGAGTGGGTAGCTCGTGAAAAGATTCACGGCACAAATTTCTCATTGATTATTGAG 18360 18361 CGTGATAAAGTGACTTGCGCTAAACGCACTGGACCGATTCTTCCTGCTGAAGATTTCTTT 18420

73

18421 GGGTATGAAATTATTTTGAAGAATTATGCTGATTCCATTAAAGCTGTACAAGATATTATG 18480 18481 GAAACCTCAGCGGTTGTATCTTATCAAGTCTTTGGCGAATTCGCTGGACCTGGCATTCAG 18540 18541 AAGAATGTTGATTATGGTGATAAAGATTTTTATGTATTTGACATTATTGTTACTACAGAA 18600 18601 AGCGGTGATGTGACTTATGTAGATGATTATATGATGGAATCATTCTGTAATACATTTAAA 18660 18661 TTTAAAATGGCTCCACTTTTAGGTCGCGGTAAATTTGAAGAGCTTATTAAATTGCCAAAT 18720 18721 GATTTAGATTCTGTCGTCCAAGATTATAATTTTACAGTAGACCATGCTGGATTAGTTGAT 18780 18781 GCAAATAAATGCGTTTGGAATGCCGAAGCAAAAGGCGAAGTATTTACTGCTGAAGGATAT 18840 18841 GTATTGAAACCTTGTTATCCTTCTTGGCTTCGTAATGGAAATCGTGTAGCGATTAAATGC 18900 18901 AAGAACTCTAAATTTAGTGAAAAGAAAAAGTCTGATAAGCCTATTAAAGCTAAAGTTGAG 18960 18961 CTATCAGAAGCTGATAACAAATTGGTGGGAATTTTAGCTTGTTACGTTACACTGAACCGC 19020 19021 GTAAATAACGTTATTTCTAAAATTGGCGAAATTGGTCCAAAGGATTTTGGAAAGGTGATG 19080 19081 GGGCTAACTGTTCAAGATATTTTGGAAGAAACTTCTCGTGAAGGTATTACTCTAACTCAA 19140 19141 GCAGATAATCCTTCTTTGATTAAAAAGGAATTAGTTAAAATGGTACAAGATGTACTTCGT 19200 19201 CCAGCTTGGATTGAGTTGGTAAGTTAAATAAAAAGGGACCGAAAGGTCCCTTTGTTTTAT 19260 19261 TCATCAATGATAATTTTTGGTAGCTTAACACCTAATAAAACAGACAAATCTGAACGACCT 19320 19321 GCCATTTTATCCATGTCTCCACCGTCAATTATTCTTGCTTCTTTTTCATCTTTTGCTACA 19380 19381 GTATAAGGATTTGCTGATAAAGCATATCTAACTAATAAACCGATAGATGGTTGTAAGCTT 19440 19441 TCTGGATCAACAACAACTTTAAATGCACCTACATGTTCAGGGTCATCTAAGTCGAGACCT 19500 19501 TCTGTATACGGAGCATAGAAAATTGATCCAACAATTTCTTTTTCACCGATATTTTCTACT 19560 19561 ACGCCAACGATTACATAATCTAATGGGCTGTTAGTATCGCAATAAAGCGGTAAACCATTA 19620 19621 GCTAAGAACCCGTAGGCATTTTGTGAAAGATATTTGTCATCTTCTGGTTTATGTTTTAAC 19680 19681 CAGCCTGATGCAGCAAGAATCGCAGCGGCACGAGCTGAAGCAACACAGAACGTTGCTGTA 19740 19741 TAAGTTGATTCTTTTTGGATATGCGAAACCATTTCACATACCATTCGGTATAATGAACGA 19800 19801 CCAGCTTCAGGAGCAGATGCATAACTCAAATCGATGAATCCACTATCAGTAATTCCTGTA 19860 19861 ACTTTATAGCGTTTTGACACTGTAATCAAAGACTGCAGAATGTCTTTATTGATTTCATCT 19920 19921 GCCATTTCAGTTGCAAGCAAATCTTCCAAGAAATTAGGAGCATCGAATCCATTTGCTTCT 19980 19981 AAATCTTGCGCTAATTCAACTGTGATGCCAGTTTTAAGTTTACGAGATTTAACTGCAGTT 20040 20041 TGCCATTTATTAATCTGGAATCTAGCATCCGCAATTTCACTATCAGAGCTTTCAAATTTG 20100 20101 CTTGTTGACGCTGCGTCAGAAAATAGACGAACCTTTAAAAGAACGATTGCAATCTGAAGA 20160 20161 GCTAATTCTAAATCACTTTCTTCGATAGTAGCAAATGGAGTATCTTCTAATACTTTATAA 20220 20221 ACGATATTATTATATTTGAATAAATCGCCTTTATTGAGAGTTAATTTAGACTCTTCTGTT 20280 20281 AATTCTGTGATTTGTTCTCGGTCTACATATCCAGCTTCGCCAGCGTAAGTAGCACCAGTT 20340 20341 TTAAATGTAAATTCGTTGTCTGGGTTAAGGTATTTGATACCATAAAAAGCAGCAACAGGT 20400 20401 TGATTAGTTCTTTGCGTTGCTACAATGTCAGAATATATTAATTTAGTGGTAGCGCGAGTC 20460 20461 AAAGCAACGAGATTTGGGCGACCGATTGAGTTGCTATTCGTTGTGGTTGATTCGCGCAGA 20520 20521 AGTTCGTTGATTTTAGCCATTGTATTTTCCTTATTGAAATATAATACTATTTATAAAGTT 20580 20581 ATTTACAAGACCAAAGTAATATGATATTATAATCATATACAAACGGAGTGATGTTTAAAA 20640 20641 TGAAATATTTAATATATCAAATTACTAATATCATCAATGGAAAAATTTACATCGGAGCTC 20700 20701 ATGCTACTCTTGACGAAAACGATGGTTATATGGGTTCTGGCGTAAACATCAAAAAATCCA 20760 20761 TCAAAAAATATGGTATTCATAACTTTAAAAAAGAAATTCTTTATTCTTTCTCCTCATCTG 20820 20821 AGGAGATGTATAAAATGGAAGCTTTACTAGTTAATGAGGAATTCGTTATGAGAACTGATA 20880 20881 CCTATAATGCTGCTATTGGTGGCAGAGGAAATCCAGTTATAGTTCATTTGCAAGATCCTT 20940 20941 CATATCGTAATATGTTATCAATACGAACAAAAGAAGGAATGACTGTGGAAGCTAAACGAA 21000 21001 AAATATCAAAGGCAAAAACAGGCGTTAAGCAATCTGATGAAACTATTGCGAAGCGAGTTA 21060 21061 AAGGGCGCAATGAATATTATAAAACACATGTTCATCCACGAAAAAACAAACCTATATCGA 21120 21121 TTTCACATCGTAAAGCTATTTCTGAAAAACTTGGTGGTATTAAAAAATTTATTCCAATAT 21180 21181 GTATAAAGGGCGTTAAATTTGATAATCCTGATTACGCAGCGGAGCATTTTAAAGTTAGTC 21240 21241 CTAAAACTATTCGCAATTGGATAAATGCGGATGATATGCCTGATTGCTATCGTATAAAAT 21300 21301 AGAAAAAGGGAACCCGAAGGTTCCCTAAAATTGTGTTTCTATCGTTAGAGATTAGATACC 21360 21361 TTTAACATATACACGTCTAAAGTAAGCGTTTTTACCAAGGCTATTCAGAATAGAAGGCAT 21420 21421 ACCGCTCTGGATGCGAGAAGCCGGAGCCTGAGCAGCGGATTCTGCAAATGGGTTGATACC 21480 21481 GATACCGTAACGAGTTTTGAATCCCATTACCGGTTGGAAGTTCTTCGGATCGGAACCACG 21540 21541 CAGCGGAGTCAGAGCTACATATGGAGCATAGTAAATACCAGCATCCATTTCGTTCGGACC 21600 21601 TTTATAACCTACAGTGAAATAATCCTGTTTAGCATACTGGTCGATATATACGCGGTATTT 21660 21661 ACCACCCAGAACACCAGCAAATACTGACTTGGTAGTATCAGTGTTAAAGCCGGTAGCCAG 21720 21721 ACCCTGTGCAGCATAAGAAATGCCGGTATCAACTGAAGCCAGAACGTTAACTACGTTACG 21780 21781 GGAAGCGATAATGAAGTTACCTTCACCACGACCGGTCTGACGAGCAATTTCAACTGCTTC 21840 21841 TTTGTCAATCTGGAACAACAGAGCTTTAAAGGATTCACCCGCCCAGCGAGCACCACGAAT 21900 21901 ATCAATTGGGTCCTGGAAGTCAAATACACCAGCTTTAGAACCCGGAGTCAGGGTCATACC 21960 21961 AGATTTACCAACCTGAGCTGAGTAGTTAATCCAATCAACAACTTCACGGTTGATTTCCAG 22020 22021 CATAATTTCTGTAGCCAGAATACCAGACAGTTCAGCATCAGCATCCATACCGTGAACAGC 22080 22081 GCGGAGGTCTTGTGCTAATTCAATAGAGTAAGCAGCTTTCAGCTGACGAGATTTAGCTTC 22140 22141 GATAACTTGCTTATCGATACGGAAGCCCATTTCATTCCATGGGTTATCGGTAGAACCATT 22200 22201 GAAACCTTCCTGGAGTTCAGCGATAGAAGTAGCCATACCTTCAGCGATTTCTACCAGTGC 22260 22261 ACCAGCTTCCATTTGTTTCTTAATTTCAGCATCTAATTTAGCAGCATCAGTCGCACCAGC 22320 22321 ATCGATTGTTACTTGAACAGAAGCTTGCAGATATACAGTACCAGTTTCCTGGAAGAAGTG 22380

74

22381 AGTATAGATATCACCTACTGTGGTTTGTGTGCTAGCAGCCAGAGCTGGGAATTTCTTAGC 22440 22441 AGCACCCTGACCAGAGAACATTGCATCTGGACCATACATTGGGTGGAATGCTTCTTTAGC 22500 22501 ACCGGCAGCCACTGGGTCTTTACCATATACTGCGCGCAGTGCGAATACCTGGCCAGTCGG 22560 22561 GCTGTTCATCGGCTGAACACCACAAATATCGAAAGCAATCAGGTTAGGAATAGCACGACG 22620 22621 TACCATACCCATAACAGCTGGGCCAATCTGAGTTACTGCGCCAGAAGTCTGACCTGCAGC 22680 22681 GATGTTGGTAGCATTGTAACCGTGGTCACCACCGATTTCAGCTTCTGTTAAGAAAGAACC 22740 22741 GAATGCCTGAGCAATTTTTTCGTCTTTATATTCCGGAGCTGTCTGGAAATCTTTTTCCTG 22800 22801 GTTTTCAAAGATTTTAGCGATAATCGCTTGTTTGCTATTAGCAATTTCCGGTAAACCTTC 22860 22861 ACCTTCCAGTAATGGCTTCCATTTGTTCAAAAGTTCAGCTTTAGTTTTGATAGTCATTTG 22920 22921 TGTTAACCTTTAAAATTAGAAACGAGATGCGACTTTCGCATATACACTTACAATATCTTC 22980 22981 TGCACCCTGTGCAGCTTTATCTTCTACAGCTTCAGTGACGAAATTCAGTCCGGCTGCTTC 23040 23041 AGTATCAGGAGTATTTATACTCTCAGTAATAGTGCTTTCATCTTTATTAGATTTCTTCAC 23100 23101 CATTTCTACGATTGCACTCAATTTACTTGAGAATGCATCTGAATAATCCATACCTTCGAC 23160 23161 CAGAGCAGAGACTTTTTCTTTTTGAGACTCAGTCAGATCTTTAGTACTTTCGCTCAATGC 23220 23221 CACTTCACGCTGCACATAATTGATATATGCGTCGCGCATATTGAGTTCTTCGAACAGACG 23280 23281 AGCTGATTCTTCTTTATGTTCTTGCAGCTCTTCTTCCATTTCAGCTACAACATCAACTGA 23340 23341 TTCTTCTGGAACAACAACGTTGTGTTCAACAAAGAGCTCTTTTAATCCACCAAGCATGGA 23400 23401 TTCAAACAGTTCGGCTTTGATGCCTTTATCAACTGCTAATTTATTTTCAGCGAGCCATTC 23460 23461 TTTTGCAAGATGGTCAATGAATTTAGAAGCTTGCTCAGCGATTTTCTTCTCAGCTTTTTC 23520 23521 TTCGGCTTCTTCTTTATTTTTTTCTACTTCTTCTTCTGCTTTTTCAGCAATTTTAGCGAT 23580 23581 ATGAGATTCAGCTAATTTAACGGCGTGCTGCTTGACGGTAGCTTCGAATACAGTGCCGAA 23640 23641 AGTTTCTTTTGCTTCCGGAGAAATATTAACTGATTCGAAAATACTATCAAGAGCAACGGA 23700 23701 AGCATCAATTTTCTGCGCTTCGGCAATCAGTTGTTCTTTAAGCATTTTGTAGTCCTGTTG 23760 23761 TTTAGATAATAATATTTATAACGCTTTTTTCATGGCCTCTGCGAGAGCCATATAGGCGTC 23820 23821 ATCGGCACTTGTATCGGCTTCCGCCGTCTGTGATTCGGTAATTTCCTTAGGAGTTACCCA 23880 23881 TGCATCTGGAGCACTTGGACCCCATACTGCATCAACACCTACAGTTAATTTGAATCCTTC 23940 23941 GTTTACGATACGATAACCTTTATTTGTGTCAGTCAATGAACCTAATCCACGAGAAGAAAC 24000 24001 TCCTGGAATCCATCCGGCACGAATATTAGCTGCTAATTTATCTCCAGGACCATGGTCACC 24060 24061 TTCAATAACACGAGCTCGTCCGTATACGTCATTTCCTTTCCACCACATATCTTCTATAAT 24120 24121 GATAGCGGCTTGCATCGGGTCAACATTAGCGCGTGGAGGATGATTTAATTCTCCGAGAGC 24180 24181 TTGTTTAGTTAAAACTTGCTCATTAATATAGTCTTTTACCGCTTTTTCTAATATACGTTT 24240 24241 TGGATAAAGACGTTTATTTCTATTGACGACTTCCGCTTGCATGAATATTCCTTCGATGTA 24300 24301 TAAACCCGGTTTTAAACCTAAGTCTTTTCCATCATGAGATTCAAGCATTGGTACGCCATC 24360 24361 AATAATTTCGCCAGGTTGACCCCAAGTTTCAATTAGTAATTGGGGTTCATTCATTAGCTT 24420 24421 AATCCTAATGCTTTACGGCGTTTAAGAGCTTTTTTACGCTTACGCTGAGCACGAGATTGA 24480 24481 CCTGCTGGATTGGCAATCTTCGTTTTGGTAGCTTTACGAGCAATTTGTCTACGTTTTGCT 24540 24541 TTAGACAGCCCAGTGGTTTGAAATGCATTTCGTTCACGCGTTTTGCGGTCTTTAGTGCGA 24600 24601 GTAATTTCACCACGGGCAGAAACATGTTTAACGATGAATTCATTTAACGGCATATTTTCA 24660 24661 TTAATAGAAGCTAATGCAACCGCTAAATCAGTTTCATCATCAAGCATATTCTCGACAATT 24720 24721 GTATTTATATCGTCTTTATTTAAAGCAGAAGACAATTCGTCAAAGCGACCCTGTGCTTCA 24780 24781 GGAATAAGTGCTTCGACATTCTCGAGAACTAATTCATGAGTTTCAGGGATCAGAAGCATT 24840 24841 ATTCATCATCCTCGTCTTCGTCAGAGTCTTCGTCTTTTTTGTCGTCTTTATCATCACTAT 24900 24901 CTTCGTCATCTTCATCTTCATCCTCGTCTTCAGGTTCTTCACCTTCGATTAAGAAATTGC 24960 24961 GAGCGATAGCGATTTTTTCTTCTTTAATTAAATCAATCGTTCTTGCAGCCATGGCTTCAG 25020 25021 CAAATAATTTACGAGCGGCTACGAGGTCGTTTGATTTAATAGCTTCAATTAAACCTTCCA 25080 25081 TTAAAAATCCTCTTGTTCTTGGTCGGGGTCTTGGAAACGAGCCTCTTTAGACTCTTCTTC 25140 25141 AATTTGCTTGGCTTCTTGTTCTATTTCTTCATCAGTCATCTGCAAAATGTCTTTCATAGC 25200 25201 AGTTCTGTGAGAAATATATTTACCAATAAATGGTTCTGCCATGGTTAGCATATTAATTCT 25260 25261 TCGTTCCAAAATTTCTGCTTCTTTGAGCTCAGCAAAGTAGCTATCCCGATGAAATTCTAT 25320 25321 CTTAATATTATTTATTTCATCATTCCACTCATCTTCTGTGATTATACCTTTAAGCAAAAG 25380 25381 ATTTGTTTTAAGCGGATCTAGGAAAACTTCTTCAAACTTGTGCTGTAACTCACGAATAAA 25440 25441 TTTAGCAAACGTTAATTCATCACGTGTAATGCTAGTTCCAGAATCAAACATCACACCGCC 25500 25501 TTGTTGGTCTTGCGGAATGCGTGAAAGAGGAACACGTAATGCCATATAAAGAGCTTGTCT 25560 25561 AAACCAACGAATATCTTCCATATTGCCAGTATTATCAGCACCAGGAAGAGTATCAACTTC 25620 25621 TGTCACAGCTTTACCATCACGGCGCTGCAACCAATAGTCTTCGGTCATAGACATATTATG 25680 25681 CTGTTGATTTTTTATTTTACCTGTTGATGCATCATATACTACACGGTTTTTCATCGTGTT 25740 25741 CATAACATGTTGCATGTGCTCAGCAGCTTTACGAGCAGGCATATTACCTGTGTCTACATA 25800 25801 CCAAACACGACGGTCAGGAGCACGAGTAATGCGATAAATGACTACAGCATCTTCTAATAA 25860 25861 TTTTAATTGGTTAGCAGGTTTAACAGCACGATGCAAATACCCGATGATATTTTTACCGCA 25920 25921 ACAATCGACTAATCCAGAATGGGCATAAACGACGGCAGCTTTAGGAATTTTTATTTTTGT 25980 25981 GCCAGCTTCATACATTCTACCATCACATGCATATGACTCATGGGCAGTATCATATATAAA 26040 26041 ATATTCTTTGTAACCTTTAACTATTTTTGTGCCAGCTTCAGTTTCTGTTATAATTTCACG 26100 26101 AACATACTGAACTTGGCGAGGGTCTAATCTACGTAATTCTTTTATGCCTTCTTTTGGACG 26160 26161 TTTTGGATCAATGATTTTATGAAAGAAAATTCTTGAATCAACATACCAACGTCTAAAATG 26220 26221 ATCAGAACCTTTTCGTTGAAACGATAGATGATTTAATACATCACTAAATTCATCTAACAT 26280 26281 CATATTTTTAATTTTTGGGCTAAATTTAGATTTATCCAAATTTAACGCTACGACTTCAGT 26340

75

26341 ATCATCTTCATAGACGATAGCATCTGAAACGATTTCTGAAACTGCATTATCTACTTCATA 26400 26401 GTTATTCATGAGATTACGATATGTATCAATAAGCTCACGAGTAGTTTTCATTCCTGGTTC 26460 26461 ATATGAACCAAAAATTGTTTGGAATGCAGCATTATAAGGAGAAGCAGCTTCATTCGAGCT 26520 26521 TACTTCAAATTCTCTTGCTCCATCATCAAGCTTTGGGGCTGTAATGGAAACAAGATCTTC 26580 26581 TTTTTCTTGGTCTTTAAAATTTCGTTCGTCCATTTTAGCCCATGGAGCAAACAAACTTAA 26640 26641 TACATTAAATTTCATTGTATTCTCCAAATGGGAATTATAGTTATATTTATAATGGACTTC 26700 26701 TCTGCTTTAAGCAGGATGGGGATTTCTCCCCATTCATTTTATTCCCAATAATCGAGAGCA 26760 26761 AGAGTTACTTCAAAAGTTTGGATTTCATTGTTTGAATCCCAATCTAATTGAAGTTCACCC 26820 26821 ACGTTAGTAGGCCACAGACCTTTAATTTCAATTTCTTTTGTTACTGTTTTAGCGTCACGA 26880 26881 GCATATTGACGAACGATAGCGCTCTTTTTATACTCTGCAGGTTTTCCACCAGTAATTTCG 26940 26941 TTTCCTTGCCCCGCAGCAATGCTTTGCCAATCAACGAACTTCTGACGAGCATCATGAGCT 27000 27001 TCATCGTTCATTACTGTAACAGTCCAGTCATCGAATGTACGATCGCCTGCTACGTTAATT 27060 27061 TTACGGTTCATAAATCCGACTGGAATTTTTTCTACAATACCAGCTGGTAGAGCAGTAGCT 27120 27121 TTACATTGGAACGTAAAATTTTGTCCAAGATAAGAAATTTCTACTTGGAATAAGTTAGGT 27180 27181 CGAGCAAAATCACCAGATTCAAACGCTCGTGTTACATCATCTACAAACATATTAGCCTCT 27240 27241 GTAGTATTTATATCCCTATGTTTAACCTAGGGCATATAGAATTAAAGAATTAAGGATATA 27300 27301 GTGTATTTATATGGCCTGCCGAAACAGGCCTTTAGAATGCACCGTATTAACCAGCAAGAC 27360 27361 CAGTTAACTCATCGAAATCTGCACCAGTAGCAGTTGCTACGAAGTTTAAGGTAATGTAGT 27420 27421 TAATGCTTCTAGCCGGTTGGATGTAGAATGTTGCAACAAACTCATTTCTATCAATTACTG 27480 27481 ACGGAGTGTTATTTGTTGTATCGCAAACTACACGATATTCATAAATTCCACCGAGAGCTT 27540 27541 TAATTCCCTGTAAGTACTGGGCAGTTTCTGTGCGGAATGATGAACGAGTAAACGCGTTGT 27600 27601 TTAATTCGAACAAACGATATTTTGAACTACGTCCGATATTCGTTTTCAACATATTAAACA 27660 27661 GACGACGAACGTTAATACGATCAAATGGAGAAGGAACAGAAGTAGCTGTTTTATCACCAT 27720 27721 ACAATACGTAACCATCACCACCTGTACCGGTTACCGGGTTGATAGCTTCTTGGTATAAAC 27780 27781 GGTCGCGCTGAGCCTGGCGAGTTTCAATAGCAAGTTTAATAACGTTAAGAATCTGACCAC 27840 27841 GATTATAACCAGCTGGAGACATCCAAGTCTGAGATACGTTATCAGTTCTTGCGCATAAAC 27900 27901 CAGCAATATCAGCTGCTAATGGAACCCAACGATTCACATCATTATATTTGTCATACTGAT 27960 27961 ACTTATAGTTACCATCAATTGCTGCATAGGTTGAACTGATATTAAAGTTATTATCAGTGT 28020 28021 ATGAACCTGCCGCAGTTCTCCAATTGACTAAGTTATCAACAGCACGGGTTACAGGAATTC 28080 28081 CAACTACAGTTTCACGCGGAGGAGAGCACAATACTAAGCAATCTTGGCGAGCATCCCCAA 28140 28141 TTGAAACGACGTGTTTTTGGACAGTAGATGCTGTTTCTAAAGATTCACCGGCACAAGAAC 28200 28201 CTGCAATAAACAGTTGAACGTCAACAGATTCACGGTCAGCAAAGAAGTCCCAAGCTTCCA 28260 28261 TCAAATCTCCTGCTGTTACTTCAGCATTTGATGATAATCCACCAGACAGAGTTAAAATTC 28320 28321 CAGAGAAGCCTTCTGGCCAGTTTTGTGCAGTTGCAAAAATATATTCTGAACCACCTTTTG 28380 28381 CGAAAAAGTCATCGATATAGATGTTACTATCGTAAATATCTTTTTCACCACGCTTAGTTG 28440 28441 AAAGAACAACGCTTTGAACAATAGCATCATTACGACGAACTATAATAGCGTACTGTGAAT 28500 28501 CAGTTTGCGGTCCATATCCAAACACTGCTTTAGCAGTAGATGCACGAGTACCACCACCTG 28560 28561 GATAAATTGGGAGTAATGCAGAAGCTCCTTTTGCATAGTCAGCTTTAGATACGATTTCAA 28620 28621 TTTCAATTTTATCGCCTAATTCGCCTGGATAAAGCGCTACTACTCCTGGAATTCCATATT 28680 28681 TTTTAAGATTTGCTTGAAAGTCAACCGCTGTCATAGCAGCTTCAGCATTTTCAATTTCAG 28740 28741 CTAATAAAATACCAGAATCAGTAATAATTTTTCCAAGAGTTATTACTGCAGCTAAACCAG 28800 28801 AGGAAGATGAAGAAATTTCCGCAGTCCAGTTAGAACCTAGTGTTGGATATTCACCGACTT 28860 28861 CTTTCGCTTTAGCGATAATTTTTGCAGTAGGAATATTAATTTTCTTAATTTTTCCATCTG 28920 28921 CGTCTACTTCAGTAATTTTACCTTCAGTTTCAATATCATCTGAAACATATTTGACCGTGA 28980 28981 TTTTATCTCCAACCGCATAGTTACTACCTGGGGTAGAAATTGTGTATTCAATATTACCAG 29040 29041 CAATTGGCGATGAGTTTTTAGCGGTATCTCTATCAACAGCACGAACTACTCGTAAGTCAT 29100 29101 TTCCGTACTGCAAGAAATTCATCGCAGACATAAAATAGTCAGCAGTTTCAGCGGTTGGTT 29160 29161 GACCAAAAGTATTAACTAAATCTACTTCATTTGTAACCTGTTTAATCTGAAAAGCAGGAC 29220 29221 CCCACTGGAATTTACCGGCCAAAGCTGCTGTACCAGTAGAGTTATTAACTACGGTGCTTT 29280 29281 GAACCGTAGTTTCTTTGAGCTCAATGCCCGGAGATAATAAAGTCATTTTTAATCCTCTTT 29340 29341 AATATGCTTTAATATATTTATACCATTGACATACCATGAGATACTGGAACATACTCAGCA 29400 29401 GAATGAACCGAATCCACAAATATAACTGGCGCGTAGTCGTCGCTCATATCCTGAAGCTCT 29460 29461 TTTGAAAATACTTCAGATGCTAATCGCATGTCATCTTTATCCGCATAATCAATAAATTTT 29520 29521 GACTGCGTTGATAACCATCCAAAAATCACTAAAGACATTACTAAATCGTCATGATAACCT 29580 29581 TCTTCAGCCGCCCAAGACACGCCTTTTTCACTAAACGTTCTAAATTCTTGAATAGTCGCT 29640 29641 CGGTGATGAATAATAAGCTTATCTTTTTCAATAAGGTCTTTTAGCGTGGAACATCCTACT 29700 29701 GCTTTCGTGCGTTTAGTTTGTTTCATTCCTAAATCAGTATATGAATCGCAGATAACACCT 29760 29761 TCGTATTCTAAATCCATATAAAGCGATTTTGCAACTGACACACCAGTACTATTTAATTCA 29820 29821 ATATAAACTGGGCATTCATTGTATTCTACTAAATAACGCATAACGATGTCAGGTAGAATT 29880 29881 AAATGAGAAATAGTGTTTGAATGCAAAACACCAACCTGTTCCCACACATCATCAGTAACA 29940 29941 TCAATAATATGCAAAGCGTGGTAATCTTGCCCACGACCTTCTGAGCAATCTAGAGTTGCA 30000 30001 ATATATTTTCTATCTGGTTCAGGTTTTTTAAATTGGTGAAAACCATGATCATCTGGTGTT 30060 30061 ACTTCAATAAAATCCATAACAGCTAATTTCATTCCTGAAATTAATGTACCAGAAGTCCCT 30120 30121 TCAAACGCTGCAGTATGTTCTTGACGGAATTGAGCTAATGAAGAACCATTAATGGTTTGT 30180 30181 ATGCTCCATTGCCATCCATCGTCAAAAATATCTTCATCGTTATAAAGACGTTCTTTAACT 30240 30241 GAATTCCAAATAGCAGTATATGGTTCAAATCCAGATTTACCTTCGACAGCAGCAGTCCAA 30300

76

30301 ATATCATAAAAATGATTTAATCCATTAGGAGTCGTAGTAATAATAATTTTCGAACGACGA 30360 30361 CCAGATGAAATTACTGGTTGAATAGCAAGCCAGGAATCATGGAAGTTTGGAATAAACGCA 30420 30421 CATTCGTCAATGTAAATCATTGCGAACGAGTTACCACGAACTGCGTCAGGAGAGGAAGCA 30480 30481 TAAGCGCCAATTGAAGAACCATTATCTAGTTCAATTGAACCCTTATTCCATTCAACAATT 30540 30541 CCTGGTTGTAAAAAGTCAGGAAGCAGTTCAATTGCTTGCTTAGTACGGTCTAAAACTTCC 30600 30601 GCAGACATTGAGCCTTTGTGTGCAAGAATACCTACAGCTTTATCTTTGTTAAAACATACA 30660 30661 AAGTGTGCAAGGAAAATAGCTACTACGGTGGTTTTACCGAGCTGGCGCGATAGATTACAA 30720 30721 ACAGTCATACGTTTAGATGACATTATTTTGAGCATATCACGCTGATAGTCACGTAATTGA 30780 30781 ACCTTTATGACACCATAGTCAATATGAGTAATGGCACAGTATGTTTCTGCAAAATAAACA 30840 30841 ATATCATCTCGGCATTTTTTCCATTCCTCAACCATTTCACGAGTCCATTGTGTTTTAATA 30900 30901 TTAGCTCGTTTCAAGTTAGGAAGACCCATATACCGAGATCTTTTATTATTCTTATCTTTA 30960 30961 TAAGTTTGAAATAATTCAGGCTTATCAGAGTTGTTTGGAATTTTTACTATTTTGTGTAGA 31020 31021 CGAAGGTAATCACTGAATTTTTCAGGATACCATTTTCCATCCCACTGAGATTTTATCCAA 31080 31081 TGAATTCCATCTTCATCTTTTCTTTCCGCTAAGCTTGGGTGTTTTATTAAAATTTTTCCA 31140 31141 GCTTCATTTAACGGATGGAAATCATTTAATACATTAATCGGTTGTTCCATTTATCACCTT 31200 31201 CTCACGAGCTTCTTGAGCCTCGTAAGCATCACCAATTTCGTCCATTAATTCTGTTGGTGA 31260 31261 ACCCATGAATACTGTCGCATTCTGAATATTCATTTGACCTGTAGGAACAGCGCCTTTGGT 31320 31321 GCCAACCTGCTCAGATGTAATGTCTTTCATATCTTTATGAAGCTTCAGTATTTCTCTGTT 31380 31381 CGTCGTAGTCATTTGCCCCATAAGAGTTGCAAATACTTCCATGTGACGAGGAGAATCAGC 31440 31441 ATTCTTTGCTGTCTCAAGAAAAATCTTGGCAGCGTCCATTAGCATTTGTTGCTGAAAATG 31500 31501 CATATTTCGACGAACTACTCCATAATCATCTTCTAAGTCTGGAGTACGGTTTTGTGGATT 31560 31561 GCTTTTAACTTCTACTAATTGCAGAGGTTCATACACTTTGATTTCCTCCCCGTCAATTCC 31620 31621 GGGGAGGTCAGAAATATCTAAAAGTTTGTTTATATCAAGACCTTCCATAATAACCTCTAT 31680 31681 GTTCTTGGGCCAGGAGGTTCTGGCGGTGTTGGTCTATTTACATTACTAGTGAAAGTTTGT 31740 31741 TTTACTGTTCCATCCCAGTCTTCTGGGTCAATATCTCGAGGAACAACTTCGCTATCGACA 31800 31801 GATTCAAAAACACCTTCGCCGTCAGGCAAATCTCTTGTATTGGCGTGAAAATCTGTATAA 31860 31861 GTAGTACGAATTAATCCTTCTGCATCATCTACTGGAGGATACATCCATCCATTTACTTCA 31920 31921 AATGTTAATGACCATTCAATTCTACGACGAGATAAATTATCCCCATCTATAGCTTCGTCT 31980 31981 ATAGCAGCAGACATCAGTACAATTTTAATATCCCTTTTAAATGGAATATCATTTCCAAAC 32040 32041 TGCTCGTACATAGTTGTATTAAAATGAGGTTGAAAATATGGAAGAATCTGTTCAACTATT 32100 32101 TGAAACATATCATCTTCATAGCGAGTAAAGATACTCAATTCATAAATCATTTTAATAGGA 32160 32161 GATGGATTATACTGCGATACTACAGAAGTTGCACCTTTTTGCAGTAAATTCTGATTTAAA 32220 32221 ATGTTTGTTTTAAATGGAGCATTATAGCTAAAATCAACTAAATGTAAATTTATACGAGGT 32280 32281 AGAATAGTTTCAACTTTAGCTACATCTTCTTGTGAATTTATTGATGTCCATTTATTCAAT 32340 32341 TTCATCATAAAGTGTTCCTTTGATGCATACGTAATAGGAACACGTATAAACTTATCACCA 32400 32401 GATTCTAACTGACGTTTGATTTGGATATTTGAAAACAAATCGCCCATCAAGGTAGCATAT 32460 32461 CGTCTAAAAGACGAATTATAAAAATAACCAAACATGACTTCTCCTAATCCGGGCTTTAAT 32520 32521 TAGTTTATAATATTTATTAATCCATGAAATCATTGTCAAATGGGCTAGATTCGAAAGATT 32580 32581 TGCCTCTGTTATTGACAACAACATAAGGTTCAACGTATTCTTTAGCTTCAGAATTAATTT 32640 32641 GATCTACTTCAGCATACTGATCAATATTAATGTCATGAATACCGTTAAGATTGCGAACAG 32700 32701 GATTTAATTCTAATTCACTAAATTCTGGAATGTTAATTCCTTCATTTTTCTGTAGAACTG 32760 32761 GATTAATTTCTTCTCCAGAATAAATGAATTTACCTGCCGTAATTTTACGAATAGCGTTTT 32820 32821 GGCCTAATTGATAAAATGGATCATATGGTTCAACCCAGTTAATTTCAAATAAGCTGTTAT 32880 32881 CCATAGGAAAATATATCAAATCACCTTCCTTGGGTTCTTTTCCGTTAACTTGATGCTTAA 32940 32941 ATAAATTTGGGTTAATAGATAAAGTCACTTCGTCTTGTACTTGCATACCAAAGTTACTAA 33000 33001 AGAACGATTTAGCTCCTTCATATCCTTCAAATGAATTTAAATATGCAGCAAATTTCCAAG 33060 33061 CTTTAGTAAATTTATTTTTTAAGTCTTCGCCGAATATCAAATCAGGGGAAACATACTCTC 33120 33121 TTGGAACATAATAGCATTCTACACCTCGCATTTGAATGCTTTCAGCTACTAATACATCAG 33180 33181 CTAATATTTGGCTGTTTTTATAATGATTGAAATTTACATAAGGATTTAATATTTCAGTTT 33240 33241 CATTGGTCTGAGAATAACCTGTGCGGTTTTCCAATTTAGCAAAAAGATTTTTATCATAAG 33300 33301 TAGCCATATTAACCTACCAAAATTCCAAATGGAGGATCAAGTAAGTATAATTCTTCGCGC 33360 33361 AGTGCTTCTTTTTCTAATCTGGCTTCTTCTATTAAGCGCTGCCCATCAATTGTAACACCG 33420 33421 CCCGGAAGCATCATACCTTGGTGGCGTGCTAAAATTTGACCGTTCAATTCTTTAGCTAAA 33480 33481 GCTGTTGCATAGTCTTTCACCCAACGATTATTATAAGCACCCTGTTTAACATTCGGATCT 33540 33541 TGGCCGACAACACGACCTACTAAATTGTGGTCTGGGTTATTATATCGTTCAGATAATGAC 33600 33601 CAGCTATCTTGTGGACCGACTGTTCCATATCCTACTGTATTTCCAACCATTTTGTTTGTA 33660 33661 TCAATGTATGATTTAGTCCAGCTTTCTACGATAATTAAATCATATTTTTGGAAGTTTCCC 33720 33721 ATGACTTTGAGCTGTTCATTTGCTGAATTAAACCAAAAGTCTGGAATAGGAGAGAGCATA 33780 33781 TCTTGCATCATTCCCATATAACTGGTAAGCTGGGTAAAATATCCTAAATCAGCTCCAAAG 33840 33841 GCATTTGGTCCATAAAATCTATTACAAGACGTTCCCATTCCGCCATTAATACCAGCCATT 33900 33901 CCTAAAAGAAAGTCAGTAAACCACGGATATGTAGCGTTTCCATCCATAGATGTTATTGAC 33960 33961 CCAATATTTGTGCGTAAAATGCGGGTTACTGCAAATACGTTAGAACCTCTTAAATCGAAG 34020 34021 ACTCCGGTCTTGTACCTTTCTTCATCATCCCCTACATAAAAAACATGAAAACCTTTATTG 34080 34081 AGTCCATCAAAATGGTATTCACCGTATAATTCTAGGGCACGCTGGATACAATCGTAAATT 34140 34141 TGATCGGGTGTTAACTCAACATTAATAATTGGAGCCCCTAAACGTCTTAGAATGACATCT 34200 34201 TTGAGTTCCTTTGGATTCTGAGAATTATATCCTGACATTTAAAATCCTTTGGGGCCTTGC 34260

77

34261 GGCCCCATGTTATGCTGGTGATAAAAAGGTAGAAAGCAATACCCATTCGCCATCTTTACG 34320 34321 AACGTAAGCTTGCCCATCTCTTGGAGCTTCAGGAATATAACCGGCTTCTTGGAGAGCTTG 34380 34381 AACATCACCTTGTAAAGAAGATATATTGCCTTTAGCTGTATTCACTTCTTGTGTAACTGA 34440 34441 TGCAATGTTAGTTTCGTTAGCTTTTATTGAATTGGTTAATCCGCGCTCTTCAACAGTTGA 34500 34501 ACCGTTTGGATTAGTTCCATTTACTAAAGTATTTAACGCTACAACTTGCCCTTTAATTCC 34560 34561 TGTGCTGTTATTACCAATCTCTACTTGTAGGTTTTGAACATCGTTATTCAAGCCTGAAAC 34620 34621 AGAAGTTTCAATTGTAGAAACTCGGTTTAAAAGAGACCCAGGAGGAGAAGGTTGTCCACC 34680 34681 GCTAGAATCAGTTCCAACAATTTGGTTTAACCATGAAACATTCGCTCTTAAGCCAGATGA 34740 34741 AGTGTTTTCACCGACGATTCCATTTAGAGATTCGATTGAAGTTGTATTATCTTTGATTTG 34800 34801 ACCTTTAATACTCGAAGGAATATCATCTGAACCAATGGAAGTTTCAATAACGGTTAAACG 34860 34861 CTGTTTAATACCTCCACTTTGATTTAGCTCTAAATTAATAGATGCAATATTATCAGTGTT 34920 34921 TGTATTAACACTCGTGATAATCGAATTATTTCCTGGATATCCTATTGAGGTCTTAATAGC 34980 34981 ACTAATGTCAGACTCAACTGTTGTCTGTTTAGTGTCAATTTCATTTAAACGACTATAAAC 35040 35041 GTTCTGTGAAAATGATGGTGGTTTCGGTCCAAGCTCTTCACGAAGATTACCAACTTCAAT 35100 35101 GGTCAAAGAACCTACATCAGATTCAATAAATTTTGTTTCTAATTCGCTTAAACGTATTCC 35160 35161 CTGCGAAGTGATGACATCAGTATTATTAATAATGCGATGCTTCATTCCACTACTAGGATT 35220 35221 TCCTACAACAGGAAGACCATTAATATCTTGACCAGTGTATTGTCCAAGTTCACGCTTTAT 35280 35281 CCACAGTAAATCATTTCTGATCGTTCTGTATACAGAGTTGGCCTCGGCGTTAAATGGACC 35340 35341 AATATCGGCAAGAATACTGTCAACCGTATTATTAGTTCCATTTAATATTTCTGTGTGTTC 35400 35401 ACTGGTTAGCGTTTTGAGGTCAGAAATATCCTTTTTATTGATACCTATTTGGGCCAAAGC 35460 35461 TTCAATATCACCAGATACATCTAAGATGCCCTGAATTGTTTTAATATCACTATTTGCGGT 35520 35521 TTCTAAAGATGTTTTAAGTATTCCAATGTTTTTATCAAGAACTTCAACATTTCTTAGTAC 35580 35581 AGAAACCGTAGGTCTATTCATTGAGCCTTCACTTCCATACTGTGTGTCAGCTCCTAATAT 35640 35641 TTCTTCGCCGTTTTTAATCCAGGAAATGCGGCTCTGGCCCTCTGCAGGAGGGCCGTCAAC 35700 35701 GAATGGTAAGTCATTCAGTACAATATCTGTCATTCTTTTACCTTAATTATGTAGTTTAAA 35760 35761 GAAATGTTCCATGGACGTGTTTCATTTCCAATTAATTCAGGACGATTTAATGTATATTTG 35820 35821 GAATTTCGTTGTGATTCTGGGTCAATTTCATATCCGTCATTGGTGAAGTATGAACGGTTA 35880 35881 TCCCAGTCAAGTCCTTTACGTGTACCAACAAAATTTGATCTACGGGTATTACCGAATGCC 35940 35941 CCAGAATCATCATGCTCACCAAATCCGCCAGCATGTTTATGATAAGACATCTGTTGTTTC 36000 36001 TGTACTTCACCAACATATCCACCGGTACAACCTACACCTAATCTAGGTTTACCAAATTGG 36060 36061 TCATTACCATTAACATTTGGATTTGTTAAGTGAGAACCACGACCAGAACCACGAACAAAA 36120 36121 AGACCACGCATGTCAGGCAATCCAGGATTTGATGGGTTTCCGCCATATCTTGTTCCAATT 36180 36181 CTAGAAGCATATAATGGACAATCTGACGCTGAAACAGTTCCACCATGGCAGAAGCGCCAA 36240 36241 GCATCACTAGGAAGACTATCAGCGGCCCACATCATAATAGCTCCGACAGGAATAGTTCTA 36300 36301 TCAATTTCATTTTGTGTTACGATGCGGTTACCTTGAATATAACCGCCAGTCATTCTGACG 36360 36361 GTACCCGTAATATTTGCTCCACCATTAGCTATTGTAAATGTGTCTTCAATGCGGAGTGTT 36420 36421 CCATAGATAATTTGACCACCTCTTTGGTGGATAACGTCAGCATTCCAAGCTAAGGCTGAT 36480 36481 GAAGCATCGCCTCCACTCTGTGAACCGGCGGTTGTAGTTAATTTAACTACGCCTCTCATT 36540 36541 GACGTCGTAGAACCACGACCATTAAGAGTTGCGCCAGTAACCGCAACAGAAGCATTATTC 36600 36601 GAGTTAACTTCTGATTGTGTTCCTAATTTAATTACGCCTTTATATTCTTCAGTAGCAGAT 36660 36661 GAATTCATAAACGTATAAGGAGAAATTGCATAGCCTTCTCTTAAAGTTCCCTGACGAACC 36720 36721 TGCGCTACTGTTGCTAATTGAACAACACCTTGGTCCGATTCGGTAGCTGTGGTTTCAGAA 36780 36781 GGAGCAATTTGCGCAATTAATTTAATAGCTAACTGCTGTGTTTTTAATGGAGTCATTGCA 36840 36841 GTAGTATCATCTGCACCAGCTAATGCTTGCGGTAGAGATGAAATTTTAATAACACCATTT 36900 36901 GAGGATTCAGTTGAAACTCGCGTTTCAAACGCATTATTAAGGGCGACAGTAAATTTAGCT 36960 36961 GGAGTTATAGAAGATTCATTATTAACTCCGGCAATGGCTTCATCATTGGTTGAATATCTT 37020 37021 GTTAATCCGTAAACAGTTTCAGTTGCATTTGGATAAGATAATCTTGTTGCCAACGTTGCT 37080 37081 GGTGTAACTGCTTTGGTATTATTAGTTCCATCTATAACTTCCTGTTCAGTGGCAAGAAAT 37140 37141 AGAATTCCCTTTGTTGTTGACGATGCATCAGGAACTCCATTTACTCCAGCAGGAGAAATG 37200 37201 GCTGCTATAGCAGCCTGAACATCAGTAATCTCCGGTGGAAAATTCGTATCGGTAGGATCA 37260 37261 AATTTTACATAACGAGATTCATTAGAAACGTGTTGATATGTATTATTACTCATGCTGTTC 37320 37321 TCTCAAAATGATAAAATACTGTAGGAGTCTGCTGATTATCTAAAGTTACAGTTTGTGCGC 37380 37381 CCAATAAATTCCATGTACCATAGCCAGGCTTAGACTCAGATATAATTTCTTGGGAAATAG 37440 37441 TTATTCCATATGTAGAATATGTGCTTAATACATGTTTTTGATTATCTAAATAAGTAACTT 37500 37501 CTAATTTACTACCATCAGTTGGATGGTCTTTATATGAATTGATAGCAGTAAATGACGCAA 37560 37561 TAGCTTCTTGTAGTGCAACGCGAACTTTTGCAACAAACTCAATTGCCGTCATTCCAGTTG 37620 37621 TTGCTGAAACTGGAAGACCAAATACTAATACCGTAATAGGAGAACCCGGAGGAAGAGAAT 37680 37681 CGTCTGTTACAGTTCCAGAAAATGCCCAATAATCAGTTTGAGAAACACCCTCAGGAGAAA 37740 37741 CACCAGTTTTATTAGTAATAATTGTGCCAACGTCTTTTATAGAAAAATTATGAACGTCAT 37800 37801 TAATAGCTGATTCTATGTTTGGTTCATAAAATCCTTTCGCTAATTGAGATATTGTCACTG 37860 37861 ACCCGACTGATTGACGATTCATTACATCAATGTCGCCAGTTTTAGGTCTAAAACCAAGAA 37920 37921 AATCGGCTAAGCGGGAAATAACTCCCGCTTTATTATTAAGTAAACTCATTATGCAATCCT 37980 37981 TATCCAACGATAAACTGTAATATATGGTTGAATGTTAGTTATTGATGTTGGCGGAGTGTG 38040 38041 AGTAGAGTTAGTAGATGCTTTAGCTTCACGGTATTTAGTGTAAATTGGACCGGATTCATC 38100 38101 TGGATCGTATTGACACCCACCAACAATGACTGATCCATTTTCATCAACTATTAGAACTTC 38160 38161 TTCATCTGTTTCAGTTGCAGGAAGATTAGCATTTTCCAATGTAACAGAAGTAGAACCACC 38220

78

38221 TGTTCCACCTGCGGTATGTGAAGGATTTCCACCCGAATCTAAATCGTTGTTATTTAGAGC 38280 38281 AAAGTTAGGGTCCGAAATATCTTCATTCCATCCAACTAAAACTTTTCCTTGCCCAAATAA 38340 38341 TTTCCATGAGCCGAATCCCATATATGTAACAGGGTTATTTGGATTAACAGCGTTTTCATA 38400 38401 TATAGTTCCAATAGGATAAATCGTATCAAAGATATTTGAAACAGCATTAAATTCGCGTTG 38460 38461 ATAAGATTGAACTGCTTCTACATTTGGCCAACCAATTTTATCGAAGTCTGTTAAATTTAC 38520 38521 ATCACCAGAAATATCTACTCCAGGTCCTTGCGATACATAGAGATTATCAGTTTCATCAAT 38580 38581 AATCTCATCTTTTGTTAATAATGTACCCAAATCATTATTAAACCAGGTGATATTGATAAT 38640 38641 GTCACCATGCTCAAATACTCTATCGAAATGTAAAATTTCTGGTATGCCGTTTTCATCAGT 38700 38701 TTCAACTGAATAATCGGTATGAGATTGTTCCCAAGTTCCACCTAAAACAGAGCATTCTAC 38760 38761 TTCATCGTCTGAATCGGCACCAACACAATGAAATAATGGCATTCCAACTGTGCCAGCCAA 38820 38821 TTCCTGTAAAATCCCGTTAAAACGAACCTCAAGAGAGTTAGGATTAATAGGTTCTCCTGG 38880 38881 AATTAATCCAAAAGCAGAAAATGGAATTGATTTCATTGTTGATAAATCAGTAACGTAAAT 38940 38941 GCTTCCTTCTAAAGAAGTTTTTGACGTTAATTTTGAATCTAACAATCTAATTTGACGTCT 39000 39001 TGTATATGAACTTCTCCACTGTGATACACCATCCATAAATGTTTCAATTTGAACAGTGTC 39060 39061 ACCAATATTACAAGGCTGTCTTAATCGAATGTTAAATCCATCAAGAGGAACCAGTTCTCC 39120 39121 TTCATTTTCGCCTGGAGAGCCAAAATCGCTGTTTTCGCTAAACACATCGCCGTAATACAA 39180 39181 TTCGTTACCACGATGTTTTACTCTGATGTTATTTACATTATAACTAGTTCCACGGAAAAC 39240 39241 ATCTAAAAAGTCTGTTTGTCCTTGAACTTCAACTAAAAATTCTTTGCGAGCTACATTACT 39300 39301 AATGTCTGAACTGGTAATTTTGTCAATTTGTTTATTTTTGACATATTCCCAACGTCCTGG 39360 39361 GGCACAATACACTAGTTCTAAATCGCTGAATTGAACATTAATTTCAACTGGTACTGCAGA 39420 39421 CCCTTTAATCGTATCGCCGGAAGCAGCTACTAGTGTAACTGGGTTGACGTTCCATGTAGC 39480 39481 AAATACGTCTCTAGCTCTAATTACCTTGTTGTAATCATTAACTGTACCCTTTGGAAGATT 39540 39541 TATAGTCACTCTTCCAGAAGATGTATTAATAGCGTATGATTTTCCCCATTCTGCTGTTAA 39600 39601 TGTTTGTCCTGATGAAGCATTATAAGTTTTCCAGGCACCGGCTGAATATGGAACATCACC 39660 39661 ATCACCGAGTTCATAATAAAGCTCATCAAAGTTTTCATTTATTTTTATACCACCTTTACG 39720 39721 CAGGTAGTCACCGGTACCATCATCTACAACATTACCGATATTAATATTTTGTTTCATTAT 39780 39781 TGAGCCACCCCGATTTTCTGCGTAGCGATAACTTTAACTGCTGCTCTCATACCGACAGTT 39840 39841 GAAGAACTTATAGTCGCCGTTACATAATTTTCTTTAATACTAAATGCAATATTAGCGATT 39900 39901 TCGTCTTCTTCGGTTTCATTCCCAACTCGCATGACAGCATATTCAGAAGAAATTACCTCT 39960 39961 GAATTAACAGTATCCACAAGAATATTTATTTCTGCTGTTTTAATTTTTCTTCCATCTACC 40020 40021 GATTGGCACGTAACTAGCAATTTAGCCATATTGTATTCAGTACGATGAAATAATGGAATG 40080 40081 TCAACTGATCCAGATGTAGAAATATTCCATGTACCTTCAGCTGGTGATTCCTTTTGTCCA 40140 40141 AACATACTTTCAATAGAATAATTCCAAACCGACGTAGAATTATCAGATGAAATACAGCGT 40200 40201 AAAGTAACTTTACTATATGGGCTAGTTACTACTAAATTACCTGAAACACCTTTAATTGAA 40260 40261 TCAATAGCTTGAATTGTCAAAGGATTAGTAACTGATATTGATCCATTAGAGTTAATGAAT 40320 40321 TCAACACAATCGCCGAGTTCGCCTCTTTCAATGATAACTTTAACACCTACAGTAGAGGTA 40380 40381 TCAATATCATGTCTAGTGCCAACTTTCACTGGAGTTGCGTACTCTGTAATAGAGTGTTTT 40440 40441 TGATAATATCCAGTAGCATGGATAATTTGACCATCTGCTCCAGTGCCATTTGCTACTGCC 40500 40501 ATTTTACGCTGATCGCCAAACGCATTATAAATTGCGTTAAAATCACTATTAATTTTATTA 40560 40561 CCACCGTCGAATAAGATATCACCAGTAGAAGCGTTACCAATTTCGCCGGTATCAATCAAT 40620 40621 TTCTTTGGTTCTTGAATGAACATAGCGGTTTCCTTATGAGTTTATAGTATTTATAAAGAA 40680 40681 AAAGGGAGCCCATGGGCTCCCTTAATTTAAAATGTAAACAGAATATTGATTTCTTCTGTT 40740 40741 TGATCCATTGCCATAATAATAGGTGGCCTATTTTCCATATAAATCATTTCACCCGAATGC 40800 40801 CTCATTAAATCTTCTGGGTCATAATAATCCTTTTCAGCTTTAACGTTTGGGTCATTTGGA 40860 40861 TGAGCTTTAGCTTCAAGAGGATTCGTGATTATTGATATTTGTCTAAATCCTTTATTTCCT 40920 40921 GGCAATGCAGCTTCAGGAAAATAAACTGAATCTAAATATGCTTTAAAACGGATAGTATTT 40980 40981 GCCTTAACACGGTAAATTAATCCAAAATCATCTTGTTGCCAAGTGAGATTATCTTCATAT 41040 41041 CCCCATCTAGTCGGGTCTTCTTTTAATTCCTCAGGCCAAGGAACCACGATATATTCATTC 41100 41101 GTGCATCTATTTATAGATACATCAGGCGGAATCTCAAATAGATATTCCCACACATACCCG 41160 41161 TCTCCGGGTTCAATTGTTCCTTCAGCATCTCCTCGACCTTCAGGCGGAGTCATTGACCTA 41220 41221 GCAGAAGGAGTCCATTTTCCACCTAACTTAAGGCATTCATCTTTATCAGTTAAAGATGCT 41280 41281 ATTGAACACATTCCGGTATCAGGAACATCTAAACAACGATACACTAACCAACCAGCGCCT 41340 41341 GATTCAGTAGCGTTGTAAGGAGCTGAGTTACACACTACAATATCGTTAATTCTAAATGTG 41400 41401 TATGGATCCGGATATCTAGTATCTCCCCAATCTCTGCGAGGAATAACAGCATCAAGCATT 41460 41461 GATGGAAGAACTTTTACTGTTCCCATCATATGCGTCCACATGTCAGTTACGCCTAATACA 41520 41521 GAATCGGTTGGATAAGGTGGGGCAAAGCCCACCTCATTTTCATTTGATGACCACGGTTCT 41580 41581 GATCTTCCAAATGTGATAAAGATAGTGTTTTTATCCGGACCACTTCCAATTGAATTATAA 41640 41641 AAATTCAACATTTTTTCTGTTCTAAATTTTGAAGTAACTATCGCACGATAGATAACACTT 41700 41701 GAATCATTCATCTATTTTAACCTGTGTTGGATTTTCAGGGTCTCTTGGATTTCCTATATT 41760 41761 ATCTTTTAGACGTTTATTAACTAAATCTCTAAATTGCGCAAATGTTGTTCCAGATGCATC 41820 41821 AAATAAAGGACTCATTAATTTACGTCGTTCAGACGGCAATTGACCTTGAAATATTGAATT 41880 41881 ATTATTTTCAGCATTATAGTCATCAGGAAGAGGATATTTTACACCAGCCATTGGGCCAGG 41940 41941 CTCATAAATTGCTTCGCCTGTTACTGAATCATGCTCAATTTCACCGGTTGGAGTTAATTT 42000 42001 AGCTATTCTGTCGGCATATTCAGTAGGCAATCCAGAATCCCATTTATAGTTTTTGTATTT 42060 42061 ATTAATTATAGTCTCTGTATGTTTAAGAGTTAAACCAACATTAATAAACATTGTTAAAAG 42120 42121 GGTAATTGCTATAAATCCAAATCCTACTGGATGAACAAAACGAATAACGTCAGATTTCCA 42180

79

42181 GCGGGAAGAAGGTAAATTGGATTTAATTTTCATTACATAGTATGATCTACTTCTATTAAT 42240 42241 ATAGTCTATATTGTTTTGAAGCAAATCCTTTCCTTTAACCCCACGAATAATTTCGCCTTC 42300 42301 AAAACTAGGGAGTCTTTCTGCTTTAACTTCTTGACCAGCAATTAATCGTCCCAAAAGATT 42360 42361 ATGAATAGTTACGGTCCATTGCAATTTACCATTAGAATAGCTTCTTTCTATATAAGTAAC 42420 42421 ATTACATCTTCCTGTTGCCGTATAAATCGTTTGTCCTACTAAATCTTCAGTCAAAGAATC 42480 42481 AGATTGAACGATTATATCATATTCAGTACCAGCCCCAGATTCAATTTCAATTTCAACTTC 42540 42541 TTCATTATAAAGAACTTTAAAAAGAAACTTGTATGATGCTTCAATTCCTTTAGTAGAATA 42600 42601 AAAATCATAGCTACGTGATTCAAAGAATCTCGCAACAGCATCGCGTTTATCAGCATTTAA 42660 42661 ATAAATGTTTCTTTTATATATCTCTGACCACAAATATTCCCATGCGTGCTCTTCTCGTGG 42720 42721 ATATTGGTTACGAATTAAATTTCGTAAATTATTGTATTGAGTTCCATATCCATCAGAAAG 42780 42781 ATACTGAATATATGCTTCGCAAAATGCCTCAAAATTCGAATCCTGTAACAAATAAGAATC 42840 42841 AGGCATCATTGTGCCAATTAATGGTCTTAAATCAGGGTCAGCTAATCCACGCTCTTCTTC 42900 42901 TGGTGACCAAGGAGTCTCATGCTCTTGGTTTTGTAAAAATGCTTTTAAAAATACTTCAGT 42960 42961 TGGCTTCCAAATAATTTCTACTGTATCTCTCACACGATAGTTAAAATCATAGTAAGAAAT 43020 43021 TATTTCACCGGAGGCTTTATAGAAAAGCATTCCTGATGCGTATTTTTTAAATCCAGTGAA 43080 43081 TTTGACATTTGGCATTACTATAGTGCAATCACCATCATCCCAGTATTCATGAACTAATCT 43140 43141 ATCTGGTGATGTTTCCGGAATATTTTCTATAACTTTAGTGTATTTTAAATCAGCATAAAC 43200 43201 TACCACAGCTCTATCAGAGTTGTTTATCCAACAACGTGTGTTAGATTTTTTAGACCAGTT 43260 43261 AAAGAATGGTTCTGCGTAGTATTTCATTGGTTGAGGAGTAAAAGTCTCCCAATCAGATGT 43320 43321 TTCATCCGCTATAAATGCCATCATATGATAATGCTTATCAGCTAACCATTCACGAGGAAA 43380 43381 TTCATATTTAACAGCGCCAATTAACTGATATTTTGCTGCAGTTTCAGGGTCATTAACAAC 43440 43441 ATTATCACTTAAAAATTTAAAATTACTCGAAGACAGAGAAACTAATTTACCGTCAGTTGA 43500 43501 CATATTCGCATATCCGGGTTGAATACGTCTTCTTTCTTCTTCGGTATTACCAAAAACTCT 43560 43561 TTTCCATGTTTTTTCGTCATGATTTAAAACATATATTCCTTTATCAGCGGAATCAATTAT 43620 43621 TTTTGATGTTCTAGGATTAGCATTTAATGTTTCAACTTCACCAATAATAAGAGCAAAAAC 43680 43681 TTTATCACAGATAGAATCCATTTTATAGCATACTGCTTTAGGATTTCCGGTTATAGTCAT 43740 43741 GGTATCAGGTTCAAAAAGTCTTTCCGAATATGTTGGAGATAATGGATCAGAATCTATAGG 43800 43801 TGCATTACTCGTTTTTATGTATCTAACTTTGTCTCTGGCGACAACGTAAATGTAATCATC 43860 43861 GGTGCAAGTAATAGCTTCTGCAATGCGGTATACATTCGCTGGTAAAGTCGCGTAAGTGGC 43920 43921 AAAAATTTCTACATCAAATCCTAGATGTAATTGGTCGCCAAGTTTAGCAAATGTTATATC 43980 43981 CTGAGAACTAAATCTGACATCATCGGCTGACCATCTAACATCAGTAGATTTGCGGCCATA 44040 44041 GAAAATCTTGTCGTATCCTAGAACGTATGTTGTGTTCGCAGATTGGTAATATACTGTCTT 44100 44101 AGATAAAGGATATCCTACACGGTCATTGAAGAGCTTTACAGCTTTCCAGGTTTGTCCTTT 44160 44161 ATCATTGGATACTTTAACTACAGGTTGATAGCGCTCAAAAAGATATAGAATTCCTTCTGA 44220 44221 TTCCATCAAATAAACTCGGTTAATATCCTTACATACTTGCTGAATAGAACCTTGTATTTC 44280 44281 ATGATACTCATTTTCACCAATAATAAAATTACTTATTGATGAAACATCAACATACGATGG 44340 44341 GCTGAATTGGAATGATTCATTCATCAATGCAGCCATTATAGTATCATTATTAAAATTAAC 44400 44401 ATAATCAGAATTATTAAGAGTAAATTTTTCCTGAATGAATTTATTGGCTAATTGCATTTC 44460 44461 AATCATGTTTTGAAATGTATAAGCATTTGTAGCAAAAGTTTCAAACTCTTCGGTATAAAT 44520 44521 CCAATCAGACTGCTCAAAATCTTGCGCAGCTGTGGCTACTCTAATAATGTATGTTGTTAA 44580 44581 TGGATCAGCATCATCAAAAAAGAAACTATTATTTGCTGTATATCCTAAATTAATCCAACG 44640 44641 ATATTGATTACTCGGGAGATTTTCCCCCGAGTTTGTTTTTGTCTCAGCGATTTCTACAAA 44700 44701 ATAGTAGAAATTAGCACCAACGTCATCCCAGCGTACTTGCACCTGATTTGCGGATAACTT 44760 44761 GGAAATTCTGAGACTAGTGACTGAAGGTGCTTTTACTGTCATTGTGATATAGGCTCCAAA 44820 44821 TCGATAGTTAAGTATTGTGGACGTAAGTCATTTTCAAATACAATCAGTGAACCATCGCGA 44880 44881 GTAAAGATAACATCATCGGTTGGGTCAGAATATAATTCAATGGTCTGAACTTCAAATTTT 44940 44941 TCAGATGTTAAATTAATTTTAGCGATATTCCAATAAATCACATCAGCTGGATAATTTATT 45000 45001 TCACCGATAACATAGTATTTGTCGCGTCCATCAGAATTTGCTAATTTGTTAAAATCGTTG 45060 45061 CCTGTATACGGCTGAATGTTTTCATTTTCTGTAACATCGCCAGAAGCAAATGGACCAATA 45120 45121 ATAACTTTACCAATTCCTTTAGAATCTCGGTCTGTTGATACTATACGAACGTCATATAAT 45180 45181 ACATCTTCTTCTAAACCAGTATCAGGATTTACAACCTTTCGTCCAGAATTAAATGAAAAC 45240 45241 GTATTAGATTCCATAGAACGATCTTTTATTTGATTATTGTATTTAATACCCGCTTCAGGC 45300 45301 GTTTTATAGAAGTTTTGTACTTCACGAACCATTTGAATAGTCGCTGATGAACCAATGACA 45360 45361 GAATGATCTGCATCATCTACATATGTCAACATCTTAGATTTAGCGAAAGACGAGTTAAAA 45420 45421 ATTTCTACATCTTCGGTATAATAGCGATCAATTTTATCAATTATTTGACCTTCAAGCCAC 45480 45481 TGTTCGGATTCTTGCAGTTTATTTAAAGCATATGTGACTTTTAAATTAGTCTTAATAAAA 45540 45541 AGATAATTAGGAGAAATAATTGATGGCGTAATAGGAGCTAAATTATAGTCTTTGAGATAA 45600 45601 TTTTTAATATCTTCACGCTGTACGGTAGTTAAATACAATCCTGATTTAGGTTTAGCAGCA 45660 45661 ATAAATGCATACCCAGGTTTAGTAGAATCAGTGAAAGTCTGAACAGCTTGAATAATAGAA 45720 45721 CCAAATCTCTCTGAAACGAATGTATCATAGTCAGTCGCAGTTACGCATCGTTGTTGGGTT 45780 45781 TCGCGTTTAATAGTACCCAATTCGCGAATACGCTCAATATCTTCTGGATCACCGCCTCCA 45840 45841 TCTGCCCCAACAAAATCTGGATCATCGTTTGGATTTTCATTAATATTGATGACAGTTATA 45900 45901 TTTGTTAATGTATCTGCGTATGAAAATCCGACTGCTCCGTTCGCGTCAGCACCATTAGTA 45960 45961 CTAATGTACTCAATAACAATCGTAGAGTTCTGAGTAGGTTTAAGACCTCCGATATAATTA 46020 46021 GCGGTCAAAGCTCCTTCAGAAGCATTAACAGAAATTTCACCTTCACCAAAATAGAATTCA 46080 46081 GTGTTTCCATCAATAGTTTCACGCATATAGTAAATCGTTGATGTTGAACCAGCATGAACC 46140

80

46141 ATTGACTTTCTCGTCCAGTTAATCCATTCCGCTCCATCAACGTATAATTTAACCTGGTTT 46200 46201 CTATCAATATTTTTATCATAAATGATAATAGGTGTTAATTTATCATAAATGATTTCAGTT 46260 46261 CTTACTATACGTCCCTGGGCCAATTTTAAACGCGGAAAATATTGGTTATTTTTATCACGA 46320 46321 ATAGCAATAACGTCTTCGGTAGAAACGAAGTTATATGGATTAACAGAAGTATCTTTTGCA 46380 46381 TATGCTAAAAAGCGAGTTCCGCGAGGAATAGTAATGTAATTCCTATTCAATGCGTCAGTG 46440 46441 CATGTTAACATAATTTCGGTCTGCGCAGCGGATTTTGAAGTAGGTAAATATCCGTTATCT 46500 46501 TGTGCAGCTTGAACAACTGAACTTCGTAAGTTAGCAGTACGCATAAAGCTTTCATACACA 46560 46561 GCAGCATTACCAAACTGCTGAATGTATAATGTATTATAAGCTAAAAGGTCACACAGAACG 46620 46621 TTTAATCTTGAGCCTTCAAAATCATAATCCAAAAATTCATTTTGGCCATTAAGCCATTCA 46680 46681 ATGAGGTTTTGTTTTATTTCAGCAAATGTACCCCCGACGAATATCTCGGGAATAGCATTT 46740 46741 GCTGTTCTTGTTAATTGATAATTTACAGGGGTATTTGCCATTTTAAATCCTATTTAATGA 46800 46801 ATACTTTAGATGATGCCTGAGCCACAGTATCACCGCATGATATTGGATCAGCCATTTGAA 46860 46861 CAGCTTTCTTTCCAGTGACATATACCTTAGAAGTTCTAGGTTGTGTCACTCCGCCATGTG 46920 46921 TTTCATACGGCTTTTTAATTTCTGTATGTTCTGTAATTGGATCGCCTGCTACGAGAACAG 46980 46981 CAATTCCTCCAGTGAATACTTTACTTTGTGTAGCATTCACAACTGTTGGAGGCCACGCTT 47040 47041 CATGGCCAGCAGTAACACACTTATCATAACTTAATCCTGACATTTATAATACCCCGCTTT 47100 47101 AACTCGCCCCTTTAAGGTACTATAATTTATATTAAGAGCTTTAGCTGCGATTTTAATACT 47160 47161 TTTATATAAAACGCCGTTGATAATAACAGATTTAGCATTAGGGGCTATTTTGCCATACCT 47220 47221 TGGGTTATTGGCGCCACACATCTTCAGAGTTTTACCTCTAGGCCCTCTAGGCCCTCTTTT 47280 47281 TCTAGACGATTTAATGCTAATTTTCAATCTAGTTTCACGCGAATGAGATTTACCGTAAAA 47340 47341 TCCATTTTTAGCACCCGCTGTGTTATGTTTTGGGAAGCCACCGATACCGCCTAGTTTCAT 47400 47401 ATTATAAGTTTTCTTAGATTTAACAAATTCCTCTGTGACTATTTCTGCCTCTGCGTCATA 47460 47461 CATAGCTTTTTCAGATTCAAAGAATTTTATAATATGCTTATAAAAATTATCTATGCCATA 47520 47521 TTTTTTAATGGCATTTTTAATGGCAACGCCAGAACCCATATACCCATCATCCAAATTTGA 47580 47581 AGTTTTGTGGACGCCTACATAAATTTTTTCTGTTGTTTTATTAGTTATTGAATACAAATA 47640 47641 AAAATATTTATGGTCTTGCATAGGCATATTTTCTCAGTTTATTAGCCCAACGACTCCAAT 47700 47701 TTCCAACTATAGTTTTAGTATAATTTTTAACTAGAGTTTTTCTTACTGGAGCAGGAGGAT 47760 47761 CTGTCGGTTCAGTAGTATCAGAAGATGACCTAGAATTACTGCCAGAACCCCCAGATTCAC 47820 47821 TTTGTTCTTGGTAGTCATATATTAATGTTACTTCGTAAGTGAATGTCTTCTGGAGGTTTT 47880 47881 GAGGAGCTTTCCACAAATACAACTGAGTATCAGAATCAGTAGGAAGTTCTTCCCATGAAG 47940 47941 CAGCAGTTTTAAATTCATCGCCTAAACGATATTTCAACGCGTCATTTCCGAAACCAAATA 48000 48001 CAGATTCATATGTTCCATATAAGCGATTTTCTTCTACTAAAACCCCAGGAGTTTCTTCGT 48060 48061 AACTAGTTATATTTATAGATACTAACGTTTCACCTGTTTCTAATTGAGCGGTAAAGGTGA 48120 48121 CGTCGATAGAAGAACCTTCCATGGATTCTCCTAAATCAGCGCTCATTGGAAGTATATTAG 48180 48181 CCAATGTCAATCCTCGATCCATCAATTGTGTATTGACCAGATGAAATAGAACTCATAGAT 48240 48241 GCCATTTTTTCTGTCCAATCACCACCGACATCCCAATCAACTGTCCCGGCAACTTTCCAA 48300 48301 GAAAGATTTCCATTTACTGTGTTAGTTTGATTTCCTTCAACTAAAGTGGTAGCATCTCCT 48360 48361 TTAACTGTAATGTCAGCATTACCTTCAACTATAATAGTAACATTACCTTTAACTAGGATA 48420 48421 GTTCCATTACCTTCAACAGTTTTCGTTTCGTCTCCACGTACAAATATTGTATTGCTTCCA 48480 48481 TCGATTTGATGTAAACGATTATCCATGTTATAATAAATTTCTGAACCACCGACGTTAGTC 48540 48541 TTTTTATCACCGGCTACCAAAAAATTACCATCAGCATTGGTTATATCATACAAATTATCA 48600 48601 ACAGTTTTTCTTGTTCTTCTTCCTGATGGTGATACTTCTTCATAAGTTCCAGTTGGATGA 48660 48661 ACTAATCTATATCGTTCTTGCCCAGGGGTATCATCAAATTCCTGAATATGTCCGCTTTCA 48720 48721 GTTTCCATTGTATGCACATAAGGATATTCACCTTTATATGAAGAAACTGGTTCTTTGAAT 48780 48781 AAAATTCTCGAGTCATTTGGAATAGGAGGGTCAGCAGGGTCAGAAGATTTAGCTACAGTA 48840 48841 GCAGCCATTGCTGATAGAGACCTAGCTGGGGTTTTCACTTCAACACCATATGATTCCAAA 48900 48901 TTCCCCGTAAGAATAATCATGGTAACACGGGATGCACGGCCTTTTGTTTGTTGATACCAC 48960 48961 AATGAATCACGACCGGCTTTATACGCTTTTTCCCAATCTCCTGCTAACATAGCAGTTAAC 49020 49021 ATTGTGTTAAATTTAGCTACACCACCAACACCCATCTGAAATGCCATATTTTCTAACGCC 49080 49081 ATTTGACGAGAACGGTTGACAGCTTGCCAGACTGGTCCTACTTTAGAATGTGATTTAATG 49140 49141 TCCCGTTGCATATCAGCCAAATCACGCTCAAATAAAGTCGTCGCCTCTTCCATTGTAATA 49200 49201 GAACCTGGATTTCCTGTAATTTCACGACCAACTTGTTTTGATAAAACTTTATTAATTTGA 49260 49261 GCCATATCACGAACTGGCTGCTTCATGATAAGATGACCAATACCAATTGTCGGATATCCT 49320 49321 TCGGTATCCCAATAAACTTTTAATCTTAATCCTTCATCACGGCGAAGCATTTCAGCCATT 49380 49381 GACATATTTGGATTATCATCGGTTGGAATCTCTGATAGCGGTCTATCATCGGGATTTATT 49440 49441 GCGGTGTCTAAGTTACTATCTTGGATAACGTTAGAAGACGAATCATATCCTACTTCTCCA 49500 49501 CCTTGGTTTAGTACGTTAGTATCATTTCCTAAACGTCTAGGATACTGCCCAGTTGGGTCA 49560 49561 GAAAATCCTTCAAGTCTATTCGGTTTTTCGCGAACTATTCCACCATACGTGCCAAGGACA 49620 49621 ATTCCATTAGTTTTCCATTTGTCTAAAAAATGACCATAAACTCTAGTTCCTTCTACTGGT 49680 49681 CCAGTAACAGAACCTCCAATTCCAGACATTGCTGCAGAAGTTATAGGTTGAATAACTGAC 49740 49741 ATCCATGGTAATTTTTCAGTTGGAATACCCATTACATCACCTTGTGCTCTTTGAGGTGGA 49800 49801 TGCAGACCAACCACACGAACACGAACACGACCTAATTTTAATGGGTCCATTCTATCTTCA 49860 49861 ACAACACCGACAAACCAATTAAGGTTATTACTTATCATTTCCATAAGATTTCTCCATTAT 49920 49921 ACGTATAAGGTCGTTCATAAATGAATTGATGTCTGATTTTGCTATTATTTTTATTTGACG 49980 49981 AAGTTTTTCATTTTCAAGAACAGCAGCTTCATACGTATCGACCGCAGCAAGCGCTCCTTC 50040 50041 ATATTGAGGATATTTTCTAGCTTTATCGCCTTTATCATACCAAACATATGGATTATCATC 50100

81

50101 GTATGATATTAAATTATAAAATTTTTCACCGTTCTCATTCACATGATATACTATTTGGTC 50160 50161 TCCACCTACGTTTTTGTATTTTTGTATAGATGCTTGATAAGCAGCTTCTTGCGAAGTAAT 50220 50221 CCATCCATAATACGGGTCATAATTATCATTACACATCAATAAAACCCAATACAGCTGTGG 50280 50281 ATTTCCATATATAGCATTTGCTAATTCTTCCGGGCGTGGTGAACCTTTAATATAATAAGT 50340 50341 ACGTAAGCGGTATCCCGCAAGAGCGCGTTTAAAATAGTCTTTATAGTTTCTAAAAATATC 50400 50401 TGTCATAGGAATAGTCGGCGCGTTTTTATTCACCGTTTTGGCCGCATATTCAATCGGATC 50460 50461 AAAAAATGTAAAGAGCATGGGCCCTCCTGTTTATAAATATATTATCTATTTATAAGGAGA 50520 50521 ATCCAATGGCATATTCTGGAAAATGGGTTCCTAAAAATATATCAAAGTATAGAGGTGACC 50580 50581 CTAAAAAAATTACGTATAGATCAAATTGGGAAAAATTCTTTTTTGAATGGTTAGATAAAA 50640 50641 ATCCAGAAATTATTGCATGGGGTAGTGAAACAGCAGTAATTCCTTATTTTTGTAATGCAG 50700 50701 AAGGGAAAAAACGTAGATACTTCATGGATATTTGGATGAAAGATTCTTCTGGACAAGAAT 50760 50761 TTTTTATTGAAATAAAACCTAAAAAAGAAACACAACCACCAGTTAAACCAGCACATCTAA 50820 50821 CGACCGCAGCGAAGAAAAGATTTATGAATGAAATTTATACCTGGTCTGTGAACACTGACA 50880 50881 AATGGAAAGCAGCACAATCTTTAGCTGAAAAGCGTGGAATAAAATTTAGAATTCTAACAG 50940 50941 AAGATGGATTACGAGCTCTTGGCTTTAAGGGGGCATAATGGCTATTTTTCAAATAATTAA 51000 51001 TGAAAGCACTCCCCAAGTTCCAAAGGTTAAGCAATCATTAAACGAAAAGAAATGGATTCA 51060 51061 GATAGGTCTTGAATATAAAAAGGCCAAAGCAAAAGGAATGACAGGAAAGCAATTTGCTGA 51120 51121 AGAAAGAGGAATCAAATACTCTACGTTTACTTCAGCAATGTCAAAATATGCTTCAGGAAT 51180 51181 TAAAACGGCTGAAAAGATTCAAAAACTTGAATCAAAACCAATGAATAAACTCAATAAGCA 51240 51241 AGAAAGACAACTGCTTATGATAAATTCATTCAGACAAACATTGCGTGATAAAATTCGTAA 51300 51301 TGAAGGCGCAGCAATTAATAATAAAACCAGAAAGTGGTTTGCTGAAACTATTAAGCAAGT 51360 51361 AAAAGGACATAAAGTTGTTCGCCCGCAGCCGGGACGAATATATGCTTTTGCTTATGATGC 51420 51421 TAAACACAAGGAAACTCTTCCTTACTGGGATAAATTTCCTTTGATAATTTACCTTGGTTT 51480 51481 AGGTAAGCATAATTTAATGTACGGATTAAACTTGCACTATATTCCACCTAAAGCTCGTCA 51540 51541 GCAATTCCTAGAAGAGCTTTTAAAGCAATATGCAAATACACCTACTATTACTAATAAAAC 51600 51601 GAAATTAAAAATTGATTGGAGTCAAGTGAAAGGATTTAGGGGTGCAGACCAAATGATTAA 51660 51661 GGCATATATACCTGGTAATATTATGGGTAGCCTTGTTGAAATCGCCCCGAAAGACTGGGC 51720 51721 GAACGTTGTGTTGATGCCACTTCAGCAGTTCGTTTCAAAAGGAAAACGTTTCTCTGCAAA 51780 51781 CAAAGTCTGGTCAAATATCTAATTCTATTATCTTCCATTCTTTTCTGTTGTTTGTTCTAA 51840 51841 ATGGAATTGAATGGAAGGGACTTAGACCCATTATACCACCAACAGTTATAAAGCATTATG 51900 51901 AGGAATATATGTCGCAAGCTCTGCAACAAATTTTTAACCAAGCAAATACAACTAACTTTG 51960 51961 TAGTATCAATACCACATAGTAATACTACATCTGCTTTTACTTTAAATGCTCAGTCAGTTC 52020 52021 CTATTCCAGGAATTAGAATACCTGTTACTGATACCGTGACTGGGCCGTTTGGACTGGGCC 52080 52081 GAGCACAACGTCCAGGTGTTACATTTGAGTATGATCCACTCATTGTGAGATTTATAGTTG 52140 52141 ATGAAGAACTTAAGTCGTGGATAGGAATGTATGAATGGATGCTAGGAACTAGCAACTATC 52200 52201 TTACAGGTGAAAATACTGCCCAAAAAACAGGTCCTGAGTACATTACGCTTTACATCTTAG 52260 52261 ATAATAGCAAAACTGAAATCGTGATGTCAATAAATTTTTATAAGCCTTGGGTTTCTGACC 52320 52321 TATCTGAAGTAGAATTTAGCTACACGGAAGATTCAGACCCGGCTTTAGTATGTACTGCAA 52380 52381 CAATTCCTTACACCTATTTTCAAGTAGAAAAAGATGGTAAAATTATAGCAGAAGTTTAAT 52440 52441 GCTTCAGTTTTGTGTGTTATAATCTTAATTAAATTTGAGGAGAAACACATGAAACTGATC 52500 52501 TTTTTAAGCGGTGTAAAGCGTAGTGGAAAAGATACTACTGCTGATTTTATCATGAGCAAT 52560 52561 TATTCTGCAGTTAAATACCAACTTGCTGGTCCTATTAAGGATGCATTGGCTTATGCATGG 52620 52621 GGAGTATTTGCAGCAAACACTGACTATCCTTGCTTAACTCGTAAAGAGTTTGAAGGAATT 52680 52681 GACTATGATCGTGAGACTAATTTAAATCTGACTAAATTAGAAGTAATCACGATTATGGAA 52740 52741 CAAGCATTTTGTTATCTTAATGGTAAAAGCCCAATTAAAGGTGTGTTTGTTTTTGATGAC 52800 52801 GAAGGAAAAGAATCAGTTAATTTCGTAGCATTTAATAAGATTACTGACGTTATAAATAAT 52860 52861 ATTGAAGATCAATGGTCAGTCCGTCGTCTGATGCAAGCCCTAGGTACGGATTTGATTGTT 52920 52921 AATAACTTCGACCGCATGTACTGGGTAAAATTATTTGCTTTAGATTATCTTGATAAATTT 52980 52981 AACTCAGGTTATGATTATTATATCGTTCCTGATACCCGTCAAGATCATGAAATGGATGCG 53040 53041 GCTAGGGCGATGGGTGCTACAGTAATTCATGTAGTTCGTCCTGGTCAAAAATCCAATGAT 53100 53101 ACACATATTACAGAAGCTGGATTGCCAATTCGTGATGGCGATTTAGTAATTACAAACGAT 53160 53161 GGTTCTCTTGAAGAACTTTTTTCTAAAATTAAAAATACACTAAAGGTACTATAATGTCTG 53220 53221 AACAAACTATTGAACAAAAACTGTCTGCTGAAATCGTAACTCTGAAATCTCGCATTCTTG 53280 53281 ATACGCAGGATCAAGCTGCTCGTCTGATGGAAGAATCCAAAATTCTGCAAGGAACTTTGG 53340 53341 CTGAAATTGCTCGTGCAGTAGGTATCACTGGCGATACTATCAAAGTTGAAGAAATCGTTG 53400 53401 AAGCTGTCAAAAATCTTACTGCTGAATCTGCAGATGAAGCAAAAGATGAAGAATGATGGA 53460 53461 ATTTAAAGACTTTTCAACGGGTCTTTATGTAGCAGCTAAGTTTTCAGAATTAACACTTGA 53520 53521 TGCGCTGGAAGAACTTCAGCGCTCTTTACGTGTTCCTAATCCAGTTCCTAGAGAAAAAAT 53580 53581 TCATTCGACTATATGTTATTCAAGAGTAAATGTTCCATATGTTCCATCGAGTGGAAGTTT 53640 53641 TGAAGTAGCTTCTTCTGGACATTTAGAAGTATGGAAAACACAAGATGGATCGACTCTTGT 53700 53701 ACTTGTGCTAGATTCTGAATATCTGCGCTGTCGACACATGTATGCGCGGGCACTAGGTGC 53760 53761 TACACATGATTTTGATGATTACACACCGCATATAACATTGTCTTATAATGTTGGGCCCTT 53820 53821 ATCATTTAGCGGTGATGTACAAATTCCGGTCGTATTAGATCGTGAATACAAAGAGCCTCT 53880 53881 TAAACTCGATTGGGCAGATGATTTAAAATAATTTCACAAAGTTGTTTACATACTGATGAG 53940 53941 GTAGTGATACTATTACCTCATCAAAATTAATTAGGAAAATAAAAATGAAAACATTTAAAG 54000 54001 AATTTACTTCTACAACTACCCCGGTTTCTACCATTACCGAAGCTACTCTTACTTCTGAAG 54060

82

54061 TTATTAAAGCAAATAAAGGACGAGAAGGTAAACCAATGATTAGTCTGGTTGATGGCGAAG 54120 54121 AAATCAAAGGTACTGTTTACCTAGGTGATGGGTGGTCTGCTAAAAAGGATGGTGCTACAA 54180 54181 TCGTTATCTCTCCTGCTGAAGAAACTGCGTTGTTTAAAGCTAAACACATTTCTGCGGCAC 54240 54241 ATCTCAAGATTATTGCTAAAAATCTTTTGTAATAAATATTTCACAAAGTTGTTTACATAG 54300 54301 GGTTTTAGCTGTGATACTATTACCCTATCAACTACTGAGGAGAATAAAATGAAACGCTGT 54360 54361 GAATTAATTCGAAATGTTGCTATTGCAATTTCTGCTTCTGCTTTTAGTTTTTCAATGTTT 54420 54421 GTTGGATTTATATGCGGATTATTAACTACAGCAGAAAATGTGTTTTCACTTGTAGTAGCA 54480 54481 TTTTTAATTGGTTTAATTGCTATCGTTATGGATAAAATTTCTAAAGGTGAATAAATGAGT 54540 54541 ATTAACGAATATTATGTTTATGCCGGGGATTATGCAAATCCTTCTCATTTTGAAGGTAAT 54600 54601 TTAATACCTGATAAAGTTTTTAATACTCCTTTTGAAGCGTGGAGTTGGATTGAAAGTAAA 54660 54661 AATGGATTTTCTTACCGTTATGTTGAAGTAACTGATTGGAGAGGAACTAAATATCCTAAA 54720 54721 GACCATTATTACGTAAATCCATCTAAGGTAAATTTTCTTTTATTCGCAGGTGATAATTAT 54780 54781 TATCCTTGTGGTGGATATGATGATTTAATTGCGTATGCTGAAACAGAAGATAAACTGCGT 54840 54841 GATATCATTAAAGAAAATGAAAATAAACCAGATTATGGTTCCAATCGTTTCGACTGGTGG 54900 54901 CAAATCGTAAATGCCCATACTCATGCTATTGTTGATAGAGGTTGATGATGATTCTTTATG 54960 54961 CGAAAGTATCATCCGTTGAAAATGGATATAAATATGATCAAGAAGCAGCTAAAGCCTTGA 55020 55021 TTGATGATTATGGCATTTTAACGTGTTTTGAAGTTGAAAAGGTTTACATTGATCGTTCAT 55080 55081 CTTCTCAAGTTAAATTAGTAAAGGAAGACCGTAAATTTAATACAGTAAATTTTGATTTCT 55140 55141 TTATTGAAACAGAAAAAGGTCCTCTTGAATATGATATTTTCAAGAATCCTTTGGGTCTTG 55200 55201 AATGTATCGTAAATACGTATCATCATAAATGGTAAATATGCTTTAAGAATTATTTGTTAT 55260 55261 TATTAACTCATACCGCACTGATTAATACCCTCTATCATCAAGGGTTCTTGTTAGAGAGCC 55320 55321 TTTGTTAATAATTGGGAATTAGCCAAGTTGGTAAGGCATAGCACTTTGACTGCTAGATGC 55380 55381 AAAGGTTCGAGTCCTTTATTCCCAGCGCGAGAATGGTCAAATTGGTAAAGGCACAGCACT 55440 55441 TAAAATGCTGCGGAATGATTTCCTTGTGGGTTCGAGTCCCACTTCTCGCACCAAATTTGC 55500 55501 GGATATCGTATAATGGTATTACCTCAGACTTCCAATCTGATGATGTGAGTTCGATTCTCA 55560 55561 TTATCCGCTCCAATTTAATTTACTCCGTGTAGCTCAGTTTGGTAGAGCGCCTGATTTGGG 55620 55621 ATCAGGAGGTCCAAGGTTCAAATCCTTGTATGGAGACTGGAGGCGTGGCAGAGTGGTTTA 55680 55681 ATGCACCGGTCTTGAAAACCGGCAGTCGCTCCGGCGACTCATAGGTTCAAATCCTATCGC 55740 55741 CTCCGTAATTTTGCTGATTTAGCTCAGTAGGTAGAGCACCTCACTTGTAATGAGGATGTC 55800 55801 GGCGGTTCGATTCCGTCAATCAGCACCAAGGCCCTGTAGCTCAATGGTTAGCAGCAGTCC 55860 55861 CCTCATAAGGGAAAGGTTACCAGTTCAAATCTGGTCTGGGTCATATTTTGAGAACATAAA 55920 55921 TACTCTTAGAAATAGGAGATATTTATGTTCTATTACACTTATAAAATAACAAATAAAATT 55980 55981 AATAATAAAATTTATATTGGTGTGCATTCTACCGAAAATTTAGATGATGGATATATGGGT 56040 56041 TCTGGTAAATTATTAAAAAGAGCCCAAGATAAATATGGTATAGAAAATTTTTCTAAAGAA 56100 56101 ATATTAGAGTATTTTGACGATAAAGAATCTATGCTTGAAGCCGAGAAAAATATTGTCACA 56160 56161 GAAGAGTTTTTAAATAGACCAGATGTGTATAATTTAAAACTTGGCGGTGAAGGTGGATGG 56220 56221 GATCATGTAAATATTCCTGGAATGCTAAACCAGAAGAAAGATGCTAGCTTAAAAGGAGCT 56280 56281 AAATCGTTTAAGTCACGTTTTGAAAATGATATTTTACTTCAAGAAAAATATCGTAAAATT 56340 56341 GGTTCAAATGTATTTAAACGTTTGTGGTCAACTCCTGAATACAGGGAAAAATTTTTAAAT 56400 56401 AATAGCAGATTTCTAAATAAGCATCATACTCCTGAAACTATTAATAAAATGAAAGAATCT 56460 56461 CACGCCAAAAATAATCACCAGAAAGGTGAAAAGAATTCCCAATTCGGTATGATGTGGATT 56520 56521 CATTCATTAGATGAAAAAGTTTCTAAACGTATTAAGAAAACTGACCCAATTCCAGAAGGA 56580 56581 TGGTTTAAAGGTCGAAAAATGAAATTTTAAATTACGTCCCGCTGGTGTAATGGATAGCAT 56640 56641 ACGATCCTTCTAAGTTTGCGGTCCTGGTTCGATCCCAGGGCGGGATACCAAATGAGAAAC 56700 56701 CGGGTCGCTACCGGTAAGTCGTCGGACTGATGTTCCCTGAGTAAGGAATTGCGTTAATAA 56760 56761 TCTTTGCGTTTATTGATGCCCTCTTACATCACAGCAGAAACGGCGCACCAAATTATCGAT 56820 56821 TCGAGGAAATATCTTTGCCGTAAGCCGAGTAGCGTTTTTGACGGAACGTTCGGATATGGT 56880 56881 TGAGATATGGCCTTTTAAAAATATTGAGTAGCGTCAACTACTTAATAACCGGGTTCGAAT 56940 56941 CCCGGCGTTTCGTACAAACACTTGCCTTGGCAGGTGGAACCCCGACAAGGTTGCCGCAAG 57000 57001 GCTTAGCCCCGACCGAAAGGTTGGGGCTTTTTGGTATCTAAGCCTTTCCAGACCTCTCTA 57060 57061 GGCATCATTTAGTTTATACCCTTTATAATATATTATCCTATCTTTTAATTGCCCCTCTCC 57120 57121 GCCCTAGAATTCCCTAAAACTTTTTAAAAATTTTTTCACAAAACTGTTTACATCCTTGTT 57180 57181 CTTCCATGGTACTATACAACTATCAACTACTGATACAGAAAATAACTTGGAGAATAAAAT 57240 57241 GGATAATTACGGTGAACTTTTCAACTTCTTTATGAAATGTGTTTCAGAAGATTTCGGTCG 57300 57301 TACGGTGAATGATATTAAAGTTATCGGTCCTGACCATCCGATGTTTGAAACTTACGCAGT 57360 57361 AATGGGTAATGAAGACGGTCAGTGGTATACTGTAAAGGTTGTGATTAACATGTTCACTGC 57420 57421 TGAAAGTTATGTTAAACTGTCTTCTAAAGTTTACCATGATAACGACGAAATCGCAGAAGA 57480 57481 ATATTTCAATAATATGAAATAAGTTTACATAGGCTCATGATTGAGATATTATGAGCCTAT 57540 57541 ACAAATGAGGAAAACATTATGAAACGTAACTTTAGTAAAGCTTTTTGTAATAGAAATAAT 57600 57601 TATCCTGAAGAGCTTTTTGAATCTAAGGACTTTAAAGAGTTTAACGAACGTTCTCAAAAC 57660 57661 ATGCCTGTACAATGGGTGTTAGATTATGCCAAACGTATCTTTGAAGGCGTGCGGGATATT 57720 57721 TGTCCTGATGATGAAGCTCCTTATTTTAAAAAGGCTTGGGAACTCGTCAACCAAGCATAT 57780 57781 ATCAATGCTTTAGAATCTTCTAAAGGTACTGACGATGATTTTATTTTATTGGCTATCAAT 57840 57841 GATGCCATTATCGAGGCCATCAACGCCTTTATCGACGAGCTAGACGAAGAATAAGTTTAC 57900 57901 AATCTATTAGAAACGTGATATTATATTATCTAATTATACCAACCTAAGGAAATACTATGA 57960 57961 ACACACTGAAGAAAATTGTTGAGTTTATTCGCACTAAACTTGGTTCTGCAATGGCTAAAA 58020

83

58021 ATCTATCTGTTGAAGAACAGTATACTGCTGCAGCAGCAAAACTACTTGATAAAATTAAAG 58080 58081 ACCTAAAAACTGCTTCTGTTAAATCTATTAATGAAGAAAAACGTATTCGTGAACTTATTG 58140 58141 TTGAAAAGAATAAACAGGCCGAATCAAAAGAGCGTGAAATTCGCAAGCTTCTTTCCGAAG 58200 58201 GTCAAGATGTAACAATGCATGCTAAACTCGGCTTGCTATATCGTCGAACAGCTGAACAGC 58260 58261 TGACTACTAAAGCTGATGGTTATGCTGAAATGCGAATTGAAATCGCCAAGAAAGTAGTTG 58320 58321 AGTTAGATGATGCTCGCCAAGAACTTGCAGTTAAATTGGAATATATCCGTGAAACTCGTG 58380 58381 CAGCAAATGCCCTTGGAATTAGTACTGCTGATGATGTAGTTGAAATTGCAGCACTGACTA 58440 58441 AGGTTGATATTGAAGATACTCTTGCTCGAGTTGAAACCTTTAATGGTAATATTTCTGGGG 58500 58501 TTGAAACTACCTCTGCCGATGTTCAGGAATATATTAATTCTCTGAAATAATGATAAGGGG 58560 58561 CTTCGGCCCCCTATTACTTGGAGTAAATAGGAATGAAAATGCAAAGTGATTTCAATTCAA 58620 58621 TGTTTGAAGAGTTCCAAAGACACGTTGATGTTCCAGACCAATTACTAAATGCTCTTAAAC 58680 58681 ATATGGCAAAAGGACGTAATTATTATTGGGGTTCTTCATATGAAACTGATGAAAGTCTTT 58740 58741 CTGGAAGATTTTCCAGAGGTAAAAAGTCTTTAATACGTCCTGGAATACTTATTAACAGTA 58800 58801 TTGAATCAATTCATTCATTGACATGTGATTTTGATGTTGAATTTACTGATTTCATTTCTC 58860 58861 CTGAATGGTCAGTTTGTTATTTAAACGACGATTTTGATTATCTCGGTGTTTATAGTTTAA 58920 58921 GTGACGCATGGTTTAAACGTAATTTACAAAAGTCAAATTTATTTTATATTGATACTACGG 58980 58981 TAAAATTTCAGGGAAAGAAATATTTCTTTACTCTTATAGTTGATTCTGAAACGAAGCATG 59040 59041 AAAATAAACGTATTCTTAGTAAAAGAAATATCTTGAATATTGTTGATGATCTTTTTGATA 59100 59101 AATTAGTGGAAAATCCTAATTTTGAAAGTGATTTATTACTAGAAAAATTTGTTAAGGAAT 59160 59161 GTAGAGAATATGTCAAAGCCATCACTATACCTTCCAAGTAAACCTTTGAAGTATGAATTA 59220 59221 AAGCGCCAGATAATTTCTACTGATGTATTAATAGGTCCTGTGATAGCTATATCATTTGTA 59280 59281 ATTCTATTGATTATTGGAGGTGTTTTAGATGTTATGACTGATATTGATTCTGGCGTAATA 59340 59341 ATTATGTTAATGCTAACTCTTCCATTGGTAGTTCCATTTTTATTAGTACCCGTAAATTGG 59400 59401 ATAGGATACTGGTATCAAGGAAGACATTATCGTAAACGCGTACGTGATTGGAAAGCCCAG 59460 59461 TGCAAAAAGATTAAAAAGGAACACCAGCTTAAACTTGCTGAGTATGAATTTAATGAAATT 59520 59521 ATGAAATTTGTTAAGGAATCACGATGCAAAAGCCAAAGCTAAATAAAGTCAAATATTCGT 59580 59581 TTTCTGAGTCATTTTTAATTTTTGCTGTGGCGTTGGCTGCAGCTCTTACAGGTAGTCTTA 59640 59641 TTGGACTATTAATTGACTGTTTTATTTTAAAAATCAGTGGTACAGTAGATATAATAGAAG 59700 59701 TTTGGAGCGAGCTTTGTTATACTAAAATTATTTCATTGTTTTCATTCTTTGGTATCATTT 59760 59761 TATATTTTCATTATGATAATTTTAAAATAAATTGGCAAAGAAAAAAGGATTACAAAATAC 59820 59821 AATTAAAAGAATATAATAGCTACATGTCTTATATTGAAAATGAATCAATGAAAGAGTTTG 59880 59881 TGATTGATTGCAGGAAAATTAAATGATTTTAAAAACTCGCTGGTATGATTTAGATGATGG 59940 59941 GGATGATGGCATTCCAGTTGATAGAGTTGATTGGAATGGTTGTTCCGAAGATACAAAGAA 60000 60001 ACGATTAATTAGGGAGTTTAGAATGGGATATCAAGCAGCTAAGCCATTTACTGTAACAGA 60060 60061 TGATAAATTCGTGTGTATTCAAAATGGTCGCGCTAAGTTAACGAATGCTGATTGGTTCAC 60120 60121 AGATAAGAAGGTTCTTCTGTGGTATATCATTAGTCTTCCTATATCATCATTCGTATTTTA 60180 60181 CTTTTTTATAAAAATCCAATGGACAGAATAGGCGATTGGATTCTTTTAACTATACTTGTT 60240 60241 AATATTTTTACAGCAGCAGTATTATCAGGAATATGGCGTATGTTCATTGAAATGCCATGG 60300 60301 CGGTTACGCAGACAGCAAAAGATTTTTGATGAAAAGAAATATGCTCAAAATTTAAATAAC 60360 60361 TTTATCACTGAATGCAGGAAATTAAAATGAAAACATTATCAGCTGGTATTATCTTTATGA 60420 60421 CAGAAGATAAAGATTTATTTATGGGTCGGGTTACTGGTTCTCGTAAGACTGGAATGATGG 60480 60481 CACATCGTTGGGATATTCCAAAGGGCCGTGTAGAAAATTCTGATTTAAGCGCATTAGATG 60540 60541 CAGCACGAAGAGAATGTTTAGAAGAGACTGGTTTTAGCAATTATAATCCAGACCTTCTAG 60600 60601 AAGACCTAGGTGTATTTAAATATTCTAGTAATAAAGACCTACAGTTATTTTATTACACGA 60660 60661 TTCCAGTAGAGCATGAGATGTTCAGAAATTGCCGTTGCGAGTCTTATTTTGAAAATAAAG 60720 60721 ATGGCGTTATGATTCCAGAGATGGACGCTTTTGCTCTTATTCCTCGTACTCAGTGGCAAT 60780 60781 ATGTGATGGGTCCTTCACTTTACCGAATAATGAACAACCTCTTTTAATTTTATAAATACC 60840 60841 TTCTATAAATACTTAGGAGGTATTATGAATATATTTGAAATGTTACGTATAGATGAAGGT 60900 60901 CTTAGACTTAAAATCTATAAAGACACAGAAGGCTATTACACTATTGGCATCGGTCATTTG 60960 60961 CTTACAAAAAGTCCATCACTTAATGCTGCTAAATCTGAATTAGATAAAGCTATTGGGCGT 61020 61021 AATTGCAATGGTGTAATTACAAAAGATGAGGCTGAAAAACTCTTTAATCAGGATGTTGAT 61080 61081 GCTGCTGTTCGCGGAATTCTGAGAAATGCTAAATTAAAACCGGTTTATGATTCTCTTGAT 61140 61141 GCGGTTCGTCGCTGTGCATTGATTAATATGGTTTTCCAAATGGGAGAAACCGGTGTGGCA 61200 61201 GGATTTACTAACTCTTTACGTATGCTTCAACAAAAACGCTGGGATGAAGCAGCAGTTAAC 61260 61261 TTAGCTAAAAGTAGATGGTATAATCAAACACCTAATCGCGCAAAACGAGTCATTACAACG 61320 61321 TTTAGAACTGGCACTTGGGACGCGTATAAAAATCTATAAAGCTGTTTACTTTCTCTTGGA 61380 61381 ATTGTGATAGTATATTCACAATTACTTGAATAGACAATTACTAATTAAAATATTTAAAGG 61440 61441 AAACATATGAAAACATATCAAGAATTTATTGCCGAAGCTTCTGTAGTAAAGGCCAAAGGC 61500 61501 ATTAACAAAGATGAGTGGACCTACCGATCAGGAAACGGCTTTGACCCTAAAACAGCTCCT 61560 61561 ATTGAACGGTACTTAGCTACAAAGGCTTCCGACTTTAAAGCCTTCGCTTGGGAAGGACTT 61620 61621 CGCTGGCGTACCGATTTAAATATTGAAGTTGACGGACTTAAATTTGCTCATATTGAAGAT 61680 61681 GTTGTTGCTAGTAACTTAGACTCAGAATTTGTTAAAGCTGATGCAGACCTTCGCCGCTGG 61740 61741 AATTTAAAACTGTTCTCTAAACAGAAAGGCCCGAAGTTTGTGCCTAAAGCCGGTAAATGG 61800 61801 GTCATTGATAATAAATTGGCTAAAGCTGTCAACTTCGCAGGTCTTGAATTTGCCAAGCAT 61860 61861 AAATCATCATGGAAAGGTCTTGATGCAATGGCTTTCCGTAAAGAATTTGCCGATGTTATG 61920 61921 ACTAAAGGCGGCTTTAAGGCAGAAATAGATACCTCTAAAGGTAAGTTTAAAGACGCTAAT 61980

84

61981 ATTCAGTACGCTTACGCCGTTGCTAATGCAGCCCGTGGTAATTCTTAATAAAGCTTATAC 62040 62041 TTGGGACGCTTAAATAAAAGCAGTTTACAACTCCTAGAATTGTGAATATATTATCACAAT 62100 62101 TCTAGGATAGAATAATAAAAATATTTACATTTAAAGGAAACATATGAAAACATATCAAGA 62160 62161 ATTTATTGCCGAAGCGCGAGTGGGCGCAGGTAAATTAGAAGCCGCTGTAAATAAAAAGGC 62220 62221 CCATTCATTTCATGATTTGCCCGATAAAGACCGTAAGAAACTTGTAAGCCTTTATATTGA 62280 62281 CAGAGAGCGTATTCTCGCTCTTCCTGGCGCTAATGAAGGTAAACAGGCCAAGCCTTTGAA 62340 62341 TGCCGTCGAAAAGAAAATTGATAACTTTGCTTCTAAGTTCGGCATGTCTATGGATGACCT 62400 62401 TCAGCAAGCGGCTATCGAAGCAGCTAAAGCAATTAAAGATAAATAACAGTTTACATCTCC 62460 62461 TGTAGGTATGATACTATAGACCTATCAACTACAGGAGAACACTAAAATGACTCGTATCAA 62520 62521 CCTTACTTTAGTATCTGAATTGGCTGACCAACACTTAATGGCTGAATATCGTGAATTGCC 62580 62581 GCGTGTTTTTGGTGCAGTTCGTAAGCATGTTGCTAACGGTAAACGTGTTCGTGATTTTAA 62640 62641 AATCAGTCCTACTTTTATCCTTGGCGCAGGTCATGTTACATTCTTTTACGATAAGCTCGA 62700 62701 GTTCTTACGTAAACGTCAAATTGAGCTTATAGCTGAATGTTTAAAACGTGGTTTTAATAT 62760 62761 CAAGGATACTACAGTCCAGGATATTAGTGATATTCCTCAGGAATTCCGTGGTGATTATAT 62820 62821 TCCCCATGAAGCTTCTATTGCTATATCACAAGCTCGTTTAGATGAAAAAATTGCACAACG 62880 62881 TCCTACTTGGTACAAATACTACGGTAAGGCGATTTATGCATAAGGGAACAACCTGGACCT 62940 62941 CATGATTATATGAGGGATTCCCGCCAACCTGTAATAAGGTCGAGCCCAAGCGCGGTAATG 63000 63001 GGTAAATACAGAAATGGACAATTCATGCGCCACGGAATGGCCCAAACTTATAGAGAAGAA 63060 63061 ATGAGAACATTTTTAACTGGTCCTTATCTATCCCTGATGAATGCTTTTACACACCATTCT 63120 63121 GATGCTAGAGTAGAAGAAATTTGTAAAAACGAATATATCCCGCCATTTGAAGACTTACTT 63180 63181 AAACAGTATTGTACACTTCGACTAGATGGTGGACGTCAATCCGGTAAATCAATTGCTGTG 63240 63241 ACTAACTTTGCTGCTAATTGGTTGTATGATGGCGGAACAGTTATTGTTCTTTCTAATACT 63300 63301 TCAGCTTATGCTAAAATTTCTGCAAATAACATCAAAAAGGAATTTTCGCGTTATTCTAAT 63360 63361 GATGATATACGTTTTCGTTTATTTACTGATTCTGTACGCAGTTTTATTGGTAATAAAGGA 63420 63421 AGCAAGTTCAGAGGTTTAAAGCTTTCGCGAATTTTGTATATAATTGATGAGCCTGTCAAA 63480 63481 TCTCCTGATATGGATAAGATTTATAGTGTCCATATTGACACCGTACACTACTGCTGTAAT 63540 63541 AGTAAATGTTGCATTGGTGGTATTACTCGTCCACAGTTTTTCGTAATCGGAATGCAATGA 63600 63601 TGACAGACACTCAGCTTTTCGAATATCTTTATTTTTCGCCAAAAACTATTAAAAATAAAT 63660 63661 TGGTGAATCATTTTGAAATTTTGGCAAAAAATAACATTTTGAGCGAATTTTATCCCAAGC 63720 63721 AATACAAATTACAAAAAGGCGTATTCAAAGGATGCAGAGTTTTGTGCACTGCTCCTAATG 63780 63781 CACGGCTAATGAATAAAATTCCATATTTTACCATGGAATTTATTGATGGACCTTTTAAAG 63840 63841 GATTAATTACGCAAAGTTTAATGGCATATGATTCTGAGCCATTTTTAATTAAAGAACAAT 63900 63901 CTTGGATAAATTTATTTTCTAATTGAGGTTTATATGAAAGCATATCAAATTCTTGAAGGC 63960 63961 ACACATAAAGGTACTATTTATTTTGAAGATGGTATTCAAGCACGAATTATTGTCTCTAAA 64020 64021 ACCTTTAAAGAGGACTCTTTTGTAGACCCAGAAATTTTCTATGGTTTGCATGCCCGTGAA 64080 64081 ATTGAAATTGAGCCACAACCTACAGTTAAAATTGAAGGTGGTCAACACCTGAACGTTAAC 64140 64141 GTTCTGCGTCGTGAAACTCTGGAAGATGCAGTTAAGCATCCGGAAAAATATCCGCAGCTG 64200 64201 ACCATCCGTGTATCCGGTTATGCAGTTCGCTTTAACTCTCTGACTCCGGAACAGCAGCGC 64260 64261 GACGTTATCGCTCGTACCTTTACTGAAAGTTTGTAATGGCAAAGATAATTATTGAAGGTT 64320 64321 CTGAAGATGTGCTAAATGCTTTCGCCGAGTGGTTTAGTAACTCAGGCGAACAGCAATTTA 64380 64381 ATGAAGCGTGGAATATGGGTGATATTGATGGAATTTATCCTACGACAGAAATTTCTGTTC 64440 64441 AAGGCTATGGCATTCATGAACCTATTCGTTTAGTTGAATACGATTTATGTACTGGTGAGG 64500 64501 AAGTCAAATATGATTGAAGATATTAAGGGTTATAAACCACATACTGAAGAGAAAATCGGT 64560 64561 AAAGTAAATGCTATTAAAGACGCTGAAGTTCGTTTAGGACTTATCTTTGATGCTTTATAT 64620 64621 GATGAATTCTGGGAAGCACTAGATAATTGCGAAGACTGTGAATTCGCGAAGAATTATGCT 64680 64681 GAAAGTCTCGATCAGTTAACTATTGCTAAAACGAAACTCAAAGAAGCCAGTATGTGGGCT 64740 64741 TGTCGTGCAGTGTTCCAACCAGAGGAAAAATACTAATGGCTCAATTAAGCGCAGGGTTTG 64800 64801 GTTATGAGTATTATACTGCCCCTCGTCGTGTATCTGTTGCTCCTAAGAAAATTCAAAGTC 64860 64861 TTGATGACTTCCAGGAAGTAGTCCGTAACGCTTTCCAGGACTATGCACGTTATCTTAAAG 64920 64921 AAGATTCGCAGGACTGTCTCGAAGAAGATGAAATTGCTTACTATACGCAGCGTCTTGAAC 64980 64981 AGCTCAAAAATCTACATGAGGTTCGTGCCGAAGTTTCAAAGTCTATGAATAAATTGATTA 65040 65041 GATTTAAAGAATAACTGTTTACTTTTCCTCTTGACTGTGGTATAATTTTTCTATCAGTTA 65100 65101 AGAGGAGAATAACATGACTATCAATACAGAAGTTTTTATCCGTCGAAATAAGCTTCGTCG 65160 65161 TCACTTTGAGTCGGAGTTTCGTCAAATTAACAATGAGATTCGTGAGGCATCAAAAGCAGC 65220 65221 AGGAGTCTCATCGTTTCATCTAAAATATTCTCAACATCTTCTTGATCGCGCAATTCAACG 65280 65281 GGAGATTGATGAGACATACGTTTTTGAATTATTCCATAAAATAAAAGACCATGTTTTAGA 65340 65341 AGTTAATGAATTCCTGAGTATGCCTCCGCGTCCTGACATTGACGAGGATTTTATTGATGG 65400 65401 GGTTGAATATCGTCCTGGACGTTTAGAAATCACAGATGGAAATCTTTGGCTTGGATTTAC 65460 65461 AGTTTGTAAACCTAACGAGAAGTTCAAAGACCCGTCACTTCAATGTAGGATGGCAATTAT 65520 65521 CAACAGTCGTCGTTTACCAGGAAAGGCTTCTAAAGCAGTAATTAAAACTCAATGAGGTAA 65580 65581 GCATGAGAAAAGCACTACTCGCTGGTCTATTGGCCATTTCAATGATGGCACATAGCTCCG 65640 65641 AGCATACTTTCAGTAATGTCCAACTCGATAACATGCGTTACGCGTATCAATTCGGGGAAC 65700 65701 AATTTTCTAAGGATGGAAAATATAAAACACACAAAAATATCCACAAGAGCGGATTAGGTC 65760 65761 ATATAATGGCTGCCATTTTATGGCAAGAAAGCTCTGGCGGAGTTAATTTAAAATCTAAAC 65820 65821 CAAAGCATCACGCCTACGGAATGTTCCAAAATTATTTGCCTACTATGCGAGCAAGAGTTA 65880 65881 AGGAACTTGGTTATAATATGACCGATGCTGAAATAAAAAGAATGTTGAATAAACGATCCA 65940

85

65941 ATTCAGCTTCCTGGGCGTACATTGAACTTTCTTATTGGTTAAATATACATAAGGGCGATA 66000 66001 TAAGAAAAGCAATATCCTCTTATAATTCGGGATGGAATGTTAAAGCAGGTTCTAAATATG 66060 66061 CTTCTGAAGTCCTAGAAAAGGCTAATTACCTTAAAAATAATAAACTTTTGGAAATAGTAA 66120 66121 ATGACTAAAATTTTGGTTTTATGTATAGGATTAATTTCATTTTCTGCTTCTGCGTCAGCA 66180 66181 GATACATCATATACTGAAATTAGAGAATATGTAAACCGCACTGCGGCAGATTATTGTGGG 66240 66241 AAAAATAAGGCATGCCAAGCTGAATTTGCACAGAAATTAATATATGCATATAAAGACGGA 66300 66301 GAAAGAGATAAATCAAGCAGATACAAAAACGATACATTGTTAAAACGATATGCTAAAAAG 66360 66361 TGGAATACCTTAGAATGTTCAGTTGCGGAGGAGAAAGATAAAGCCGCTTGTCATTCAATG 66420 66421 GTTGACCGTTTGGTAGATTCTTATAATCGAGGATTGAGTACTAGATGATTGTAAAATATA 66480 66481 TCAAGGGCGATATTGTCGCCCTTTTCGCTGAAGGTAAAAATATTGCACATGGATGTAATT 66540 66541 GTTTTCATACTATGGGTTCAGGCGTAGCGGGTCAATTAACCAAAGCTTTCCCTAAAATTT 66600 66601 TGGAAGCTGATAAATTACAGACTGAATGGGGTGATGTAACTAAACTCGGTTCTTACTCAG 66660 66661 TCTATGAAAAATACTTTAGGACTCATAAAGCTTACTGCTTCAATCTTTATACTCAATTTC 66720 66721 AACCAGGGCCAAATTTTGAGTATTCCGCTTTAATGAATTGTATGTTAGAATTAAATGAGT 66780 66781 TTGGTGAAAATAAACTGATTAAACCTACAATCTATATGCCTAGGATTGGTGCAGGCATAG 66840 66841 GTAAAGGGAACTGGGATATTATTGAGGGGATTTTAGATACATATTCCTCTAAATTAGAAA 66900 66901 TTGTGATTGTTGATTGGGAACCATTATTATGAATATACATTATCCACATCCATATGACCC 66960 66961 AAAGAATAAGGCAGTAATTATTCGTCAATGGGAACGCATTTGTCGCACTAAATGTCCAAT 67020 67021 TAATAGTCCACATGATGTAGATAAAGACTACATTGGAACATTCGTTGAATATACCTTTAT 67080 67081 TGATAAGAAAGGTCGTAAACAGCATGTAGAAGAATACTGCTTAAAGGTGACATGGTTATG 67140 67141 AGTTTAAGCAAAGAACAAAAAGACACACTCTTTTCTCTTATCCACGAAGTTATGGATAAA 67200 67201 AATAGTGAATTGGAAAAAGTTTGTAATGAATGCGGTCCTTTTAGCGCAAACGAGTACGAA 67260 67261 GAACTTTCTAAAGAATTCGATAATAAAGAACAAGAACTCATTGATTATATAAATTCCTTA 67320 67321 TGATTACTCGCGAACAAAAGAACGAAATATTATTTTTAGTTGGTGAAATTATTAGTTTAG 67380 67381 AAAAGGATTTGTCTTTTGAAATATCTTCTGAATATGGAGATGCCGAAACATATTACGAAT 67440 67441 TAGTAAAATCTATCGATAAAGCTGAAAATGATTTAGAAACATATTTAGAAAATTTAACTA 67500 67501 AGGACTAAGATGGCGAGTTTAATTTTTACTTATGCAGCAATGAATGCTGGAAAATCTGCT 67560 67561 TCTCTTTTGACTGCTGCACATAATTATAAAGAACGTGGAATGAGTGTATTAGTTCTTAAG 67620 67621 CCTGCTATTGATACTCGCGATTCTGTCTGTGAAGTCGTTTCTCGCATTGGAATTAAGCAG 67680 67681 GAAGCGAATATTATTACAGATGATATGGATATTTTCGAGTTCTATAAATGGGCTGAAGCA 67740 67741 CAAAAAGATATTCATTGCGTATTTGTAGATGAAGCTCAGTTTTTAAAAACTGAACAGGTG 67800 67801 CATCAATTGAGCCGAATTGTTGATACATATAATGTTCCTGTTATGGCTTATGGGCTAAGG 67860 67861 ACTGATTTCGCTGGAAAATTATTTGAAGGTTCTAAAGAACTTTTAGCGATTGCAGATAAA 67920 67921 CTTATTGAACTAAAAGCAGTTTGTCATTGTGGTAAAAAAGCGATTATGACAGCTCGATTA 67980 67981 ATGGAAGATGGAACACCAGTTAAAGAAGGTAATCAAATTTGTATTGGTGATGAAATTTAT 68040 68041 GTTTCTTTGTGTAGAAAACATTGGAATGAATTAACTAAAAAGCTCGGTTAGTGCAAAAGT 68100 68101 TATAAATAGGTTTATCTAACTAAAGGGGTATATATGCTACAATTAACTGAAAAGCAACTT 68160 68161 CGCAATCTTACTGTTCTTCAATTAGATGAAATTCGTAGGGAAGTTGGAAATATCATTTCA 68220 68221 GCTTTGCGTCGAGAAGTATCACTCAACCAATCTCCGGCAGACTATACTAGATTGCGAAAT 68280 68281 TTTGAAAAATACCTTGATAAAGTTAAGGCCGTGCATCGGCACAAAGTAAATACAGGACAA 68340 68341 AAATGATAGGAGGCCTTTATGGCCTTAAAAGCAACAGCACTTTTTGCCATGCTAGGATTG 68400 68401 TCATTTGTTTTATCTCCATCGATTGAAGCGAATGTCGATCCTCATTTTGATAAATTTATG 68460 68461 GAATCTGGTATTAGGCACGTTTATATGCTTTTTGAAAATAAAAGCGTAGAATCGTCTGAA 68520 68521 CAATTCTATAGTTTTATGAGAACGACCTATAAAAATGACCCGTGCTCTTCTGATTTTGAA 68580 68581 TGTATAGAGCGAGGCGCGGAGATGGCACAATCATACGCTAGAATTATGAACATTAAATTG 68640 68641 GAGACTGAATGAAATTCAGCGACTTTTCACAAAGTGGAAAACCTTCAAAGGCAGATGAAT 68700 68701 ACTTAGGTTTATTAATGGCTGCACAAGCTTATTTTCATTCTGCACATTTTGAAACTAAAA 68760 68761 GTTATGCTAGACACAAAGCATACGATTTTATTTTTTCCGAGTTGCCAGATTTGATTGATA 68820 68821 AATTTGGGTGAGCAATATTTGGGGTATTCTGGTCGAAAATACACGCCTTCAATTCCAGAT 68880 68881 GCCAGTAAACTTCCTACCGACACAATTAAAATGATTGATCGCATACTAGACCAATCTAAC 68940 68941 AGCATTTATAAAGAAATGCCTCCAGCCATCCAAAGCACGATAGATGATATTACTGGAATG 69000 69001 TTTTACCAGAGTAAGTATCTTCTTTCCCTCGAATAACATTAGTCTCCTTCGGGAGACTTT 69060 69061 TTTTCATTTTACCGGTTTACTTTCCGTTTGAGCTGTGGTACTATACAACCATCGGATAAA 69120 69121 GAGGAGAACATCATGAAAATTGAAGCACTCAATCAAGAAGGAAATATCTACGTCATCATT 69180 69181 AATGGTGATTTTTTCGTCGACATGGATGAAGTTACTAGTGAAGAACTTGTAGAACTTCTT 69240 69241 AAGAAACGTTATAATATGTGTGATGAAGTTGCAACTCACATGGCGTGTGCAATATTCTCT 69300 69301 CTTTCATATGTGGTGGAATAATGATTAGTATCGAACAAGCGGATAAAATTAAGGAATTGG 69360 69361 TAGCTTTAATTCGTAAAGCAGATGAGGAACGCATTAACTTTGCCTTATCAGGTATTGAAG 69420 69421 AATTTGAAGCTAAAGTTAATAATGCTGTAGAAGCGTTAGATATGTTTCTTGATGAAATTA 69480 69481 TCGATCATAATACGAGAGTTTAAGTATGCTAACACGCGAACAGTTTGAAAAAATCATTAA 69540 69541 ATTAGCGCATGATATTGAAATAGATTCATATCAATTAGCAGTTGAGCATTGTGAAGGATA 69600 69601 TTCATACGACGGTATAGAAGCAGCTAAAAGGGATTTGGATAAATCCAAAGCTAAGTTAGT 69660 69661 TCAATATCTTGAAATGATTAGGTGGAATAATGAAAACTGAAAAACAGATGTTTTTAATGA 69720 69721 AGCTAATTGAAGAATATGCTAATGCAGTTTCTGACTATGAATGTTCTTCTCGGGAAAGAG 69780 69781 GCACAGCTTTTGCCAAGGAAGAAATGAAAATCATGGTTGATGCTCATACAAAGCTTCAAA 69840 69841 ATTTTATCGAAAACGTCATTTAATGGTTTACAAGTTGACAAGATTATGGTATAGTAATCT 69900

86

69901 TGTCAACTGCCAAGGAGAAGAGAATGAAAGTTTTGTTTGTTATATATGTGATGATTCAAT 69960 69961 ATAATTACCCAATGTTTACTTATAATCTGGTGAATAACATTATTAATATGATTCAGAGGA 70020 70021 GTATGTAATGATGAGCGAGGCGAAACGACTAGTATTAGAAGTTAGTCCACTTTTTGGTGA 70080 70081 ATTGGCTATAGAAAAAGTAAATAACATGTATCGTTTGACGCAAGAAGATGACATGTTATA 70140 70141 TTTTACGCCTAGCGAAATTGTTCGTTTAACCCAAATTGAATATGCTTACACTGATAAAAT 70200 70201 TGTAAGCATTAATGATGAGCATAAAATTCATTTTTATTCTTCATGCCCAGGATTTAATAT 70260 70261 TAAAAGCGAGTCAATGTGCTTATCAATTAATAATTGGGATAATTTTATAACTAACATTAA 70320 70321 ATATTTTTATGATTCTACTAAAAGAAAACATAATTTAAAATGGTTTAAAAAATGTAATGC 70380 70381 TATTATTACTAACTCCTGTAATCAGAATGATGAAACTATTTTAAATGTTTCAAAATGCTA 70440 70441 TGAAGAGGGAGATGTAGTATCTATTCGTCAAATTGATGATTTTCGATCACATATCATTAC 70500 70501 ATTAAACAAAGACGAAGCTATTGCACTAAAGACTTATCTTGATTCTGTTATTCCAACTAT 70560 70561 GATTTCAAAGTGAGGAAATATGTTTATTTCAAGTGGAACAGACATGTGTTATAAATGCAA 70620 70621 AGCAAAATTAAATGAGACGAAGAACCAATGAATTATACTAAAGTATATAATAATTTAATT 70680 70681 AAGAAAGGAAAACTCAGAAAATTAGATAAATCTAAATTAAATTTTTATACGGAAAAGCAT 70740 70741 CATATTATTCCATCTTGTATTGGTGGTAATGATGATTCTGATAATCTAGTTTTATTAACA 70800 70801 GCTAGAGAGCATTTTATAGCCCATTGGCTTTTAGCTAAAATTCATTACAATTCGCCTGGA 70860 70861 TTAATTTATGCATGGTGGTCATTTTATAATTTTGGAGAAGATTCTTTAGGAAGAAATCTC 70920 70921 AAATTAACTTCAAGAGGATATCAGTTAGTTAGAGAAAAATTTTCAAAAATACATTCTAAT 70980 70981 ACAATGAAAGAAATGTGGAAGTCTAATGAATACAGAGAAAAACGTTCGATAACATTAAGT 71040 71041 CTTCCTGAAATAAGGGCTAAAATTTCAGAATCCCAGTTAGAAGCACAAAACAAACCGGAA 71100 71101 GTTAAAGAAAAAATATCTAAAGGGGTGAAAGCTGCTTTTAAACGACCGGGAGTTAAAGAA 71160 71161 AAACACTCTGCTGCAGTCAAAAAATCTTTGAATAATTTTGAAACTAAAAAGAAACAATCA 71220 71221 AATTCATCTAAAATTAGACAAAGAACTGGTAAACATTGGCAAGACTATGACTTACTTTAT 71280 71281 AAGTTATGGATTAAATTAAATAGACCTAAACGTGGGTCATTCGGAACTTATATAAGTAAA 71340 71341 TTAGGATATCCAAAATCTAATTATCATCGATTGATTGTACAATTTAATGAAGATTATGAA 71400 71401 AGGTCTAATAATGAAAACTGTAGTTAAGTCTTATTTTGGTAGTCATCTTTATGGAACTTC 71460 71461 TACTCCAGAATCTGATGTAGATTTTAAAGAAATCTTTGTTCCTCCTGCTCGCGATATTCT 71520 71521 TATTGGAAACGTCAAAGAGCACATGAGTAAAAATACCAACAACACATCATCTAAAAACAC 71580 71581 TAAAGATGATATTGACCACGAATTGTATAGTCTTAAGTATTTCTTTAAATTAGCAGCAGA 71640 71641 TGGTGAAACTGTAGCATTGGATATGCTCCACACTCCACCTGAACTAGTGGTTAAATCCGA 71700 71701 TTTGCCTGATGTGTGGAAGTTTATTCAAGACAACCGTTCTCGTTTTTATACGACTAACAT 71760 71761 GAAATCATATTTAGGATATGTCCGCAAGCAAGCTTCTAAATACGGCGTCAAGGGTTCTCG 71820 71821 TTTGGCTGCATTACGCGATGTATTGAAAGTAGTTAATCAAATCCCTGAGCAATGGGTTGA 71880 71881 TTACCAAGAAGATGGTTCCATTAAGCAGCGTCGTACTAAAGTTGAAGATATTAAGCATCG 71940 71941 TCTTCCAGAAAACGAATTCTGTGAATGGGTGTTCCATAATCATGAGAAAACAGGCCCACA 72000 72001 AACGTTTTACACAGTGTTGGGTCGTAAATATCAGACAACGCTTTCTCTTATTGAGCTTAA 72060 72061 GCAGTCACTGAACAAATTAGATGCTGAATACGGCGAACGTGCTCGTAAGGCCGAAGCCAA 72120 72121 TGAAGGCATTGACTGGAAAGCTCTGAGCCATGCTTGTCGTGGTGGACTTCAACTATTGGA 72180 72181 AATTTACAAAACTGGTGACTTGGTTTATCCACTCCAAGATGCTCCATTTATTCTCGACGT 72240 72241 GAAGTTGGGTAAGCATCCATTTAAAACCGTTCAAGAGTTTTTGGAAGATGTGGTCGATCA 72300 72301 AGTAGAAGCAGCATCTACTGAAGCTTCTAAGAACGGTATGCAGCAAAAAGTAGACATGAG 72360 72361 TTTCTGGGATGACTTCCTTGAGAGGGTTTATCTTGAAAACCATCGAAGTTATTATAAATG 72420 72421 ATAGGGAGCCTTCGGGCTCCCTTTTTTATTTCAAAATTTTTTCACAAAACGGTTTACAAG 72480 72481 CATAAAGCTTTATGGTACTATACAACTATCAACTGATACGGATTTGGAGAATAAAATGAA 72540 72541 AACTGTAACTATCAATAAGGGTATCTACTTCGGTAAAGAAATCTCTGGAACTTTTGAGCT 72600 72601 CTTAGGTGAATGGTTCCCTGATAATGCTCCGGTAGATGCACAAGGAGATGGTAAAGTTTT 72660 72661 TGTTGAAATTGACGGTAAACGTCGCGGTGTTTGGGTTTACAAATCAGACATTTCATATGA 72720 72721 TGGTGTAAAAGTTGAAGAAGTTAAAGAATCATATGAAGATATGAAAACCCGCATTAATAA 72780 72781 AAGATTTAATGTTATGGGAATGATGACGAATGGTATTATTAACGGAAACATTCGTTCATT 72840 72841 AATTATCTCGGGAGCAGCAGGTATTGGTAAAACGTATTCTTTGGATAAAGCTTTAAATAA 72900 72901 AGCAAATGATATTGGATACATTGAATATAAAAGCATTAATGGTAAAATCTCTGGTATCGG 72960 72961 TCTTTATGAACAGCTTTGGAATAATCGTGAAGAGAATTCTGTCCTTTTGATTGATGATGT 73020 73021 GGATGTTTTCTCTGATATGGACATTCTTAATCTTCTGAAAGCTGCTCTGGACACTGGAGA 73080 73081 GACCCGTAAAGTCTGCTGGAGCACTGCATCTTCTTACTTAGAAGAAAAAGGCATTGAGCG 73140 73141 TGAGTTTGAATTTAAAGGAACGATTGTTTTTATCACAAACGTTGACATTGACCGCGAATT 73200 73201 AGACCGTGGTACTAAACTTGCTCCACATTTACAAGCATTAGTGTCCCGCTCAGTTTATTT 73260 73261 AGATTTGGGTGTTCACACTAATGAAGAAATTATGGTCAGGGTTGAAGATGTTATTCTTTC 73320 73321 AACCGACATGATGCAAAAGCGCGGTCTTTCTGATGAAGAAACTTATAAAGCATTATCATG 73380 73381 GATGAAAGTCAATGTTAATCGTTTACGCAATGTTTCACTGCGTACTGCTCTTTATCTTGC 73440 73441 TGACTTTATTATGACCGACAAAAACGGTTGGGAAGAAATCGCTGAGGTTACTCTTCTGAA 73500 73501 ATAATTCATAAGAGGACTTCTATGACAAAAAGGCAGTTCAGAAATAGATTATATGGACTG 73560 73561 CCATTAAAAAGATGACTAGAATTAAACTGGTAAATGGAGGTAATGGTGTTATACTCAAAG 73620 73621 GCTCGTGAAATTTACGAAACTAAGATTAAAGAAGCTGTACTTCAATTCGCAACAACGATG 73680 73681 CGATGGACAAATGATTGGGAATATTCAAAAAATCATAAGAAGCCCCTGGTGACAAGAAAG 73740 73741 GCTCATATGTTAGTGTTAATAGACCGTGAGCAGATTAAAGCCCGAGAAGCCCTCCAGAAT 73800 73801 CATAAAAAGGCTGCCTTTGAATGGTTTATGGATAACACTGCTCCTGAAACTAAGAAAGCA 73860

87

73861 GTGAGCGCTTGGTTCAGTGGAAAAAATTGTGAAAGAAGTTTCTTTTAGTTGTTTACAAGA 73920 73921 CCGTTCCTCTGTGGTACTATACAACTATCAACTACGGAGGAACACAAAATGAACGCTAAA 73980 73981 GATATTTTCAACCTGGTAAATTACAACGATGGTAAATTTAAATCAGAAGCACAAAGCAAG 74040 74041 TTCTTTAATGACATCTCAATCGGAGGTGAAATCACTGTTAATGGAGGACAAATTTACAAA 74100 74101 TCCCGTTGGAATTGGATCGTTATTATCGATGAGATTGGTATTGTAGAAATTTACAAGAAT 74160 74161 ACGAATAAAAATCGTACATTACACTGGTCTCGTGATACTAACGAACAGTACAAAAAGGAT 74220 74221 AAAGCATCTAAATTATCTCGTGTAACTCAAGAAGATATTGAGTTCATCAAGAAAGATATT 74280 74281 TTGATGTATGATAACTTAATTGCTGAAGAGCAAGCTGTTATTGATAAATTTGACGAGATT 74340 74341 AAAGCTTCTCGTGAAATTCCTGATTTTATGAAAGAATCAGTAAATGAACGATACACTCTC 74400 74401 ATTTCAGAGCGTATTGAAACTTACAAAAAGCAAAGAGCTGAACGCCAGAACACTCTTCGG 74460 74461 AAGTTTGAAGAACGGTTAAATACGGTACTCGCATAACCGCTTTATACCAAGGATGGTATA 74520 74521 ATGGTTCTAAGCCCTTTTAATTGAGATTATTATGAAACAGTTGATAATTAAAAGATTGAA 74580 74581 TTTATTGATATGTTGTTTATGTATAGTAATTGCATATGGTTATTACGCAATTAATGATTA 74640 74641 TATGCATTATAAAGATTATGATGTTACTGTAGTTAATACCCTTACAGGAACTCAAGGAAA 74700 74701 GGGGTCTAGTTTATCGTTTATTGCTGTATATGAACTCAAAGACGGTTATAGATTTAGTGA 74760 74761 ATATATTTCCCCAGAGATGTATTCTTCAATAGAAAAAGGTGATAATATTACTGTAAGTTT 74820 74821 ACGTCCTTTCGACGTAAAACAGACATGGTTTGATAATATTGTTTGGTTCTTTGGAATGGC 74880 74881 ATTAGTTCAATCTATATGTGGTACTTATATAGTCTGTTCAATCTTATTCCGCGTAATTGG 74940 74941 TAAAATTGAGTGAGGAAAATATGTCAGTAGTAATTAATAATGTCAACGCAGTAATTAAAT 75000 75001 CTTTAGTTAATAAAAAAATGATGAATGAATGGACTGTTTTACGTCGTGGAGAGCCAGATA 75060 75061 AATTTTTTCATAGATTTAACCCAACTTTGGATTTGAATGTTATTGACAGAGATGTTCATG 75120 75121 CTGAAATTTTAGATAAATTTAAAGTTGATATTGGATTTGGATTAGAAAAACATTTACAGC 75180 75181 GAACAAACGGGTCTGGAATGAGTTTATCTAATCGTATTATGAAAGCCCTTAATAAAATTG 75240 75241 GAGCGTTGTCTCGTATTAATGCGAGTGAAATCCTTCGCAATTATAATAAAGGATATGACC 75300 75301 TTTATGGTCGGCTAATGCCGAAATTATCATTTGACCAAATGATCGCAGATTTGTGGGAAA 75360 75361 ATCAACGACGATTATTAGCATTAGGTGCTCGATTGGCTAAAGGTCTAGATAAACAAATGA 75420 75421 TTTTTAAAACTAATAATACAGAAGACCTTAAATGCTTTAAATTTAGCACTCGTGGAGATG 75480 75481 ATTATTACATCAGAGCTCGCTCTACTGATTATGTTAATATGGGGCATCATCTCTGTTTAG 75540 75541 CTTTTGAAGTTTTAAAAGAAGCTGGAACGTTAGAATATTCATCTGGTGCTAAATGCCCGA 75600 75601 TTGGTTCAAATTGCATTTTAATTTATCGCCCGAATGAATCCAGTTCAACTAAATTGCCTA 75660 75661 CAAAACCTGTACCAGTTCGTAGTAACGAAAAACATTCTGAACAAATTGATTATTTTAATA 75720 75721 AGCAAATTGAAGAGCTGAATATTTCTATTCAACAATATGATGATGAAATTTTCAGACTAT 75780 75781 CTGGATTGAGTAGTAAAGCTAAATCTGAGCGTGAAAAGTTAATTAAAATTGTTGATTTAC 75840 75841 TTAAATCTTAAGGAACACCATGAAAACTCGTTCTCAAATTGAAGATATGGTTCGTAATGC 75900 75901 CAGCTATACTCGTGATGTTATGACATTTTTGTGTGAAAATAATTTAGACCCTGATAAAGT 75960 75961 TAATCGTGTTATTCATCACTTTAAGTATACGAATAGCAGTGAATGGGTGCGTAATTTTAG 76020 76021 TAAAGCAGGGTATATTACTCAAATGACTGCTCGTGAACAGCTCACCGATTTCTGTAAAAC 76080 76081 TATTGATTATAAAAATCCTCTATTTGTTCAAGGCGTTGGTCAAAGTAAGGTCGATTTATC 76140 76141 ATCTGGATTTTTCAATCCAAATCATTATCGTATTGAATGGAGATTTATTGCTCTGTTCCG 76200 76201 TAGACAATTAAAGCAAATTTTGTCTACTGCTAGTCGATTAAAAGGCTCTGACATTAACTT 76260 76261 AAAGAATCTGAAATTTGATGGTTATACTCTTCAGATGGAAGTAAGACCGTTAAAAGAAAA 76320 76321 TAATAGAACTGCACGAATTAGCTTTAAACCTAATACAAAAAATTCTCTTTCAATTTGCGA 76380 76381 ATGCCTTAAATCGCAGTTGACAGAAGCATTTAAGTATATGGATGTTGTTGCTGCTGTTCA 76440 76441 ATCTAAGATTTTACCTCGTTTTGAACGATTTAAGTTAGATACAACATCATATGAACTTGA 76500 76501 TATGATCGTTTCATTTAAATATGAATTTTTGAGAAAGGACGAAGTCACACAAGAGAAAAA 76560 76561 GCAAGAAGTGCAAGATAACTTAAATTTATCTAATTACTTATCAAACGATCCTAAATTTTG 76620 76621 GATGTATAGCTCAGGTAATAAAGATGCATGGAAATTCAATAAAGTGAATTTTCTTCCTGT 76680 76681 TGAAAATCCAAGTCTTAAACCTGTTGAAAAATGGCACGCGGATGCGATTGAGAAGTCTCT 76740 76741 TAAGGCAGTAGATGCTGAATTAGTTAAAGCGACCAATGAAGTGCTAGAAGCTGAAAAGGC 76800 76801 GTTAGAACAAGCTCAGTCAAGGGTTCAAAATCTGACAAAGCAACGTTCTAAACTGAACAA 76860 76861 TGCACTAAATGCACTGAACTAGTTTACTTTGCCACAAGGATGTGGTATAATGTTCTTACT 76920 76921 TTCTACTGAGGAGATTAATATGACTCGTAACGAATATATCAAATCATTCAATAGCGTTAT 76980 76981 TGATGATAAAGCTATACCGATGTTTGGCCAAAATAGCGTTCTTTCTATTATCAATCAGTG 77040 77041 GCTCAATAGTGTTGATGCAAGTATTGTTTCTTCTACTAAATTTATTCATGAAATTCGTAA 77100 77101 AATTTCTAGCCGTGTAGATAAAGATGTTATCAAGAAAACCTTTAAAGAGTCTCGTCTTCT 77160 77161 TTCATATTTGGTTAATCGGGATATTCTTGGTAATTTTGGGAAAGAAATTAAACGAACTAA 77220 77221 AGATGTAGTAGGATATAATTGGTTCGGTGATGTTAATTCTTATCATCTCAATAATAAAGA 77280 77281 AGACCCTGAGAATATTTTTACTCGTCGTTGGATTAGTAATTTCAGACTTTTCAAGAAGCA 77340 77341 AATTCTAAAATCAGCTTCTAAATTATGTTATGGCGATTATCGTCAAATTCATCCTTTGGC 77400 77401 TTCTGATATGATTATCATAAAAGAATATGAACTTGATAAAAATAAAGTATCTATTTTTGT 77460 77461 GAATTATGGATTTTTTACACCAGAAACTAACCAAAAGAATATTAATAAATTTTTCTCAAT 77520 77521 TGCTAGCACTATAACTCGTCAATTAGAGACCGCATTACTTTGTATGGAAACAGTAGAAAA 77580 77581 TATTCATACATATCCTTTTAAGAATATATGCGGTTGGGAAGGATATAAACTCGTAATTAG 77640 77641 CCTTCGTGAAGTGAAATGTGCTTATTCACCTACTAGTAAAGAAATTTACCAACAAAAATG 77700 77701 TGATGAAATTGTGAATACTCCTAAAGAAGAAACTACCCTTGAGGAACTAATGGAATGTCT 77760 77761 TGATGATTCACCTGAACCGATAGAAATTCGTCCAGAAGTTATTGCACTAGAAAAAGCTTA 77820

88

77821 TAAAGAAGTTCTAGAAATTTCTAATAAAGCGCAGAAAGAATATGAGCAGGCTAAAAAGAT 77880 77881 TTGGGAAGAATCCGTTAATCGTCTTGATCGTCTAGAACAAGCTTTGCAGTTAATTAAGTA 77940 77941 AAATTTAAAGCCAAGGATGGCTCGGAGTATAAATCATTAACCAAGTGAGAAGAACATGAA 78000 78001 AACTCGTAAACATTATATTGATTATTTTGACAGTCTTATTACTAAACATCGTGATTATCA 78060 78061 GAAAGGACATAGAGAAGTAATCAATAATATTCTTCGTGATTTTTTAGACTATATTGGATG 78120 78121 GGAAAACCATATTTGTAAAGATACACAAAATGCGTATTCACATTCTCTTGGTTCTTTGCT 78180 78181 CGAGTGGTTCAAACGTTCCCGATTACTATCTTCTGTGATAGCTGTTAATAATGTTAAAAA 78240 78241 ATTTATGTATCCAAGCTACATTGAGACTAATGTATCAAATGATAATGTTGTTACATTTAA 78300 78301 TATTATTAACGACGTGAAAAGAACTTATTTAGAAGAATGGTTTTCTAAAGATAGTAAAGA 78360 78361 AAAATTTGCCAGTGAGTTTTCACACGAATTTAATAATAATGTGAATATGCTTTTTAAGCA 78420 78421 TTCTCGTAGACTGTTTTGTCATGGCGATGATCGTACTATTAATGTAAATGTAAAAGATTG 78480 78481 GGTTACGGCTAAATTCATTCCATCATCACAGAATGGACCATTTGAATTGTTAATTATTGT 78540 78541 TTGTGCTCCGCATGAAATATATAAAAATCTTCCATATATGAAACCATGTGAAGCTAATAA 78600 78601 ACATAATAAAACGATTCGTTCTTTGACTTATAATCTTCGTACGTTATTGTCTAAAATGGA 78660 78661 CGTAGTTGAATCCTTTGATGATAATACGAATTATGGTCTTTCACTGTTTGAAACTAAAGT 78720 78721 TGTTATTAAGTTAAAGGACCCTAATAAATTTAAACCTACGCCAAAGCCCAATCATGGGAA 78780 78781 TGATACTATGAAAGAAGAACGCGAATATCTCAGTACCCGTTTGATTGAAGTTGAAAAACA 78840 78841 GATTGAAGAGCATACTAAAGTTCTTAAGGATTTAACCGCCAAAGCAAATGGTTTACGTAA 78900 78901 TGCTATTGAGGTATTGAAATGAAAAAGCGTCTATTAGAAGACATTGCAGCTTCAAGTAAT 78960 78961 TCTAGTCTAATTAAAATTATTATGGCTGGTGAAGAAGACGATCTGGAAATGCGTGGAAAG 79020 79021 ATTTATGGTTGTGATGATTATAGCCCTCCTGTTAATTGGGATTCTGTAATGGTCATGGTT 79080 79081 GAACGTCGCGAAAGGGCTTCTAAAAACGTTCCTAATTGCCCTGAATGTGGAACTGAACAG 79140 79141 GTGCAATTGGTCCATTGGCAGACTAATAATCTTCGTTATAAATGTCGCCATTGTAAACAC 79200 79201 CGATTTGACCGAGAAGAAAATGACAAAGCGTAAAGAATATATGGAGACTGCTGAAAAGGC 79260 79261 AGTCCGTGAATTAGCAATAGCTTATTATAATGAACACGGTAAATTTCCTGATAGATACAG 79320 79321 CGTGCTTAAATCTGCTTTAACTCGTTCATATAAAAATATGCTATCAGAAGTAAGTGATAT 79380 79381 TATATACAAGCATAAAGAACAAACGGGCCAAAGTCTTGATTACGACGAGACTTTTAAACA 79440 79441 AGTACTAGGAATTAAGGAATAATATGTTTAAAGTATATGGTTATGATAGCAACATTCATA 79500 79501 AATGTGTGTATTGCGATAATGCAAAACGTCTTTTGACTGTGAAGAAACAGCCGTTTGAAT 79560 79561 TTATCAACATTATGCCGGAAAAAGGTGTTTTTGATGATGAGAAAATTGCTGAGCTTCTGA 79620 79621 CTAAACTAGGTCGTGATACTCAAATCGGCTTAACAATGCCTCAGGTATTTGCTCCTGATG 79680 79681 GAAGTCATATTGGTGGATTTGACCAATTGCGGGAATACTTTAAATGATAGAATTAAATGA 79740 79741 ACAAATTATTTTTCTAGGCGATGGAACAGAAGGCGACCTGGAATATAAACTCTATGAATA 79800 79801 CATGATTTGGTTAGCTAAAGCAGAAGGTATAGACTTTGTTGTGTCTAACCCGTATGGCGA 79860 79861 GAACACAGTTGTAATCGGTGGTACCGCTTATGAAGTCGAATGGCGATACGTTGGGCTTAA 79920 79921 ATCCGAAGAATATGACGTCACCGATGAAGGTAAGTGGATTCCTATCGGCCCCTGGTTCTG 79980 79981 GGAACATGGCGAACCCGATTTTGAAGTAAGCAGTTGGTGGTGTGAAAAATGAATATTGAA 80040 80041 AATAAATTAGATGTTGATGCAGTTCTGAGCGAAATCATTGAAGACCATGATGCATTTTCG 80100 80101 GAAAACTATGATTTCGATTTTTCCGACTATCTTAAACCTATCGAAATAGAAGACTGGGTG 80160 80161 CAAGATGGTAAATGCCAATATCGTCAGTGTGTTTATTTTAGTCCAAAACATAATGTACAT 80220 80221 GTGGCTGTAAATGAATCTCGCTCAGGTTCTTACCATTCTGACTGGTATTATGCAGTTCCT 80280 80281 ACTGTTGAACTGGTTGAGCTTCGAGAACGTGTAGTAACTCAGACAGTACGAGAATGGATT 80340 80341 ACGCTATAAAACCTTGGTGGGCGGCTAGATGGGAAACTGTAGAGCCAGAGCCGGAAGAAC 80400 80401 CGGTTTACACTGATGAAGAAACGGTGTATAATGAACCAACGATAAATGACTTAATTGATA 80460 80461 TGGAGATGGGACATGATTACAGTAGATAAATGGTTTAGAATTAATCGTGCTGATACAGGG 80520 80521 CTGTGTAATTACTGGCCGGAACTTAGTGCAGGTACTGTCTTTAAAGTTCGTGAACTTGTA 80580 80581 AAAGAATGTGAAGATGATATAGAGCCTGACACTGGAATTATTGAAATTGAACTTTCTGAT 80640 80641 GGAAAGATTATTAACATCTACGATAAGCCAATTACGTATTGGTGTTTGTGGAATACTGAA 80700 80701 TCAGTAGAAAATGGCGAAATTGAAGAAGTTGTAGAGCGAACTAATCAAGTTGTTCAGAAG 80760 80761 CCTAAAGCCGATTTTCAAGGTGAACGTATTTCATACGCATTAGCTAAATTAGCTGCACAA 80820 80821 GAAAATAACGATGGCTATGAAGGAAATTTAATGCAAGCTGCCGCAGAGTACATTGAATGG 80880 80881 CTTGAAACTCAAATTTCTTTTTCTGACCGAATGATTCAGCAATATAAGCGATTGCATCAA 80940 80941 ATGTTTTACAATACTTGAAAATAATAAATACCCTTATCTATTTAAGGTAAGGGTTTATTA 81000 81001 TGTTATTGACTGGCAAATTATACAAAGAAGAAAAACAGAAATTTTATGATGCACAAAACG 81060 81061 GTAAATGCTTAATTTGCCAACGAGAACTAAATCCTGATGTTCAAGCTAATCACCTCGACC 81120 81121 ATGACCATGAATTAAATGGACCAAAAGCAGGAAAGGTGCGTGGATTGCTTTGTAATCTAT 81180 81181 GCAATGCTGCAGAAGGTCAAATGAAGCATAAATTTAATCGTTCTGGCTTAAAGGGACAAG 81240 81241 GTGTTGATTATCTTGAATGGTTAGAAAATTTACTTACTTATTTAAAATCCGATTACACCC 81300 81301 AAAATAATATTCACCCTAACTTTGTTGGAGATAAATCAAAGGAATTTTCTCGTTTAGGAA 81360 81361 AAGAGGAAATGATGGCCGAGATGCTTCAAAGAGGATTTGAATATAATGAATCTGACACCA 81420 81421 AAACACAATTAATAGCTTCATTCAAGAAGCAGCTTAGAAAGAGTTTAAAATGACAATTGA 81480 81481 AAAAGAAATTGAAGGATTAATTCATAAAACTAATAAAGACCTTTTAAACGAGAATGCTAA 81540 81541 TAAAGATTCTCGTGTTTTTCCAACTCAACGGGACCTTATGGCTGGTATTGTGTCTAAACA 81600 81601 CATTGCCAAAAATATGGTCCCGTCTTTTATTATGAAAGCGCATGAAAGCGGAATTATTCA 81660 81661 CGTGCATGATATTGATTATTCCCCTGCTCTTCCATTTACTAATTGCTGTTTAGTAGATTT 81720 81721 AAAAGGAATGCTTGAAAACGGATTTAAGCTTGGTAATGCGCAGATTGAAACTCCTAAATC 81780

89

81781 AATTGGAGTTGCTACTGCAATTATGGCACAAATTACTGCGCAAGTTGCTTCTCACCAATA 81840 81841 CGGCGGAACGACTTTTGCGAATGTAGATAAAGTACTTTCTCCTTATGTTAAACGCACCTA 81900 81901 TGCAAAACATATTGAGGATGCAGAAAAATGGCAAATCGCTGATGCGTTGAATTATGCTCA 81960 81961 ATCTAAAACAGAAAAAGACGTATACGATGCATTCCAAGCTTATGAGTTAACGTAAGTCAA 82020 82021 GCTCATGTAAAATCTGCCTAAAACGGGAAACTCTCACTGAGACAATCCGTTGCTAAATCA 82080 82081 GCAGTAGCTGTAAATGCCCAACGACTATCCCTGATGAATGTAAGGGAGTAGGGTCAAGCG 82140 82141 ACCCGAAACGGCAGACAACTCTAAGAGTTGAAGATATAGTCTGAACTGCATGGTGACATG 82200 82201 CAGCTGTTTATCCTCGTATAAATATGAATACGAGGTGAAACGATGAAATGGAAATTAAGA 82260 82261 AAAAGCTTAAAAATTGCCAATTCTGTAGCATTTACCTATATGGTAAGATTTCCTGATAAG 82320 82321 TCTTTTTATATAGGTTTTAAAAAATTCAAAACTATATATGGTAAAGATACAAATTGGAAA 82380 82381 GAATACAATTCGTCATCTAAGCTTGTTAAAGAAAAGCTTAAAGATTATAAAGCTAAGTGG 82440 82441 ATAATTCTTCAAGTTTTTGATTCTTATGAATCGGCCCTTAAACATGAAGAAATGCTTATT 82500 82501 AGGAAATATTTTAATAACGAATTTATTCTTAATAAATCTATAGGTGGATATAAATTTAAC 82560 82561 AAATATCCGGATTCAGAAGAACATAAGCAAAAACTTAGTAATGCCCATAAAGGTAAAATC 82620 82621 TTATCTTTAAAACATAAAGATAAGATACGAGAGAAATTGATTGAGCATTATAAAAATAAT 82680 82681 AGTAGAAGTGAAGCTCATGTTAAAAATAATATTGGTAGTAGAACGGCTAAAAAGACTGTT 82740 82741 TCTATAGCTTTAAAATCCGGAAATAAATTTAGAAGTTTTAAATCAGCTGCAAAATTTCTT 82800 82801 AAATGCTCTGAAGAACAGGTTAGTAATCATCCAAATGTTATAGATATAAAAATAACAATT 82860 82861 CATCCCGTCCCAGAATATGTTAAAATAAATGACAATATCTATAAATCATTTGTGGATGCT 82920 82921 GCTAAAGATTTAAAACTCCACCCAAGTCGTATTAAAGATTTGTGTTTAGATGACAATTAT 82980 82981 CCAAATTACATTGTTTCATATAAACGGGTAGAGAAGTAGCGAACTCTACTGAACACATTG 83040 83041 ATGAAGTGAACACGTTATTCAGTTCAAACGGACAGACTCCTTTTGTAACAATTACATTTG 83100 83101 GTACGGGAACTGACTGGACTGAACGAATGATTCAGAAAGCAATTCTGAAAAATCGTATTA 83160 83161 AAGGTCTTGGTCGTGATGGGATAACTCCTATTTTCCCTAAGCTTGTTATGTTCGTTGAAG 83220 83221 AAGGTGTTAATCTTTATAAAGACGATCCGAACTATGATATTAAACAGCTTGCTCTAGAGT 83280 83281 GCGCAAGCAAAAGGATGTATCCTGATATTATTTCAGCTAAGAACAATAAAGCTATCACTG 83340 83341 GTTCATCTGTTCCTGTTTCTCCGATGGGTTGCCGTAGTTTCTTGAGCGTATGGAAAGATT 83400 83401 CGACTGGCAATGAAATTCTTGATGGACGCAATAATCTTGGTGTTGTAACACTGAATCTTC 83460 83461 CTCGCATCGCGTTAGATTCTTATATTGGAACACAGTTCAATGAACAGAAATTTGTTGAGC 83520 83521 TATTTAATGAACGAATGGATTTATGTTTTGAAGCTTTGATGTGTAGAATTAGTTCCTTAA 83580 83581 AAGGAGTTAAAGCTACTGTTGCTCCTATTCTTTACCAAGAAGGTGCATTCGGGGTTCGTC 83640 83641 TTAAACCTGATGACGACATAATTGAGTTATTTAAAAACGGTAGAAGTTCAGTGTCTTTAG 83700 83701 GATACATTGGTATTCACGAATTGAATATTCTTGTCGGTCGTGATATTGGACGAGAAATTT 83760 83761 TAACTAAAATGAATGCTCATCTTAAACAGTGGACTGAAAGAACCGGATTTGCTTTTAGTT 83820 83821 TATATTCGACTCCTGCTGAAAACCTGTGTTATCGCTTCTGTAAACTCGATACAGAAAAAT 83880 83881 ATGGAAGCGTAAAAGATGTTACCGATAAAGGCTGGTACACTAACAGTTTCCATGTTTCAG 83940 83941 TAGAAGAAAATATTACTCCGTTTGAAAAGATTTCTCGTGAAGCGCCATATCATTTCATTG 84000 84001 CGACAGGTGGTCACATTTCTTATGTTGAACTTCCTGATATGAAAAATAACTTAAAAGGTC 84060 84061 TTGAGGCCGTGTGGGATTATGCTGCACAGCATTTAGATTATTTTGGTGTTAATATGCCAG 84120 84121 TAGATAAATGTTTTACATGTGGAAGTACCCATGAAATGACTCCTACTGAAAACGGATTTG 84180 84181 TTTGTTCTATTTGTGGAGAAACTGATCCTAAAAAGATGAATACCATAAGAAGAACATGTG 84240 84241 GTTATTTGGGAAATCCGAACGAACGCGGATTTAATCTCGGTAAAAATAAAGAAATCATGC 84300 84301 ATAGGGTTAAGCACCAATGAATTATGACAGAATCTATTCAAATCTAGTTAATTCTGCTGA 84360 84361 ACACCCATCTAAGCCCCGTCAAACTAAAGCCGGGTATGAACTTCATCATATAATTCCAAG 84420 84421 AAGTATGGGTGGTTCAGATGATTTAGACAACTTAGTATTTTTAACTTATAAGGCCCACTA 84480 84481 TACTGCTCACCATTTATTGGCTAAAATATATGGTGGAAAGATGTATGATGCATATTGGAT 84540 84541 AATGAGTAATAGTAAGCATAGAAAAGTTACTTCTTCACAATACGCGTATGCAAAAGCTAA 84600 84601 GAAATTTGAAAATCAGCGTGGCGCAAAAAGAAGCGATAAAACTAAGAAGCTAATGAGCAT 84660 84661 AGCTAGGTCTAAAGTAACTCTTCCTGATGATTTTGGAAAAAGGATATCTGATGGGCTAAC 84720 84721 AGGAAGAACTTTGTCTACTAATCATAAAGAGCATATCAAAAATAGTTCTAGAAATCGCTT 84780 84781 TAACACCAAAACGGTTATTGGCTATTCACCAGACGGAAATACAATAGAACTAACTGGAGC 84840 84841 AACTGAAATAAGAAATGCAGGATTTTTTCATTCTGCTGTTTATAAATGTTGCAAAGGAAT 84900 84901 TCAATCTATTCATAAGGGATATACTTGGAAATATAAAGATGAATTATGATAGAATTTATC 84960 84961 CATGCGATTTCGTTAACGGCCCTGGATGTAGGGTCGTTCTCTTCGTCACTGGATGTTTGC 85020 85021 ATAAATGCGAAGGTTGTTATAATCGTAGTACTTGGAATGCTCGTAACGGACAGTTATTCA 85080 85081 CTATGAATACCGTTAAAGAACTTGCGTCCCATTTAAGCAAATCGTATATCCAAGGCCTTA 85140 85141 CCTTAACCGGCGGTGACCCACTTTATCCACAGAACCGAGAAGAGATTTCAAATTTAGTTT 85200 85201 CTTGGGTTAAAGCAAGATTTCCGGAGAAAGATATCTGGTTGTGGACAGGATATAAGTTTG 85260 85261 AAGATATTAAACAACTAGAAATGCTTAAATATGTTGATGTTATTATTGATGGGAAGTATG 85320 85321 AGAAAAATCTTCCGACCAAAAAGCTGTGGCGAGGATCAGATAATCAGCGACTTTGGTCAA 85380 85381 ATACCGATGGGGTGTGGAAACATGATTAAATTGAATTACATTATGGATACTATAAATGAT 85440 85441 ATGATTTTTCATTTTGGTCCAGAATTTTATTCGCAGTATAGTTTAGTGCTTATCAATGCT 85500 85501 TGGTTAATCAATTAAAGGTAAATGTAAATGTATAAATTTCGTAAAGGTTTAGCTGATTTT 85560 85561 CTTACAACTGTAACATTCTTTCTGTTTATGGCAGTTGGAGCTATTTTCCTTATTCCTTTT 85620 85621 ATTGCTATATTTTTCGTGATTAGTTTGATTTCTCCAGAAAAGGGCTTATCTTCTAGTGAA 85680 85681 TTCAATGAGCGTCTGGATAAAATTACTAACAAGCTGAATGCTGCTCTTAGTAAGGAATAG 85740

90

85741 TTGTGAAACAAAATAAGATTGAAGTCTATGGAATTCCAGATGAAGTAGGTCGTTGTCCTG 85800 85801 GATGTCAATCAGTTACAAAACTTCTAAAGGAGCTCAATGCTCCTTTTACTTTCTATAAAG 85860 85861 TTCTTACAAATAATGGTAAGATTGAGTATGATCGTCCGCTGATTGTATCTCTTGCTAAAC 85920 85921 GCGCTGGATTCACATCTCTTAACATTCGTTATCCAGTCATTTTCATTAATGATTCTAGAC 85980 85981 AAAAGAACATTAAACACTTCAAAGAAACTCTCATTTCACTTGGATATGATAGAGATATCA 86040 86041 TAGAAGATTAAGACGGGCCCTCTGGGCCTTTCTTTCTCACATTCTGTATATTACCATTCT 86100 86101 AAGCTATCGTTCCTTTCTTATCATTCCCTAAAATATTTTTCACAAAGTTGTTTACAACAA 86160 86161 GTTCAAACCGTGGTATTATTAACATATGAATTACCTTTGAGGAATTGATATGGTTGTGGT 86220 86221 TGATAAAGAGATTAAAAAGGGACAGTATTATCTCGTGAATGGTAATGTTGTTCGTGTTAC 86280 86281 TTATGTAAATGGTTTTGATGTTTACTATCTTATACTCAAGTTACATAAACGTATGATTTG 86340 86341 TGATCGTGCTGTATTTAGTTCAGTTGCTAAGGAAATTAAACTCCATGGGTAAAACGTATC 86400 86401 GTCGTAAAGACTTAAAAGTGCGTGATTATGACTATTTCGGAAAGCGTAAAGCTCCTGATG 86460 86461 GGGTAAGTCATAAAGATATGGTTGAAAACATTTTTCGCTCAGATAAATGGCGTAGAATGA 86520 86521 AAGGTATTGATTCAGAAGTTAAAGATGAGTTAAATCGTCAATTACGCGGTGAAGTAAGAA 86580 86581 AGTTGAAAAAATCAGTTTACATTGATGATGATTTTGATTATAATACTTCTCAACGAGTTG 86640 86641 CTAAACGTAAATCAAACGAGTGTTATCGTTACAGCTGAGGAAAATATGAATATCAAACGC 86700 86701 ATGCTTTTTAAGCAAGGGCTATACACTTTAAATGTTACTCCAAAAGGCGATACGACCAAG 86760 86761 TGGTCAGTAAATGACTGGATTAAATTTATTGATGAAAATGGCAATTGGGAAATTTAAATG 86820 86821 AATCCTGAATCTAAATTATCGCAGCGAATTGCTGAAGAACGCGCCAAATTTTTCCAGAAC 86880 86881 ATGAAACACAACGGTATTGAGGATGAAGTTTTTCTAAATTGGTTCTGGAATAATAAGTAT 86940 86941 GCAGCATGTGAAGGAGCTTTGTCATTGTCAGTCGCAATGATGTACGAAGGCTGGAAGGGT 87000 87001 GCCAAAAAGTTTAGCTAAGGGCTTCGGCCCTTTTTGGATAATAAAATTTTAACGTAATTG 87060 87061 AGGATAATGTATGACTATTCAAATTAAAAACGCCATCAATTCTTACGCATATGATAAAGT 87120 87121 AGTTTCTTTGCTAGAAAAAGGCGATATTGTAACTCCTCAAATTTTGGATAAATGGGAAAA 87180 87181 AGAGCTTCATCAGACGATGAAACAGAATGATCAGAAGATTGGACGCAATACTGTCCGTGA 87240 87241 ATTGTTGGTTCAATATATCTTGTCAGAATTTGATGTTAAAGCTTTTGGTGTAGAATCTAA 87300 87301 AGCTTATCAAAAGCATGAAATTTCCGATAAAACTATTCGTCGCATGAAAAATCAACGCAA 87360 87361 GAAAAAATTTGCAGACCTGAAAATTACTAAGGTATAATTATGAACGAAGCTCTTATTAAC 87420 87421 GATTTACGTCTCGCTGGGTATGAAGTAAATACAAATGGCATTGGTTTAACTCAAATTGAA 87480 87481 GGAAATGGATTCATCCTTGAGTATGAATTTAGCCAATGGTGGTTATACGCTAATTACGGC 87540 87541 GAATTAATTGAATATGTTGACCAATTTGATTCACTAGATGCAGCTCTTGGAGCGGCTAAT 87600 87601 CTGATGAATGCTTGAAATTGATTCATCCTCTATGCTTTAAGATAGGTCTTCAAATATTAT 87660 87661 GATATAATAGATCTATGAATTGAGCTAAGAGGTGAAAATGTCAGAAACTAAGCCTAAATA 87720 87721 TAATTACGTAAACAATAAAGAGCTTTTACAAGCTATTATTGATTGGAAAACAGAATTAGC 87780 87781 AAATAATAAAGACCCAAATAAAGTAGTTCGTCAGAATGATACTATCGGATTAGCCATTAT 87840 87841 GCTTATTGCAGAAGGCTTATCTAAACGTTTCAACTTTTCAGGATACACCCAGTCTTGGAA 87900 87901 ACAAGAAATGATTGCAGATGGTATAGAAGCTTCTATTAAGGGGCTTCACAATTTTGATGA 87960 87961 AACGAAATATAAAAACCCACATGCGTATATAACTCAAGCTTGTTTTAATGCATTCGTCCA 88020 88021 ACGTATTAAAAAAGAACGTAAGGAAGTTGCAAAGAAATATAGTTACTTCGTTCACAATGT 88080 88081 CTATGACAGCCGTGACGACGATATGGTTGCGTTAGTAGATGAAACTTTTATTCAAGACAT 88140 88141 CTATGATAAAATGACGCATTACGAAGAATCAACCTATAGAACACCGGGGGCTGAAAAGAA 88200 88201 AAGTGTTGTAGATGATTCTCCTAGTTTGGATTTTTTATATGAGGCTAACGATTAACCTCT 88260 88261 CCGGATTCTTGGAAGAAATACCTGAAGTTGAAGCTATTCCCTATTTACTTAAAATGTATC 88320 88321 TCAGGGAAGTTTTAGCTCTTGACATTGATATTGATCCAGAAAATCCGTATGATACCGCTT 88380 88381 TTAAATCTAATGGTGTAGAATTAAACTATCGGTATCATTTAACAGATGATGATTTTTATT 88440 88441 TTATATTAGAGAAATAATATGACTGATAAACCCGAAATTAATGATGAAGTGGAAAAGCTT 88500 88501 ATTTCTTCTATTGAAGAAAAGAACCGTCTTGAAGCAGAAAGAAAAGCAAATAAGTTATTG 88560 88561 TCTAAAAACAAACGCGAACTGAATCGTCTTTATAAGCACGCTCAGATCGCAGCTGAAAAT 88620 88621 AATAATTTTGCTCAATACGAATATGCTATCAAGAAAAGTCGGGATATTCTAAAACAGCCA 88680 88681 TATAACGATGAACTCATCAGTATTCTTTGGAAGACTACTAGATCGCAGATTGAGGATATG 88740 88741 ATTGATGCTTACACACGTAAAATTCAAGCGTCTTAAAATTAATGCAGGATTTACTGAATC 88800 88801 TTTGAATGGTCATCTTTGCGTGAAAATTTCTGAAAAAGAATACCGTGATAGTTCAATCAA 88860 88861 AGAAGTTAATCCTCCTATTGTAAGAGCAGACCCTAATATGAAAGTGTGGGTTGATTCTTA 88920 88921 TCAAGTCAAAAAATGGTGGCAACTGTGAAAGATGAACATCCGACTTCTGAAATAGATTAT 88980 88981 AATAAAATTCGTTCCTCTAGAGAGGAAATGATGAGACGCTTTAAAGAGGCTCATGATAAA 89040 89041 GCTAAAGCAGAAGGAACTATAACATATAAGCGCATAAAATTTAAAAGTTCTAACGAGCCT 89100 89101 CTGTATGGCGTATTATGTGGATAGGAGCTTCGGCTCCTATATTGCTTTATAAATTTTTTG 89160 89161 GTAAAATAAACTAAAATGAATTATTTAAACATATATAATTTACTGATCGAAAAAGGACTA 89220 89221 AACAGAGGCAATGATAAAAGTCTTTTGACATACTATACTGAAACACATCATATAATTCCT 89280 89281 AGATGTATGGGTGGTACAGATGATAAAACTAATTTAGTTCTTTTGACACCAGAAGAACAT 89340 89341 TTTACCGCGCATTTATTATTATTTAAAATTTATAGACTTCCTAAATTGGCTTTAGCTATT 89400 89401 CGTATGATGTGTTATAGTTCTGACGGAACAAGACTAAATAATAAAATGTATGGATGGATT 89460 89461 AAAACAGCTGTATCTTCTTCAATATCGGAAAGCATGAAAGAGTTCTGGAAAGATGATGAT 89520 89521 AATAAAAAATACATGTCTAACGCTAGACGAAATGCTGGAAAACCAATTTATCAATATGAT 89580 89581 TTAAATGGAAATTTTATTCGCAAATATAGATGTATTACAGATGCTGCAGAAGATATGTCA 89640 89641 TATAGCTGTTCAACTTCAATTAAACAATGTGTAGATGGTAAAAGGAAAACCGCTGGAGGA 89700

91

89701 TTTCAATGGAAATATTATTATTCTGATAACATAGGAAAGCCCTCTAGGATGTCTAATGCA 89760 89761 ACTAAACAAAAAATGTCTAAATCTAAACGTGGGATAACTCAGAAAAGAAATGTGCCAGTA 89820 89821 TTTCAATATGATACTACTGGAAAATTATTACGAGTATTTCCTAGAATTAAAGACGCAGCT 89880 89881 GTATCCGTTAAAGGATGCATGTCTAATATTAAAAAGTGCATATCTGGAAAAAGCAAAATT 89940 89941 GCTTATGGATATGTTTGGGCCTATTCGTAGCGTTTTATAGAAAATAAAATATTATTTACA 90000 90001 TGATTTATTAAATGAAAAGAGGAAAACTATGCGTATTTGCATTTTTATGGCTCGAGGTCT 90060 90061 TGAAGGTTGTGGTGTAACAAAATTCTCACTCGAGCAACGTGATTGGTTTATTAAAAATGG 90120 90121 TCATGAAGTAACTTTGGTTTATGCTAAAGATAAATCATTTACTCGTACAAGTTCTCATGA 90180 90181 CCACAAATCATTTTCAATTCCAGTTATTTTAGCTAAAGAATACGATAAAGCACTTAAGCT 90240 90241 AGTAAATGATTGTGATATTCTAATTATTAATTCTGTTCCTGCTACTTCCGTTCAAGAAGC 90300 90301 TACGATTAATAACTATAAAAAACTTTTAGATAATATTAAACCTTCTATTCGTGTTGTAGT 90360 90361 TTATCAGCATGATCATTCTGTTCTTTCTTTGCGTCGAAATTTGGGATTAGAAGAAACTGT 90420 90421 TCGTCGAGCTGATGTTATTTTTAGCCATTCTGATAATGGTGATTTTAATAAAGTTCTGAT 90480 90481 GAAAGAATGGTATCCAGAAACTGTTTCTCTGTTTGATGATATTGAAGAAGCACCGACAGT 90540 90541 ATATAATTTTCAGCCTCCTATGGATATTGTGAAGGTTCGGTCAACTTATTGGAAAGATGT 90600 90601 TTCTGAAATTAACATGAATATCAACCGTTGGATTGGTCGTACGACTACATGGAAAGGTTT 90660 90661 TTACCAGATGTTTGATTTTCATGAAAAATTCTTAAAACCTGCTGGTAAATCCACTGTAAT 90720 90721 GGAAGGTCTGGAACGTTCCCCTGCTTTTATTGCAATTAAGGAAAAAGGTATTCCGTATGA 90780 90781 ATATTACGGTAATCGTGAGATTGATAAAATGAATCTCGCGCCGAATCAACCGGCACAAAT 90840 90841 CCTAGATTGTTATATTAATAGTGAAATGCTTGAACGAATGAGTAAATCTGGCTTTGGATA 90900 90901 TCAGTTGAGTAAACTTAACCAGAAATACTTACAACGCTCACTCGAATATACTCATCTCGA 90960 90961 GCTTGGTGCATGTGGAACAATTCCGGTATTTTGGAAATCTACTGGCGAAAATTTAAAATT 91020 91021 CCGTGTTGATAATACTCCTTTGACCTCGCATGATAGCGGTATCATTTGGTTTGATGAAAA 91080 91081 TGATATGGAATCAACATTTGAACGTATTAAAGAACTGTCATCTGACCGAGCTCTTTATGA 91140 91141 CCGTGAGCGAGAAAAAGCATATGAATTTTTGTATCAGCATCAAGATTCAAGCTTCTGCTT 91200 91201 TAAAGAACAGTTTGACATTATTACAAAATAAAGGGCTTCGGCCCTTTAGCTTTATACGGA 91260 91261 GTTTGATATAATGATATTTCTTGGATATGTGATACTTTTTCTTGCATTTTATCTATTCAC 91320 91321 TAGAGCATGTTGGATTGGGTTCTTTAGCACTCCAGATGGATTTATTTCAATAATTTTATT 91380 91381 TTGCATTTCAATGACGGTTCTTGATATATGAAAATTTTAAATTTAGGTGATTGGCATTTA 91440 91441 GGCGTTAAAGCTGATGATGAGTGGATTCGCGGTATTCAAATTGATGGAATTAAGCAAGCG 91500 91501 ATAGAATATTCTAAGAAAAATGGAATTACTACCTGGATTCAATACGGTGATATTTTTGAT 91560 91561 GTGCGAAAAGCGATCACACATAAAACTATGGAGTTTGCCCGTGAAATAGTTCAAACGCTT 91620 91621 GATGATGCTGGAATTACATTACACACTATTGTAGGAAATCACGATCTCCACTATAAAAAT 91680 91681 GTAATGCATCCAAATGCTTCTACTGAGCTTTTGGCTAAATATCCTAATGTTAAAGTGTAT 91740 91741 GATAAGCCTACTACAGTAGATTTTGACGGGTGTTTGATTGATTTGATTCCTTGGATGTGC 91800 91801 GAAGAAAATACTGGTGAAATTCTTGAGCATATCAAAACTTCATCTGCTTCTTTTTGTGTT 91860 91861 GGTCACTGGGAACTGAATGGATTTTATTTTTATAAAGGAATGAAATCTCATGGTCTTGAA 91920 91921 CCCGATTTCCTTAAGACTTATAAAGAAGTGTGGTCTGGTCACTTCCATACTATTTCTGAG 91980 91981 GCTGCAAACGTCAGATATATTGGGACACCATGGACACTAACCGCAGGTGACGAGAATGAC 92040 92041 CCTCGTGGGTTCTGGATGTTTGATACAGAAACAGAACGAACGGAATTTATTCCAAACAAT 92100 92101 ACTACCTGGCATCGTAGAATTCATTATCCATTTAAAGGAAAAATTGACTATAAAGATTTT 92160 92161 ACAAATCTATCAGTACGTGTTATAGTAACTGAAGTAGACAAAAATCTGACGAAGTTCGAA 92220 92221 TCTGAACTAGAAAAAGTTGTGCATTCATTACGAGTTGTGTCAAAGATTGATAACTCTGTC 92280 92281 GAGTCAGATGACAGTGAAGAAGTTGAAGTTCAATCGCTTCAGACATTAATGGAAGAGTAT 92340 92341 ATTAATGCAATTCCAGACATCACTGATTCTGACCGTGAAGCACTTATTCAATATGCAAAT 92400 92401 CAGCTATATGTAGAGGCAACACAATGACTTTTGATGAATTTAAAAATGTTATGATGAGTC 92460 92461 AGCATTTTAAATGTGAAGTAAAAGATGATATTGGTCATAAAGAAATTATTGAATACTGGT 92520 92521 TTGAACCGTTAGAGGTTGAAGATAATTGTATTAAAAAGGTTACTGTCTGCACTGACTGGG 92580 92581 CTGTATCTTTTAACTTCAACATTTTAGATAATGACACACCTAAATCATTACGAGATATGG 92640 92641 CTGTATCTTGTATTAAGGATGCATACTGTGAAGTTTTCGACATTTGACATTAATGATGAA 92700 92701 TTCATAGCAAATATTGATTATACCGAAGAAGATTCTAGATATGTTGGAATAATTTATATC 92760 92761 ACATCAAAAACAGCACAAGGCGTTGTTTGCATGGCTGAATTTGATGAATACTTTTTAGAT 92820 92821 TATGATGATATGATAGAATGGTCTAAAAGATACATTAAAAGGAATCTTTTGTGAAGAATT 92880 92881 TTAAACTTAATAGAGTAAAATATAAAAATATAATGTCAGTTGGTCAAAATGGGATTGACA 92940 92941 TTCAATTAGATAAGGTTCAAAAAACTCTTATTACTGGACGAAATGGCGGTGGTAAGTCTA 93000 93001 CTATGCTAGAAGCCATCACATTTGGGCTTTTTGGTAAGCCATTTCGCGATGTAAAGAAAG 93060 93061 GTCAATTAATAAACAGCACAAATAAGAAAGAACTTTTAGTTGAACTGTGGATGGAATATG 93120 93121 ATGAGAAAAAGTACTATATCAAAAGAGGACAAAAACCAAACGTTTTCGAAATCACCGTTA 93180 93181 ACGGTACACGTCTTAATGAATCTGCCAGCAGTAAAGATTTCCAAGCAGAATTTGAACAGC 93240 93241 TTATCGGAATGTCATATGCCAGTTTCAAGCAGATTGTTGTCCTTGGTACAGCAGGGTATA 93300 93301 CCCCTTTCATGGGTTTGTCGACCCCTGCGCGAAGAAAGCTTGTGGAAGACCTGCTTGAGG 93360 93361 TAGGAACATTAGCTGAAATGGATAAGCTTAATAAAGCACTAATACGTGAATTAAATTCGC 93420 93421 AGAACCAAGTGCTTGATGTTAAAAAAGATAGTATTATCCAACAAATTAAAATATATAATG 93480 93481 ATAATGTTGAACGCCAGAAAAAATTAACGGGTGACAACCTTACTCGTCTACAAAATATGT 93540 93541 ATGATGATTTGGCAAAAGAAGCTAGAACGCTAAAATCGGAAATAGAAGAAGCTAACGAAA 93600 93601 GATTAGTTAATATTGTTTTGGACGAAGACCCGACTGATGCATTTAATAAAATCGGTCAAG 93660

92

93661 AAGCATTTTTAATTAAATCAAAAATTGACTCGTATAATAAAGTCATTAATATGTATCACG 93720 93721 AAGGTGGATTATGTCCAACCTGTTTGTCACAATTGAGTTCCGGTGATAAAGTTGTTTCTA 93780 93781 AAATTAAAGATAAAGTTTCTGAATGCACACATTCGTTTGAACAGCTTTCAACACATCGTG 93840 93841 ATAATTTAAAAGTTCTTGTTGATGAATACCGAGATAATATTAAAACCCAGCAGTCGTTGG 93900 93901 CAAATGATATTCGCAATAAAAAGCAATCTCTGATCGCAGCAGTAGATAAAGCTAAAAAAG 93960 93961 TTAAAGCGGCTATAGAAAAAGCATCTTCTGAGTTTATTGACCATGCTGATGAAATAGCAC 94020 94021 TGCTTCAAGAAGAACTTGATAAAATTGTTAAGACAAAAACTAATTTAGTAATGGAAAAAT 94080 94081 ACCACCGAGGAATTTTGACTGATATGCTCAAAGATTCTGGTATTAAAGGTGCTATTATTA 94140 94141 AAAAGTACATTCCATTATTTAATAAGCAGATTAACCATTATCTTAAAATAATGGAAGCGG 94200 94201 ATTATGTGTTTACATTAGATGAAGAATTTAATGAGACAATTAAATCCCGTGGTCGTGAAG 94260 94261 ATTTTAGTTATGCTTCATTTAGTGAAGGTGAAAAGGCACGAATCGATATTGCTCTTTTAT 94320 94321 TTACTTGGCGTGATATTGCTTCTATCGTATCTGGTGTTAGTATTAGTACATTAATTCTTG 94380 94381 ATGAAGTGTTTGATGGGTCATTTGATGCCGAAGGTATTAAAGGTGTAGCTAATATTATAA 94440 94441 ATTCAATGAAAAACACTAACGTTTTTATAATTTCGCATAAAGACCATGACCCGCAAGAAT 94500 94501 ATGGTCAGCATCTTCAAATGAAGAAAGTTGGTCGATTTACTGTAATGGTTTAATTTATAA 94560 94561 GAGATTATGCTTTAATTTATTAGAGTATAATCTCTATGGAGGAAAAACATGGAATATTCA 94620 94621 ACTGGACAGCATCTATTAACTATTCCTGAAATAAAACGATATATTCTGAGAAATAATTTT 94680 94681 TCTAATGAAGAGCATATAGTTACTGAATCTATGCTTAGGAATGCATTTAAAGCAGAATAT 94740 94741 ACAAAAATAATGTCCAATAGAAATGAAGCTTGGACTGTTACTGATTATTATGACTAAAGG 94800 94801 TGTATTATGACTAAAATTACTGTGAATTATACTGTTGATGTAAAAGATATTCAGCCAAAA 94860 94861 CACGTGCGTTCTGAATCAAATCCACAAAACCAAAATAAAATTCGTCGAGCATGGGTTTTG 94920 94921 TCTCTTTCTGATAACGCAATGGAAGTTATTCAGAACAAAATTAAATCTGCACCTGCTCGT 94980 94981 CATGCGTATTATGAAGCTATCGATCGTGAAGTAAGTAATAAATGGATTGAACTAATGCGC 95040 95041 AAACATACTACAGAATCCCTAAACGCCGGTGCTAAATTTATTATGACTTCATGTGGTGAA 95100 95101 CGCCTTGAAGATGATTATTGCGGTAATGCAGATGAACGTCTAATTGTTGCTGCTCAAATT 95160 95161 GTTGCGGAAACAATTGCGGCTGATTTTAATCGTTAATTGCTTTATTAAATTAGTTATAAA 95220 95221 ATTAAATCTCATTTGAATTGAAGGAAATTACATGAAACTGTCTAAAGATACTACTGCTCT 95280 95281 GCTTAAAAATTTCGCTACTATTAACTCTGGTATTATGCTTAAATCCGGTCAATTTATTAT 95340 95341 GACTCGCGCAGTTAATGGTACAACTTATGCGGAAGCAAATATTTCTGACGTTATTGATTT 95400 95401 TGATGTAGCAATTTACGATTTGAACGGTTTTCTCGGTATTCTGTCTTTAGTTAATGATGA 95460 95461 TGCAGAAATTTCCCAGTCAGAAGATGGAAATATTAAAATTGCTGATGCCCGCTCAACAAT 95520 95521 TTTTTGGCCAGCAGCCGATCCGAGTACAGTAGTTGCTCCTAATAAACCAATTCCATTCCC 95580 95581 GGTAGCATCTGCTGTTACTGAAATTAAAGCTGAAGACCTTCAACAGCTGTTGCGTGTATC 95640 95641 TCGTGGTCTGCAAATTGATACAATTGCTATCACGGTAAAAGAAGGTAAAATCGTAATTAA 95700 95701 CGGTTTTAATAAAGTAGAAGATTCTGCTCTGACCCGTGTTAAATATTCTTTGACTCTTGG 95760 95761 TGATTATGATGGTGAAAATACATTTAATTTCATTATCAATATGGCAAATATGAAAATGCA 95820 95821 ACCAGGAAATTATAAACTTCTGCTTTGGGCAAAAGGTAAACAAGGTGCTGCTAAATTTGA 95880 95881 AGGTGAACACGCGAATTATGTGGTAGCTCTTGAAGCTGATTCTACCCACGATTTTTAATA 95940 95941 GAGGGCTTCGGCCCTTTATAATTTACACTAAAACTTGAATGAGGAAATTATGATTACTGT 96000 96001 AAATGAAAAAGAACACATTCTTGAACAGAAATATCGTCCATCTACTATCGATGAATGTAT 96060 96061 TCTTCCCGCCTTTGATAAAGAAACCTTTAAATCTATTACAAGTAAAGGTAAGATTCCACA 96120 96121 TATTATTCTTCATTCTCCTTCTCCAGGAACAGGTAAAACAACTGTAGCAAAAGCATTATG 96180 96181 TCATGATGTAAATGCTGATATGATGTTTGTGAATGGGTCAGATTGTAAAATTGATTTCGT 96240 96241 TCGTGGTCCTTTGACTAATTTTGCCAGCGCCGCTTCATTTGATGGTCGTCAAAAAGTAAT 96300 96301 CGTTATTGATGAATTTGACCGTTCAGGGTTAGCAGAGTCTCAGCGACATCTTCGTTCCTT 96360 96361 TATGGAAGCTTATAGTTCAAACTGTAGTATTATTATTACTGCTAATAATATTGATGGTAT 96420 96421 TATTAAACCGCTTCAGTCACGCTGCCGAGTTATTACATTCGGTCAACCAACTGATGAAGA 96480 96481 TAAAATTGAAATGATGAAGCAGATGATTCGTCGATTGACTGAAATCTGCAAGCATGAAGG 96540 96541 AATTGCTATAGCTGATATGAAAGTTGTAGCAGCTTTGGTTAAAAAGAATTTTCCTGATTT 96600 96601 TCGTAAAACTATTGGCGAGCTCGATAGTTATTCGTCTAAAGGTGTTTTGGATGCTGGTAT 96660 96661 TTTATCACTGGTTACTAACGATCGTGGTGCTATTGATGATGTTCTTGAGTCTCTCAAAAA 96720 96721 TAAAGATGTTAAACAACTCAGAGCTTTAGCACCAAAATATGCGGCTGATTATTCGTGGTT 96780 96781 CGTGGGTAAACTTGCCGAAGAAATCTATTCACGTGTAACTCCACAAAGTATTATTCGTAT 96840 96841 GTACGAAATTGTCGGCGAAAATAATCAGTATCATGGTATTGCAGCTAATACTGAATTGCA 96900 96901 TTTAGCTTATCTTTTCATTCAATTAGCATGCGAAATGCAGTGGAAGTGATATGAGCTTAT 96960 96961 TTAAAGATGATATTCAATTAAACGAGCATCAAGTTGCTTGGTATTCAAAAGATTGGACAG 97020 97021 CTGTCCAATCCGCTGCTGATTCTTTTAAAGAAAAAGCAGAAAATGAATTTTTTGAAATAA 97080 97081 TTGGAGCTATTAATAATAAAACTAAATGCTCTATTGCTCAAAAAGATTATTCAAAATTCA 97140 97141 TGGTTGAAAATGCATTATCACAATTTCCAGAGTGTATGCCAGCTGTATATGCTATGAATT 97200 97201 TAATTGGATCAGGCTTAAGTGATGAAGCTCATTTTAATTATCTAATGGCTGCAGTTCCTC 97260 97261 GTGGTAAAAGATATGGTAAATGGGCAAAACTGGTTGAAGATTCCACCGAAGTATTGATTA 97320 97321 TTAAGTTACTTGCTAAGCGGTATCAAGTTAATACAAATGATGCAATTAACTATAAATCAA 97380 97381 TTCTTACTAAAAATGGAAAACTTCCTTTAGTATTAAAAGAACTAAAAGGTTTAGTCACGG 97440 97441 ATGATTTTTTGAAAGAAGTGACTAAGAACGTAAAAGAACAGAAACAACTCAAAAAACTAG 97500 97501 CATTGGAATGGTAAAATGATTGAAATTACTCTTAAAAAACCTGAAGATTTTCTGAAAGTA 97560 97561 AAAGAAACTTTGACTCGTATGGGAATTGCTAATAATAAAGATAAAGTTCTATATCAGTCC 97620

93

97621 TGTCATATTCTTCAGAAAAAAGGACTATACTATATCGTTCATTTTAAAGAAATGCTTCGT 97680 97681 ATGGATGGTCGTCAAGTTGAAATGACAGAAGAAGATGAAGTTCGTCGTGATTCGATTGCA 97740 97741 TGGCTATTAGAAGATTGGGGACTAATTGAAATCGTTCCTGGTCAAAGAACTTTTATGAAA 97800 97801 GATTTAACTAATAACTTCCGAGTTATTTCTTTTAAACAAAAACATGAATGGAAGCTCGTT 97860 97861 CCTAAATATACGATTGGTAATTAAGCAAGGGGCTTCGGCCCCTTATTTGGAGTATAATAT 97920 97921 ATCAAGAGCCTAATAACTCGGGCTATAAACTAAGGAATATCTATGAAAGAATTTTATATC 97980 97981 TCTATTGAAACAGTCGGAAATAACATTGTTGAACGTTATATTGATGAAAATGGAAAGGAA 98040 98041 CGTACCCGTGAAGTAGAATATCTTCCAACTATGTTTAGGCATTGTAAGGAAGAGTCAAAA 98100 98101 TACAAAGACATCTATGGTAAAAACTGCGCTCCTCAAAAATTTCCATCAATGAAAGATGCT 98160 98161 CGAGATTGGATGAAGCGAATGGAAGACATCGGTCTCGAAGCTCTCGGTATGAACGATTTT 98220 98221 AAACTCGCTTATATAAGTGATACATATGGTTCAGAAATTGTTTATGACCGAAAATTTGTT 98280 98281 CGTGTAGCTAACTGTGACATTGAGGTTACTGGTGATAAATTTCCTGACCCAATGAAAGCA 98340 98341 GAATATGAAATTGATGCTATCACTCATTACGATTCAATTGACGATCGTTTTTATGTTTTC 98400 98401 GACCTTTTGAATTCAATGTACGGTTCAGTATCAAAATGGGATGCAAAGTTAGCTGCTAAG 98460 98461 CTTGACTGTGAAGGTGGTGATGAAGTTCCTCAAGAAATTCTTGACCGAGTAATTTATATG 98520 98521 CCATTCGATAATGAGCGTGATATGCTCATGGAATATATCAATCTTTGGGAACAGAAACGA 98580 98581 CCTGCTATTTTTACTGGTTGGAATATTGAGGGGTTTGACGTTCCGTATATCATGAATCGT 98640 98641 GTTAAAATGATTCTGGGTGAACGTAGTATGAAACGTTTCTCTCCAATCGGTCGGGTAAAA 98700 98701 TCTAAACTAATTCAAAATATGTACGGTAGCAAAGAAATTTATTCTATTGATGGCGTATCT 98760 98761 ATTCTTGATTATTTAGATTTGTACAAGAAATTCGCTTTTACTAATTTGCCGTCATTCTCT 98820 98821 TTGGAATCAGTTGCTCAACATGAAACCAAAAAAGGTAAATTACCATACGACGGTCCTATT 98880 98881 AATAAACTTCGTGAGACTAATCATCAACGATACATTAGTTATAACATCATTGACGTAGAA 98940 98941 TCAGTTCAAGCAATCGATAAAATTCGTGGGTTTATCGATCTAGTTTTAAGTATGTCTTAT 99000 99001 TACGCTAAAATGCCTTTTTCTGGTGTAATGAGTCCTATTAAAACTTGGGATGCTATTATT 99060 99061 TTTAACTCATTGAAAGGTGAACATAAGGTTATTCCTCAACAAGGTTCGCACGTTAAACAG 99120 99121 AGTTTTCCGGGTGCATTTGTGTTTGAACCTAAACCAATTGCACGTCGATACATTATGAGT 99180 99181 TTTGACTTGACGTCTCTGTATCCGAGCATTATTCGCCAGGTTAACATTAGTCCTGAAACT 99240 99241 ATTCGTGGTCAGTTTAAAGTTCATCCAATTCATGAATATATCGCAGGAACAGCTCCTAAA 99300 99301 CCGAGTGATGAATATTCTTGTTCTCCGAATGGATGGATGTATGATAAACATCAAGAAGGT 99360 99361 ATCATTCCAAAGGAAATCGCTAAAGTATTTTTCCAGCGTAAAGACTGGAAAAAGAAAATG 99420 99421 TTCGCTGAAGAAATGAATGCCGAAGCTATTAAAAAGATTATTATGAAAGGCGCAGGGTCT 99480 99481 TGTTCAACTAAACCAGAAGTTGAACGATATGTTAAGTTCAGTGATGATTTCTTAAATGAA 99540 99541 CTATCGAATTACACCGAATCTGTTCTCAATAGTCTGATTGAAGAATGTGAAAAAGCAGCT 99600 99601 ACACTTGCTAATACAAATCAGCTGAACCGTAAAATTCTCATTAACAGTCTTTATGGTGCT 99660 99661 CTTGGTAATATTCATTTCCGTTACTATGATTTGCGAAATGCTACTGCTATCACAATTTTC 99720 99721 GGCCAAGTCGGTATTCAGTGGATTGCTCGTAAAATTAATGAATATCTGAATAAAGTATGC 99780 99781 GGAACTAATGATGAAGATTTCATTGCAGCAGGTGATACTGATTCGGTATATGTTTGCGTA 99840 99841 GATAAAGTTATTGAAAAAGTTGGTCTTGACCGATTCAAAGAGCAGAACGATTTGGTTGAA 99900 99901 TTCATGAATCAGTTCGGTAAGAAAAAGATGGAACCTATGATTGATGTTGCATATCGTGAG 99960 99961 TTATGTGATTATATGAATAACCGCGAGCATCTGATGCATATGGACCGTGAAGCTATTTCT 100020 100021 TGCCCTCCGCTTGGTTCAAAGGGCGTTGGTGGATTTTGGAAAGCGAAAAAGCGTTATGCT 100080 100081 CTGAACGTTTATGATATGGAAGATAAGCGATTTGCTGAACCGCATCTAAAAATCATGGGT 100140 100141 ATGGAAACTCAGCAGAGTTCAACACCAAAAGCAGTGCAAGAAGCTCTCGAAGAAAGTATT 100200 100201 CGTCGTATTCTTCAGGAAGGTGAAGAGTCTGTCCAAGAATACTACAAGAACTTCGAGAAA 100260 100261 GAATATCGTCAACTTGACTATAAAGTTATTGCTGAAGTAAAAACTGCGAACGATATAGCG 100320 100321 AAATATGATGATAAAGGTTGGCCAGGATTTAAATGCCCGTTCCATATTCGTGGTGTGCTA 100380 100381 ACTTATCGTCGAGCTGTTAGCGGTTTAGGTGTAGCTCCAATTTTGGATGGAAATAAAGTA 100440 100441 ATGGTTCTTCCATTACGTGAAGGAAATCCATTTGGTGACAAGTGCATTGCTTGGCCATCG 100500 100501 GGTACAGAACTTCCAAAAGAAATTCGTTCTGATGTGCTATCTTGGATTGACCACTCAACT 100560 100561 TTGTTCCAAAAATCGTTTGTTAAACCGCTTGCGGGTATGTGTGAATCGGCTGGCATGGAC 100620 100621 TATGAAGAAAAAGCTTCGTTAGACTTCCTGTTTGGCTGATAGAATAAATCTAGGGACCTC 100680 100681 CAGGTCCCTTTTTCATACAAGTAATATAAATCTATACTTATGAAAAAGAGATGATTCTGG 100740 100741 ACCCTTTGGATTCCCTAAAAATTTTTTCACAAAACTGTTTACAAGACTGTTCTTCCATGG 100800 100801 TACTATACAACTATCAACTACTGATACGGATTTGGAGAATGAAATGAAAATCGCTATTTT 100860 100861 GGTTATTGCATTAGGTCTTGCTGGTTGTGTAGCTCAAGGACCGGTAGTAAATCAGTCTGA 100920 100921 TGTAGGAAAAATTGTAAACTGTTCAAGCAAATTTTATAATCCTAATGTCAAGTGTTATAA 100980 100981 AGAAGCTCCAAAACAGACAGTAGAACAAATGCAGGCGAATTTTGACGAAGCTATTCGTCC 101040 101041 AGATGAATCTGCTCAAGCATATCGTAATTCAGATGTAATTACACGCGAAGAAAAAATTGA 101100 101101 AAACTACTGCGCTGAGCTTTGGGCAAATTGGGCTAATAATTACCAGTGGCGTACAGGTAA 101160 101161 AAACGCTCCGATGGAGTATGTAGTGAATTCTTATAATTCATGTGTAAAAAATTTGACTAA 101220 101221 GTGAGGAAAACATGGAAACTTTAGTAGCAGGTTCAATTTTTATGGTTTTAGTTTCAGGCG 101280 101281 TGTTGGCTATTATTATATACATGCTTCCATGGTTTATCGCCTTGATGCGTGGGTCAAAAT 101340 101341 CGACAGTAGGAATCTTTTTCGCATCTTTACTGTTTAACTGGTCAATTATTGGTTGGTTTA 101400 101401 TTACATTTATTTGGTCAATTGCAGGTGAAACTAAAAAGTCTGCGCAGCCAAATCAGGTAA 101460 101461 TTATCATCAGAGAGAAGGAATGAAAAGCAAAATTATAGCAGCATTGCTTTTAATCTTGAT 101520 101521 GATTATAATAAGTATATACTATAGTGTAACGGTTCCTCTTATGATTCCAACTATTATTTT 101580

94

101581 AGGTTGGAGTTTATTACTGTTACAAGTTAAATATGAATGTATCAATTGAGGTTTAAATGA 101640 101641 TTAGTGACTCTATGACAGTTGAAGAAATCCGTCTTCATTTGGGGCTTGCATTAAAAGAAA 101700 101701 AAGATTTCGTAGTTGATAAAACAGGTGTTAAAACTATTGAAATTATTGGCGCATCATTTG 101760 101761 TAGCAGATGAACCGTTTATTTTTGGCGCTCTTAATGATGAATACATTCAGCGTGAACTTG 101820 101821 AATGGTATAAATCTAAAAGCTTGTTCGTTAAAGATATTCCGGGTGAAACACCGAAGATTT 101880 101881 GGCAACAAGTAGCATCTTCTAAAGGTGAAATTAACTCGAATTATGGTTGGGCTATCTGGT 101940 101941 CAGAAGATAACTATGCTCAGTATGACATGTGTTTAGCTGAACTTGGTCAAAATCCTGATT 102000 102001 CTCGACGTGGTATCATGATTTATACTCGTCCATCTATGCAGTTTGACTATAATAAAGATG 102060 102061 GTATGTCAGATTTCATGTGCACGAATACAGTACAATACCTGATTCGTGACAAGAAAATCA 102120 102121 ATGCGGTTGTTAACATGCGCTCAAATGACGTGGTCTTCGGATTCCGTAATGATTATGCAT 102180 102181 GGCAAAAATACGTATTAGATAAATTAGTATCTGATTTGAATGCAGGTGATTCAACTCGCC 102240 102241 AGTATAAAGCAGGTTCCATTATATGGAATGTTGGAAGCCTACATGTGTATTCTCGTCATT 102300 102301 TTTATTTGGTTGATCATTGGTGGAAAACTGGCGAAACACATATTTCGAAAAAAGATTATG 102360 102361 TAGGAAAATACGCTTAATCGTTTAACATAAAAGGAATAATATGAAAATTGCTATAATTAA 102420 102421 TATGGGTAATAATGTTATTAATTTTAAAACTGTTCCATCTTCTGAAACTATTTATCTTTT 102480 102481 TAAAGTTATTTCTGAAATGGGTCTTAATGTCGACATTATTTCTCTTAAAAATGGTGTTTA 102540 102541 CACTAAATCTTTTGATGAAGTAGATGTTAATGATTATGACCGTTTGATAGTTGTTAATTC 102600 102601 TTCTATTAACTTTTTTGGCGGTAAACCTAATTTAGCAATTTTATCTGCGCAAAAATTTAT 102660 102661 GGCAAAATACAAAAGTAAAATTTATTATTTATTTACAGATATACGTTTGCCGTTTTCGCA 102720 102721 GTCTTGGCCAAATGTTAAAAATAGACCATGGGCATATTTGTACACTGAAGAAGAGCTATT 102780 102781 AATTAAATCACCAATTAAAGTGATTTCCCAAGGTATAAATTTAGACATTGCTAAGGCTGC 102840 102841 GCATAAGAAAGTTGATAATGTTATTGAATTTGAATATTTTCCTATTGAACAATATAAAAT 102900 102901 TCATATGAACGATTTTCAATTATCTAAGCCTACCAAGAAAACTTTGGATGTTATTTATGG 102960 102961 CGGTTCATTTCGGTCCGGTCAACGCGAATCCAAGATGGTAGAATTCTTATTTGACACCGG 103020 103021 TTTAAATATTGAGTTTTTTGGCAATGCACGAGAAAAACAGTTTAAAAATCCTAAATATCC 103080 103081 TTGGACCAAAGCTCCGGTGTTCACTGGAAAAATTCCTATGAACATGGTATCTGAAAAGAA 103140 103141 TAGTCAAGCTATTGCTGCATTAATTATTGGTGACAAGAATTATAATGACAACTTTATTAC 103200 103201 CTTACGCGTCTGGGAAACAATGGCATCTGATGCAGTGATGCTAATTGACGAAGAATTTGA 103260 103261 TACCAAACATCGAATTATTAATGATGCTCGTTTTTATGTAAATAATCGTGCTGAACTCAT 103320 103321 TGATAGAGTCAATGAGTTAAAACACAGTGATGTTTTGCGTAAAGAGATGCTTTCTATTCA 103380 103381 ACATGATATTTTAAATAAAACCCGTGCAAAGAAAGCCGAATGGCAAGATGCGTTCAAAAA 103440 103441 AGCTATTGATTTATAAAAATTATGAACTATTATTAGAAAGTTATTTATCTTTAACCGGTG 103500 103501 GAATAAATGTTAGGACCTTTATTGCTTATTATCGGTTTAGGTCTGTTTGCTTTTTGGGAC 103560 103561 TTCTTTTGTTATATTGATTAGAAAAGAGAGAAGTTCATCGAATAGCAGTTGATTAATGAC 103620 103621 ATGAAAAGACATAAAGAAAAGAAATATAATTATACTTATGTTATAACTAATTTAGTTAAT 103680 103681 AATAAAATTTACTATGGAACTCATTCAACCGATGATTTAAATGATGGTTATATGGGATCA 103740 103741 GGAACTTTATTAGCACAAGCCAAGAAAAAGTATGGTAAGAAAAATTTTAATTTAAGCATT 103800 103801 CTTGGGTTTTATAAAGATTTTAAATCAGCCCGTGATGCTGAAAGAGAATTAGTAACAATA 103860 103861 GATGTGGTAAATGATCCTATGACTTATAATTTAAAAATTGGTGGAGAGGGTGGTAGAAGA 103920 103921 ATTGGTTATAGAGTTTCATCAGAAACCAAAGAAAAAATTTCAAAAGCTCAAAAAGGAAAA 103980 103981 CCAAAACATCTTGGATTTAGTGATGTTTGCCGGAAAGCCCAGCTAGGCAAAAAGCAGTCA 104040 104041 GAAGAAACTAAAGCAAAACGAAAAGAAGCTTTGCTTAATAATCCATATGGTTATAATAGA 104100 104101 AATAAACCATCACATAAACGTGACCCAATAATGTGGGATAACATTGAAAAGATTAAAGAA 104160 104161 ATATGGGAAAACTCTGGAAAACCCGGTGCTATTAAGCTTAAAAAATTAGCAATTGAAGCT 104220 104221 GGATTTCCAAATAAATCTTATGCAAGAATGCTCGAAGTATTTCGTGGAACAAGAACACTA 104280 104281 CTATAAGGTATTATATGTCTGATTTAAAATCTCGTTTGATTAAAGCTTCTACTTCTAAAT 104340 104341 TGACTGCAGAATTAACAGCATCTAAATTCTTTAATGAAAAAGATGTAGTTCGAACAAAAA 104400 104401 TTCCTATGATGAATATTGCACTTTCTGGTGAAATTACTGGTGGTATGCAATCTGGTCTGT 104460 104461 TAATTTTGGCAGGTCCATCAAAATCATTTAAATCAAACTTTGGATTAACAATGGTGTCAT 104520 104521 CTTACATGCGTCAATATCCTGATGCAGTATGTTTGTTTTATGATAGTGAATTTGGTATTA 104580 104581 CTCCTGCTTATTTGCGGTCTATGGGAGTCGATCCAGAACGAGTAATTCATACTCCGGTTC 104640 104641 AATCACTTGAGCAATTACGTATTGACATGGTTAATCAATTGGATGCAATTGAACGCGGCG 104700 104701 AAAAGGTAGTCGTTTTTATCGATTCACTTGGTAACTTAGCTTCTAAGAAAGAAACTGAAG 104760 104761 ATGCTTTAAATGAAAAAGTTGTTAGTGATATGACTAGAGCTAAAACAATGAAAAGCTTAT 104820 104821 TTCGTATCGTAACTCCCTATTTTAGTACTAAAAATATTCCATGTATTGCTATTAACCATA 104880 104881 CATACGAAACACAAGAAATGTTTAGTAAAACAGTTATGGGAGGTGGTACTGGACCGATGT 104940 104941 ATTCGGCTGATACCGTATTCATTATCGGTAAACGCCAGATTAAAGATGGTTCTGATCTTC 105000 105001 AGGGGTATCAATTTGTTCTAAATGTAGAAAAATCTCGTACCGTTAAAGAAAAAAGTAAAT 105060 105061 TCTTTATTGATGTTAAATTTGACGGTGGTATCGATCCTTATTCTGGATTGTTAGATATGG 105120 105121 CTCTAGAATTAGGATTCGTGGTAAAACCTAAAAATGGCTGGTATGCTCGTGAATTTCTTG 105180 105181 ACGAAGAAACTGGCGAGATGATTCGCGAAGAAAAATCTTGGCGTGCAAAAGATACCAACT 105240 105241 GCACTACATTCTGGGGTCCTTTATTTAAGCATCAACCATTCCGAGATGCTATTAAACGTG 105300 105301 CTTATCAGTTAGGTGCTATTGATAGTAATGAAATTGTTGAAGCTGAAGTTGATGAATTGA 105360 105361 TTAACTCAAAGGTTGAAAAATTTAAATCTCCAGAAAGTAAAAGTAAATCAGCTGCTGATT 105420 105421 TAGAAACTGACCTCGAACAGCTAAGTGATATGGAAGAATTTAATGAATAAAGATGATTTA 105480 105481 GATTTAGATCTAGAAATTATCGATGAATCCCCCTCTTCGGAGGGGGAAGAAGAAAGAAAA 105540

95

105541 GAACGTCTTTTTAATGAGTCTCTTAAGATAATTAAATCTGCTATGGAAAATGTTATCCAG 105600 105601 GAGATTGTCATTAAACTAGAAGATGGTTCTACGCATATAGTGTATGTAACTAAACTGGAT 105660 105661 TGGGTTGATGGAAAGGTTGTAATGGACTTTGCTGTTCTTGACCAAGAAAGAAAAGCTGAG 105720 105721 TTAGCTCCTCATGTAGAAAAATGTATTACAATGCAACTGCAAAATGCATTTAATAAAAGG 105780 105781 TCAAAGAAAAAATTTAAATTCTTTTAAGGAGTAAGTGTGGTAGAAATTATTCTTTCTCAT 105840 105841 CTCATATTTGATCAAGCTTATTTTTCAAAAGTTTGGCCATATATGGATTCAGAATATTTT 105900 105901 GAAAGTGGTCCAGCTAAAAATACATTCAAATTAATTAAATCTCATGTTAATGAGTACCAT 105960 105961 AGCGTTCCATCTATTAATGCGTTAAATGTTGCATTAGAAAATAGTTCATTTACTGAAACA 106020 106021 GAATATTCTGGTGTAAAAACACTTATTTCAAAACTGGCTGATTCTCCGGAAGACCACAGC 106080 106081 TGGTTAGTAAAAGAAACAGAAAAATATGTTCAGCAAAGGGCGATGTTTAATGCTACGTCT 106140 106141 AAAATAATCGAAATTCAAACTAATGCTGAGCTTCCTCCGGAAAAACGAAATAAGAAAATG 106200 106201 CCGGATGTTGGTGCTATTCCTGACATCATGCGCCAGGCATTATCAATTTCATTTGATAGT 106260 106261 TACGTTGGTCATGATTGGATGGATGACTACGAAGCACGTTGGCTATCTTATATGAATAAA 106320 106321 GCTCGTAAGGTTCCATTTAAACTCAGAATTCTGAACAAAATTACGAAAGGCGGAGCTGAA 106380 106381 ACTGGAACACTGAACGTTTTAATGGCTGGCGTTAACGTTGGTAAATCATTAGGATTGTGT 106440 106441 TCATTAGCGGCAGATTATTTACAGCTCGGACATAATGTTCTTTACATTTCCATGGAAATG 106500 106501 GCAGAAGAAGTCTGTGCTAAACGTATTGACGCTAATATGCTTGATGTTTCTCTTGATGAC 106560 106561 ATTGATGATGGGCATATTTCTTACGCTGAGTATAAAGGAAAAATGGAAAAATGGCGTGAG 106620 106621 AAATCTACTCTTGGTCGTTTAATCGTTAAACAGTATCCTACTGGTGGAGCAGACGCTAAT 106680 106681 ACATTTCGATCACTTTTAAACGAATTGAAGCTCAAGAAGAATTTTGTTCCAACAATCATT 106740 106741 ATTGTCGACTATCTAGGTATTTGTAAATCTTGCCGCATTAGAGTTTATTCAGAAAATAGT 106800 106801 TACACAACTGTTAAAGCTATTGCAGAGGAATTACGTGCTCTGGCTGTTGAAACCGAAACT 106860 106861 GTTCTTTGGACTGCAGCACAGGTTGGTAAACAAGCTTGGGACTCTTCCGATGTTAACATG 106920 106921 AGCGATATTGCAGAATCTGCCGGTCTTCCAGCAACAGCCGATTTTATGCTTGCGGTCATT 106980 106981 GAAACCGAGGAGCTAGCAGCTGCTGAACAACAACTCATTAAGCAAATCAAATCACGATAT 107040 107041 GGTGATAAGAATAAGTGGAATAAGTTTTTGATGGGTGTTCAAAAAGGAAATCAAAAATGG 107100 107101 GTAGAAATTGAACAAGATTCTACTCCAACTGAAGTGAACGAAGTAGCAGGTTCACAACAG 107160 107161 ATTCAGGCTGAGCAGAATCGCTATCAAAGAAATGAATCGACTCGAGCTCAGTTAGATGCT 107220 107221 TTGGCGAATGAATTAAAATTTTAGTTTACAAGCTGACAAGACTATGGTATAGTAGTCTTG 107280 107281 TCGGTTAAATGAGGAGATTGTTATGGAATTGGTAAAGGTAGTTTTTATGGGGTGGTTTAA 107340 107341 GAATGAAAGCATGTTTACTAAAGAAATCACAATGATGAAAGATGACGTTCAATGGGCTAC 107400 107401 TACTCAATATGCTGAAGTTAATAAAGCATTAGTTAAAGCTTTCATTGATGACAAGAAAGT 107460 107461 ATGTGAAGTGGATTGCCGAGGATAATATGCATATTGTTTTATTTAAACCTACTCCGTATA 107520 107521 ACGTCAGGAAAAATACGCAATTCAAAGCACTTATTGCAGATACGTGGGAATTGGTGTTAG 107580 107581 ATATTCCAGCAGAAGAAAGCCCTCCATTTGGTCGAGTGGAATTTATTAAGTTTGCTGTTC 107640 107641 GCCCTACGAAGAGGCAGATTCGCCAATGCAAAAGATACTTTCGTAAAATCGTCAAGTTAG 107700 107701 AGAAACAGTTTGTAACATGTGATTACGCAGAAATTTTAAAATAACTGTTTACTTTTGTTG 107760 107761 GAAATTGAGATACTATATAAACATAAACTACTGAGGAGATTATCATGAAAAAATTCATCT 107820 107821 TTGCTACAATTTTTGCTTTAGCTTCTTGTGCTGCTCAGCCTGCTATGGCAGGTTATGATA 107880 107881 AAGATTTGTGCGAATGGTCTATGACTGCGGATCAGACTGAGGTTGAAACTCAAATTGAAG 107940 107941 CAGATATTATGAATATCGTTAAGCGTGATCGTCCTGAAATGAAAGCTGAAGTGCAAAAAC 108000 108001 AGCTTAAGTCTGGTGGTGTAATGCAGTATAATTATGTTCTGTATTGCGATAAAAACTTTA 108060 108061 ATAACAAAAATATCATCGCTGAAGTGGTAGGTGAATAATGCTTTATCAAATGCACAAGTG 108120 108121 TAAAGACACGTACAAATATAAAGGTGCCCAGTGTTATATCATTAATCGTGAAAACGCAGG 108180 108181 TCCAGGCCATTCGCATCAATCACGGTTTGTATTCGTTAAAAATAATGAAATTATAGCAGT 108240 108241 TGCTAATTATATGCTTGTGACCAATGATGTTAATCCGGTGCCTTTCACATATGACAATCT 108300 108301 AATGGACTTGGCATATGATTATAATTGGTTTAATCATGACAATTTAGTTCATATTGAAGG 108360 108361 CGTAGGATTTGACATCTCTTATTCTAGTTATTCGTTGTGTCCTATGAGCCGAGCTCATAA 108420 108421 AGAGCCTGAATATTTTTCATTTCGTCGGCGTGTAGACTTTAAACGCAGCACAGAGTATGT 108480 108481 CGGTGGAATCTTTGTTAAAGATAATCGAATTACTCGCATTATTTATCCTTTGGGCTTTGG 108540 108541 TCAAAAAGATATTGATGTTGATTTAGACTTTACTGAAAATATCATTAATCATATTGCTTC 108600 108601 TGTGTATTTTGATATTGATCATAAAATTGTAATATGTGGATATGAATTGCCATCTGAAAA 108660 108661 ACAGCCTAAAGTAAATGTTTCTATTGATGACCAAATTTTTAATGCTTTTATGAATAGAGG 108720 108721 TTAATATGAAAACATTTAAAGAATTTATCAAAGAAGATATGGTCGCTGGAGATTCAGGTG 108780 108781 GTAATCCTGAAAATATCTCTACTGGAACAACATCAGGCGCTGTAGTAAATAAAGGTCCTG 108840 108841 AACAGATTCCTAAAAAGAAAAAAGAGGAATCTAAAGAAAAAGAAGAGTAAAAATGTCATC 108900 108901 AATACCTTGGATTGATAATGAGTTTGCATACCGTGCATTAGCTCATTTACCTAAATTCAC 108960 108961 ACAAGTAAATAATAGTTCAACTTTTAAATTACGGTTTAGATGCCCTGTTTGTGGAGATTC 109020 109021 AAAAACCGACCAGAATAAAGCCCGTGGATGGTATTATGGTGATAATAATGAAGGAAATAT 109080 109081 TCATTGTTATAACTGTAACTATCATGCACCAATCGGAATATATTTAAAGGAGTTTGAACC 109140 109141 CGATTTATATCGTGAGTATATCTTTGAAATAAGAAAAGAAAAAGGTAAAAGTCGTCCAAT 109200 109201 AGAAAAACCTAAAGAACTTCCTAAACAACCCGAGAAGAAAATAATTAAATCTCTTCCGTC 109260 109261 ATGTGTTAGATTAGATAAACTGGCGGAAGACCATCCAATTATAAAATACGTAAAAGCTCG 109320 109321 TTGTATTCCAAAGGATAAATGGAAATATCTTTGGTTTACAACCGAATGGCCTAAATTAGT 109380 109381 TAATAGCATAGCACCGGGAACATACAAAAAGGAAATTTCTGAGCCTCGTCTTGTTATTCC 109440 109441 AATTTATAATGCTAATGGAAAAGCTGAGTCTTTTCAAGGACGTGCATTAAAGAAAGATGC 109500

96

109501 TCCTCAAAAATATATCACCATCAAAGCTTATCCTGAGGCAACAAAAATCTATGGAGTCGA 109560 109561 ACGAGTTAAAGATGGTGATGTATATGTTCTAGAAGGACCTATAGATTCACTTTTTATTGA 109620 109621 AAATGGTATAGCTATTACGGGCGGTCAATTAGACCTAGAAGTTGTTCCATTTAAAGATAG 109680 109681 ACGTGTGTGGGTCTTAGATAATGAACCTCGTCACCCTGACACTATTAAACGAATGACTAA 109740 109741 ATTAGTTGATGCAGGAGAAAGGGTTATGTTTTGGGATAAATCTCCCTGGAAATCAAAAGA 109800 109801 TGTTAATGATATGATTAGAAAGGAAGGTGCAACCCCTGAACAAATTATGGAATATATGAA 109860 109861 AAATAATATTGCCCAGGGGTTAATGGCTAAAATGCGGCTATCTAAATATGCTAAGATTTA 109920 109921 AATTAACCCAACTAAAGCAAATGCTAAATCTACGAATGTATCAAGAGTAACTACTGGAAT 109980 109981 ATTAACACCATGTGCAATTGCAACAGGTGATAAAATAAAGTTCCAGAGTAAAATTCCTAC 110040 110041 CATAGCAGAAATAGTAAAAGCTATACGTTTCTTATTACCTTTTATGGCATTAACAAGTGC 110100 110101 CATTAATTTTTGTACCATATATATCCTCCTTTAAATTAATATTTATCGCAAAACGTGTTA 110160 110161 GTATTACTATCAAATACATATGATGAAGAATTGTATAATTCATTTTTGCTGCAATAAATG 110220 110221 AGAGAATATAATGCTAGGAGCTATCGCGTATACAGGTAATAAACAATCATTATTACCTGA 110280 110281 ACTCAAATCTCACTTTCCAAAATATAACAGATTCGTGGATTTATTTTGTGGAGGTTTATC 110340 110341 AGTGTCTTTGAATGTTAATGGCCCTGTATTGGCCAATGATATTCAAGAACCAATTATTGA 110400 110401 AATGTATAAGCGTCTTATTAATGTATCATGGGATGACGTTTTAAAAGTAATAAAGCAATA 110460 110461 CAAACTATCAAAAACATCAAAAGAAGAGTTTTTGAAATTACGTGAAGATTATAATAAAAC 110520 110521 TAGAGATCCTCTTTTACTTTATGTTCTTCATTTTCACGGATTTAGTAATATGATTCGTAT 110580 110581 AAACGATAAAGGAAATTTTACTACTCCGTTTGGAAAAAGAACTATAAACAAAAATAGTGA 110640 110641 AAAACGCTTTAATCACTTTAAACAAAATTGTGATAAAATAATCTTTAGTTCATTGCATTT 110700 110701 TAAAGATGTTAAAATTTTAGACGGCGATTTTGTATATGTAGATCCTCCGTATCTCATAAC 110760 110761 AGTTGCTGATTATAATAAATTTTGGTCAGAAGATGAAGAAAAAGACCTTTTAAATCTTTT 110820 110821 AGATTCTTTAAATGATAGAGGAATAAAATTTGGGCTGTCGAATGTTTTAGAACACCACGG 110880 110881 AAAGGAAAACACTCTTCTTAAAGAATGGTCTAAAAAATATAATGTTAAGCATCTTAATAA 110940 110941 AAAATACGTCTTTAACATATATCATTCCAAAGAAAAGAATGGAACTGATGAAGTATATAT 111000 111001 TTTTAATTAATTGCTTACATACTCAAATGATATAATTATTTAACTTATTAATGAATTGAA 111060 111061 AGGAAAACTAATGGCTCACTTTAATGAATGTGCTCATTTGATCGAAGGTGTTGATAAAGC 111120 111121 TCAAAATGAATACTGGGATATTCTCGGTGATGAAAAAGATCCGCTGCAAGTTATGCTTGA 111180 111181 TATGCAGCGGTCTTTACAGATTCGTTTGGCTAATGTCCGCGAATACTGCTATCATCCAGA 111240 111241 TAAATTAGAAACTGCCGGTGATGTTGTTTCTTGGATGCGTGAACAAAAAGACTGTATTGA 111300 111301 TGATGAATTCCGCGAACTTCTGACTTCTCTTGGTGAAATGTCACGTGGTGAAAAAGAAGC 111360 111361 TTCTGCTGTATGGAAAAAATGGAAAGCACGTTATATTGAAGCGCAAGAAAAACGCATTGA 111420 111421 TGAAATGTCCCCCGAAGACCAGCTCGAAATTAAATTTGAGCTTGTGGATATATTTCATTT 111480 111481 CGTATTAAATATGTTTGTTGGCCTTGGAATGAATGCGGAAGAAATCTTTAAACTTTATTA 111540 111541 TCTGAAGAACAAACATAATTTTGAACGTCAAGATAATGGATATTAAACAAAAATTTTATA 111600 111601 GAACATATATAGTAAAAGTTAGGACGCCGAAAGGCGTCTTTTGGTACGCTGGGAAACATG 111660 111661 AATCATTTATTGTAAATCCATATAATGATAAATATCCGGGTTCAGGTAAAATACTATGGA 111720 111721 ACATATATCGTAAGTATGGATTTAATTATAAAATACGATGGTCAAAATGCCATGGTTCTA 111780 111781 GAGAAAAATCATATGAAGTTGAACGTGAGCTAATATCTGCATTAAAACGTAAACACCCAG 111840 111841 ATACTTGCATTAATATTTCTCCTGGTGGTCAGGGTGGAGAAGGAAGAAAATGGACTGAGC 111900 111901 AACAACGATTAGAACATAAACTTAGATTAAACAATCCTGAAACAAAAACTCGGATGAAGA 111960 111961 ATTCACAACGTATAGCCCAAAATAGGGCAGAAAGAAAAGCTCGGCAATCTGAAGTAATGA 112020 112021 AAAAGTTTTATTCGAATGGCGGAAATAAAAAGATTTCAGAAGGAACTTCAAGGGCGCAAA 112080 112081 GAAAAGCACCGCATTGGCATGAACCACTTAAAAGCGAAATACACGAGTTATGGGTTTCTT 112140 112141 TAGGTAAACCAGCAACAGGCCCGGTTGTAAAGGCGCTTAAAGGAAAATATGATGTAACAA 112200 112201 GTTCGGCTCTTAAGAATTTAATTTACTTATTCAGAAAAGAAGATGTATAAATAATCATGT 112260 112261 AATTTAAATAAAGGAGAATTACATGGCTAGTACTCGCGGTTATGTTAATATCAAAACATT 112320 112321 TGAGCAGAAATTAGATGGAAATAAGAAAATTGAAGGAAAGGAAATTTCTGTAGCTTTCCC 112380 112381 TCTTTATTCTGACGTTCACAAAATTTCTGGCGCTCATTACCAGACATTCCCTTCAGAAAA 112440 112441 AGCAGCATATTCTACAGTATATGAAGAAAATCAACGTACTGAATGGATTGCTGCAAATGA 112500 112501 AGATTTGTGGAAAGTAACTGGTTAATAACTCAAGGACTCCTTCGGGAGTCCTTTTTTCAT 112560 112561 TTAAATGGTTTACTTTCCAAAATGAGTATGGTATAATAGAATTATCTTATAGAGGAGAGT 112620 112621 ACTATGTTAAATCGTTGGATTAAACCAAATGAAGATTTAGATATTATCATTTCACGACAT 112680 112681 GTAATGAAGAAATATGAACTACAACCATGGTCTACAGAAGTTGTTGTGCATTCATTTATG 112740 112741 ATGTACGCAGATGGTTCTGTCGAATTTAATGCAGAGATTCGATATGATTATGGTGAGAAG 112800 112801 CAAGTCGAATTCAAAAGAGGCTTTTTGTAATGTTTATCTTTAATTGGTTTAAAAGTTTCT 112860 112861 TTACGGATTTTTTCTCTACAACTCCTGGGGAAGGTGTAGTTCCTATTTCAAATGACTACC 112920 112921 TTCCTTTAACTGTAGTTGAATATGTTTATATGGGAGATGGAACAGTAGAAGCAGTTACTA 112980 112981 TGACTTATGAAGAAGCCCAAGAATATTATAAAAATCCTTGGCGCTGGTCAACACCTACTA 113040 113041 CATCATCTAACACACAGAATACACAGTCTAGTTCTGATTCATATGATACTAATGTTCCTG 113100 113101 TTCATGTATGGGCAGGTGATTCATGTGGAAGTTCTTGTGATTCTAGTTGTTCATCTACAT 113160 113161 CTTGTGATTGAGGAAAATTATGGAAGCAATTTTGTTTGAAATGTCTATCAATAGTATTAG 113220 113221 TATGGCGTTTGTCAAGGATGTTCCAATTACTGTAGCAGTAATGATTGATAAAAGATATGA 113280 113281 CAATAATATGTATCTAGTAGAAGATTTTATTTCAATGCCAATTCCAGAAGATGTTGAAAT 113340 113341 AAAACTTAAAAAGATCGGAATTATTGAAACTGTACAAAATTCTCCATTTATGGCAATTCA 113400 113401 AGCATTTACTAAATCTAACTATATTGATGTTGCTGAAGCATATTATAATAATAAACCGTT 113460

97

113461 ATCCTTCTATTCATATGATTCAATATATGATTGGAAAATAGATAAAGGAAATAAATTTAT 113520 113521 AATTACGGACGAAAGTGCGCTATCATATTTTATTACCTCTTTATGGAATAATTTAAATCC 113580 113581 AAATTTGCTAAAAATTCATAAATTTGACGATGCTCCTACTATTGTTTTAGGTAAAACGAA 113640 113641 TGAAAGTTCTGAAGAAGATGCTTGAATGGTTCAATAGACCAAACTCAATGTATATTGATG 113700 113701 ACGGTTGGGTTGAACAAGCAAATAAAGAAATGCAGAATGAATCAGAAGAATGGATGAAAT 113760 113761 CAATGATTAGTGCTGAGAAAGAAAAGAAACTAGAACGCTCAGCGCTTAAATTGATGAGAG 113820 113821 ACATCTATGGTGATAAATCATGAACAAAGATATGACGTTAGAAGAAGCTAAAGCAAAAGC 113880 113881 AAATGAAGCAATGGATTTGCTTCTTAAAATTGGCAGTAAAATGATGGAAGAAAATGAGAA 113940 113941 ATATATCCAGGAAAATAAAATTCCTGACGGTCCATTAGTAGGCAAAAGGAAATCACATGA 114000 114001 TTGAAGTAGCAAAATTATATTCAATAGAATTTATGTCTAAAGAAGGTAAATCAGTAAATA 114060 114061 CACTTGATAAAAATTGCTCATTAATTATTCCTTTAGCAGAAAATCCGGATTTTTTAATTA 114120 114121 AAGATATAAAAGAAAGAAAATATCCAGAAAATATTATTCTAATTATAAAGCATACTGAAG 114180 114181 ATATTTTGCAGAATACAGATTCACCATTTTCTTCTTCTGAAGCTTTAACTATTAAAGGCT 114240 114241 ATAAAAGAGCTCATGAATATGGTCTTTTTGACATGTTTGAAGACGATAAAGTTAAATTAG 114300 114301 CGAGTCAACCTTCTAAAAGTAAAACATTCATTATTGAAGATATTAAAGATATAAATGCAT 114360 114361 TTGTTAGGATGGTCTGGGCTCATTTTGATGTTGGACTACGCTGGAGAATGTCCGAAGAAG 114420 114421 AAAGAAAGATCATTGAAACTAATCGTAAATTTGGTTTTTATCGCTAGGAATTAATATGGA 114480 114481 TTTATTTGAGATGTTAGAAGATAATCATTCTACGAATAACCAGAATGATTCTAGTGATTA 114540 114541 TAAGAAAGAGTACCGTATAGTATTACAGAATTATGGAATTGAAGCCCCAGATGCTCTTCT 114600 114601 AGAAGAACTAGCTTCATACCATCTTGACCCTCCGCCTTGGGCTCCCTGGGCAAAATAATT 114660 114661 CAAAAAGTTGTTTACTTTCCTTTCTAACGATGATATGATAGCTTCTGAAGTATACGGAGG 114720 114721 CTATCATGATTATTAATCTTGCAGATGTTGAACAGTTATCTATAAAAGCTGAAAGCGTTG 114780 114781 ATTTTCAATATGATATGTATAAAAAGGTCTGTGAAAAATTTACTGACTTTGAGCAGTCTG 114840 114841 TTCTTTGGCAATGTATGGAAGCCAAAAAGAATGAAGCTCTTCATAAGCATTTAAATGAAA 114900 114901 TCATTAAAAAGCATTTAACTAAATCGCCTTATCAATTATATCGTGGTATATCAAAATCGA 114960 114961 CAAAAGAACTCATTAAAGATTTACAAGTTGGAGAAGTGTTTTCAACGAACAGGGTAGATT 115020 115021 CATTTACTACTAGTTTGCATACAGCGTGTTCTTTTTCTTATGCTGAATATTTCACTGAAA 115080 115081 CAATACTTCGTTTAAAAACTGATAAAGCTTTTAATTATTCTGACCATATCAGCGATATTA 115140 115141 TACTTTCTTCTCCTAATACTGAGTTTAAGTACACGTATGAAGATACTGATGGATTAGATT 115200 115201 CAGAGCGTACTGATAACTTAATGATGATTGTGCGTGAACAAGAATGGATGATTCCAATTG 115260 115261 GAAAGTATAAAATAACTTCTATTTCAAAAGAAAAATTACACGATTCATTTGGAACATTTA 115320 115321 AAGTTTATGATATTGAGGTAGTTGAATGAAATACTCAGTAATGCAACTAAAAGATTTTAA 115380 115381 AATAAAATCAATGGATGCATCGGTGCGTGCTTCTATTCGTGAAGAATTACTTTCTGAAGG 115440 115441 GTTTAATTTATCTGAAATTGAACTTTTAATTCATTGTATTACTAATAAACCAGATGACCA 115500 115501 TTCTTGGTTAAATGAAATAATCAAATCTCGTTTGGTTCCAAACGATAAACCTCTTTGGAG 115560 115561 AGGTGTTCCAGCTGAGACTAAACAAGTATTAAATCAAGGAATTGATATTATTACATTTGA 115620 115621 TAAAGTCGTATCAGCTTCATATGATAAAAATATAGCTCTACATTTTGCTTCTGGTTTAGA 115680 115681 GTATAACACACAAGTTATTTTTGAATTCAAAGCTCCTATGGTATTCAATTTCCAGGAGTA 115740 115741 TGCTATAAAAGCTCTACGCTGTAAAGAATACAATCCAAACTTTAAGTTTCCGGATAGTCA 115800 115801 TCGTTATCGTAATATGGAATTAGTTTCAGATGAACAAGAAGTAATGATACCAGCTGGAAG 115860 115861 TGTATTTAGAATTGCAGATAGATATGAGTATAAAAAGTGTTCAACATACACTATCTATAC 115920 115921 TCTTGATTTTGAAGGATTTAATCTATAATGGAAGGACTTAGATTCATTATACCATGAAAG 115980 115981 TTTTAAAGCATTTTTCATAAAGTTGTTTACAAGTTAAAGTAAAAATGTTATAGTATAAGT 116040 116041 AGTTAACCGTCCGTAAGATGTGAGAAAAATATGAAGCTGTCTAATAACCAAATTCGTAAA 116100 116101 ATTAAACGTCGTTTAGAGCATACTCAGGCATCTGCAAAAAGACGTTCTAAAGATTTTAAC 116160 116161 TTAGACTTCAATTACATTAAGAACATTTTAGATCAAAAAGTTTGTGCTTACTCGGGAGAA 116220 116221 CCTTTTGATAATCGTATTGAAGGAGAGAAATTATCATTAGAACGTTTTGATAATAACGTT 116280 116281 GGATACATTAAAGGGAATGTTATTGCAGTAAAGAAAAAGTATAATACATTTCGTTCTGAT 116340 116341 TATACTTTAGAAGAGTTGATTGAAAAGCGTGATTTATTTGCTTTGCGAATTGGTCGTTCA 116400 116401 TCTGCGAAAAAAGTTCATAAACTAAATTTAGATGAAAAGAAATGGGCTAAAATCAAAAAG 116460 116461 ACTTATAATCAAATTAAAGCTATACAGAAAAAACGTGAAAATCGAATTGAACACATTTCT 116520 116521 CAGCTTTCTAAATCAAAACAGACCTCTGACATTAAGCTGAGAATTATAGCACTTAAAGCA 116580 116581 CGTATTGATGGTTCTCGCATAGCAGAAGGCGCTGAAGTTGTTAAATTGAACGTTCTTCTT 116640 116641 AAAGGCTCGGATTGGAAAATTGTGAAAAAGTTGTCAGAAGCAGAAATGCAATATGATATG 116700 116701 TGTGATAAAATTATTCAAGGTGTAGAGCGGTATCAAAATTTGTCTTTTATTGATAAACTT 116760 116761 AAACTGAAAAGAGGATATCCGCTAAATTGTTCAATTTTTAAACTTATCCGAGGATAATAT 116820 116821 GGTTTATGTATATGCGATAGTTTACCGAGACAAAGACGGATTTACAGCGCCAGTTCCGCT 116880 116881 TGATGAACATCGTCCTGCTGTATTTTTTGAATGGAAGATTGCTGATAAAGTATTTACCAC 116940 116941 TCTTAAAGAGCAGTATCGATTAGCTTTAGGTAAGGGAATTCCAAGATTAGTTGAGACTCC 117000 117001 ACGTAAATTTTGGTTTAATAAAATAGAAGTTAAACATGTTAAGCCTGACGTAGACACGCA 117060 117061 AAGATTATATCAGCGAATTTTAGATACTGGGCGTATTGTTAGTATACCAATTGCAGGGAA 117120 117121 TTTACGATGACATTTGATGATTTGACCGAAGGCCAGAAAAATGCCTTTAACATTGTTATG 117180 117181 AAGGCTATTAAAGAAAAGAAACATCATGTAACTATTAATGGACCTGCTGGTACCGGTAAG 117240 117241 ACTACTCTTACTAAGTTCATCATTGAAGCTTTAATATCTACGGGTGAAACTGGTATTATT 117300 117301 TTAGCAGCTCCTACACATGCAGCTAAAAAGATTCTTTCAAAACTATCAGGGAAAGAAGCG 117360 117361 AGTACTATTCATAGTATTCTTAAAATTAACCCAGTAACATATGAAGAAAATGTTCTTTTT 117420

98

117421 GAACAAAAAGAAGTACCTGATTTAGCCAAATGCAGAGTATTAATCTGCGACGAAGTGTCA 117480 117481 ATGTATGATAGAAAGCTATTTAAAATTCTGCTTTCAACTATTCCACCTTGGTGTACTATA 117540 117541 ATTGGAATAGGGGATAATAAGCAAATCAGACCTGTTGACCCAGGAGAAAATACTGCTTAT 117600 117601 ATCAGTCCATTCTTTACACATAAAGATTTTTATCAGTGTGAACTCACTGAAGTTAAACGC 117660 117661 AGTAATGCTCCTATTATTGATGTAGCTACTGACGTTCGCAACGGTAAGTGGATTTATGAT 117720 117721 AAAGTTGTTGACGGGCATGGAGTACGTGGATTTACTGGTGATACCGCTTTACGCGATTTT 117780 117781 ATGGTAAATTATTTTTCAATCGTCAAATCACTAGATGATTTGTTTGAAAATCGCGTAATG 117840 117841 GCATTTACGAATAAATCTGTTGACAAGTTAAATAGCATTATTCGTAAAAAGATTTTTGAA 117900 117901 ACTGATAAAGATTTTATTGTCGGTGAAATTATTGTAATGCAGGAACCATTAATTAAAACA 117960 117961 TATAAAATTGATGGAAAGCCTGTGTCAGAAATTATTTTTAATAACGGACAATTAGTTCGT 118020 118021 ATTATAGAAGCAGAGTATACATCAACGTTTGTTAAAGCCCGTGGTGTTCCTGGAGAATAT 118080 118081 CTAATTCGTCATTGGGATTTAACAGTAGAAACTTATGGCGATGATGAATATTATCGTGAA 118140 118141 AAGATTAAAATAATTTCATCTGACGAAGAATTGTATAAGTTTAACCTATTTTTAGGTAAA 118200 118201 ACAGCAGAAACTTATAAAAATTGGAACAAAGGCGGAAAAGCTCCGTGGAGTGATTTTTGG 118260 118261 GATGCTAAATCACAGTTTAGTAAAGTGAAAGCACTTCCTACATCAACATTCCATAAAGCG 118320 118321 CAGGGTATGTCTGTAGACCGTGCTTTCATTTATACGCCTTGTATTCATTATGCAGATGCT 118380 118381 GAATTAGCTCAACAACTTCTTTATGTTGGTGTCACCCGTGGTCGTTATGATGTGTTTTAT 118440 118441 GTATGATTAAATTTGAGGAAGCTATTCGTGGAAATAACTAAAGATCAGTTTTATCTTCTT 118500 118501 CAAGATAAAGTAAGCGAAATTTATGAAATAGCTTATAGCAAAAATCGTGAAACTGTAAAA 118560 118561 ATTGAATCTAGTAAGTTGATGCTTCAATTAGAAGAAATTGAACGAGATTTAATTGCGTTA 118620 118621 GAATTCTTTTGCGGTGAAGTTAAAACTGTTACAATCAATGATTATGTTTTAGGCGAAATT 118680 118681 AGCTATCTTTATGAGGCGATTATTAATGATTGAATTAAGTTGGTACCAGTTTAAATCTCT 118740 118741 TATGACAAATGTTAAAGTTGTCATTCAAGAAAATCCGGGTCCTGAAAATATCACTATTCG 118800 118801 CGAAAAAGCTTCAAAGATAGTATACAGTCTTGAAGAAATACAAAAAGATATTGAATCTAT 118860 118861 GGCAAAATTTATTGATGAGCCTATTAATAAAGTTTATATTCAAGACTATACTGTAGGTCA 118920 118921 AATTCGTGATTTAGCGAGGAAAATTTAATGTTTGATTTTATTATAGATTTTGAAACAATG 118980 118981 GGAAGTGGTGAAAAAGCAGCGGTTATTGATTTGGCTGTAATTGCTTTTGACCCTAATCCA 119040 119041 GAAGTAGTTGAAACATTCGATGAATTAGTTTCACGTGGCATTAAAATCAAATTTGATTTA 119100 119101 AAAAGCCAAAAAGGACACCGTCTTTTTACTAAAAGTACTATCGAATGGTGGAAGAATCAA 119160 119161 TCTCCTGAAGCTCGAAAAAATATTGCACCATCCGATGAAGATGTAAGCACTATCGACGGT 119220 119221 ATTGCAAAATTTAATGATTACATCAATGCACATAATATCGATCCTTGGAAATCTCAAGGC 119280 119281 TGGTGCCGTGGAATGTCGTTTGATTTTCCAATTTTAGTCGATCTTATTCGCGATATTCAA 119340 119341 CGTCTTAACGGCGTTTCCGAGAATGAGCTTGATACATTTAAGTTAGAACCTTGTAAATTT 119400 119401 TGGAATCAGCGTGATATTCGTACTAGAATTGAAGCACTTCTGCTTGTTCGTGATATGACA 119460 119461 ACGTGTCCTCTTCCAAAGGGAACTTTAGATGGATTCGTTGCACATGATTCTATTCATGAC 119520 119521 TGTGCGAAAGACATCCTGATGATGAAGTATGCTTTGCGATATGCTATGGGTCTTGAAGAT 119580 119581 GCTCCATCAGAGGAAGAATGCGATCCTCTATCTCTTCCAACAAAACGATAAAAAGTTGTT 119640 119641 TACTTCCTCGGTTAGTTGTGGTACTATAACACCATAGCTACTGAGGATAATAAAATGAAA 119700 119701 ATTTATCGTGTTGAATCATCGTTTAGTATTCTTAATTATGAAGACGCTATAACAATACGC 119760 119761 CGAGATCTTTGTGTTCAAATAACGCCGTATAGAAGTATAATAGATTCATGGAGTGAAGAG 119820 119821 TGGTTATTACATGTAGGTTATGACAGACCTAATTTTATGCATCATAGTAATGATAATAAA 119880 119881 AGAATTCCTGTGCCGCACGAAGACAAACTATTAGTTAAAAATGCTAATATCGTAATTAAT 119940 119941 ACTAAGTTCAAGAAAGATTATGTTGGAGTAGAATATCATATTCCCGGATGGTTTGTAGCT 120000 120001 CTTTATCATTTTGCTTTTGCTAGCGAATATGATATGATGAAATGGTTCACACGAGAAGAG 120060 120061 CGTGAAGAATTAGCTTCGAAAGGATTTTATCTTGCTGTATACGAAGTACCAGATGACCAA 120120 120121 GTTATCATTGGCGGGCATCAAGTAATGTTCCGTAAATCCTATGCCGAACTAAAAGGCTTT 120180 120181 ATTACCTTAAACTAAAGAGAAAATTATGATTAAAATTAATACTGCGTATCAAATGAAAAA 120240 120241 ACCATCTGAAATTGATTTTCAGACAATGTCGAATACGACTGATAGCAAATTTTGGGAACT 120300 120301 TCTTGGTACAACTGGCGGATATCCTTTTACTGTCATTAGTGTTAATAGTGGAATTCTCAT 120360 120361 TGGTACAGTGTACATGGAAATTAGAAACTATTATGGAAGGGTATCATCATTCATCATCTA 120420 120421 TGAAGAAGATTTTAATCTATTGACAGAAATTGAAAAACCTGAAGACCCGACTGATTTGTT 120480 120481 GTGTAAGGCAGTTTACATTCGTCGTCCATTTGCGAATCCGATTGGTGGTTGGGTAACTGA 120540 120541 CCAATGGATTGAAGATGGCGTTGAACTTCTGAACGTAGTTCATGCTGGAGAGTACTCCGT 120600 120601 AGTTCCTCGTAGTGCAGTGGTAGCTATTTTGAATTAATAGTTTACAAACTCTTGGGACCA 120660 120661 GAGTATAATGGTCCCGTGGAGTATAAAATCTTTTTAACAAGTGAGAGATAACTATGATTA 120720 120721 TTAATATTGGTGAATTAGCTCGTGTATCTGATAAATCCCGTTCTAAAGCAGCAGGAAAAT 120780 120781 TGGTCGAAGTTGTAAGCATTCAGCTTAAGCATGGTGTTAAAGATGAAGATTCTGAAGTAA 120840 120841 AAGTGCGTATCATTCCTAAAGATGGAAAGTCTAAACCCCAGTTTGGCTATGTTCGTGCGA 120900 120901 AATTTCTTGAGTCTGCGTTTTTAAAAGCTGTTCCTGCTAAAGGAATTGAAACGATTGATA 120960 120961 CTTCGCATGTAGGTGTAGACTTTAAGTGGAAACTCGGTCAGGCTATCAAGTTCATTGCTC 121020 121021 CTTGTGAATTTAACTTTATTAAAGATGATGGAAGGGTTGTTTATACTCGCGCTATGTGTG 121080 121081 GATACATTACCGATCAATGGGTAGAAGATGGTGTTAAGTTGTACAACGTGGTATTTTTAG 121140 121141 GAACATACAAAGTCATTCCTGAAAGTTGGATTAAACACTATAGCAATGCTCTCTATGCAT 121200 121201 AAAGTTTAAATTTTTCATAAAACTATATACATCAGTAGTTGATTATGGTACTATATCAAT 121260 121261 ATCAACTACTGATACAGAAAACAACTTGGAGAATAAAATGGAAAATTCGCTAAAGGTGTT 121320 121321 GATACTCTTCTGAAACGTATCGCTCCACTGTTCAATTAATGAGGAAATTGTAATGAAACG 121380

99

121381 TAAAATTGTTCAGAATTGCACTAATGATGAATTTGAAGATGTATTATTTGATCCAAATTT 121440 121441 GGTAGTAGTTCAAAAGGAACATACTAGCAAGTTTACTCACTTGACTTCTGTTTATGTGTA 121500 121501 TGAGAAAGTCGGTGATAAACAGCCAATTTATGGTGTATTTCGTGAAATTACTGAAGACGG 121560 121561 CACAACTTACTGGAAGGAAATTTATTAATGGCTATTAAATTTGAAGTTAATAAATGGTAT 121620 121621 CAATTTAAAAATAAACAAGCTCAAGAAAATTTTATTAAAGACCATACTGATAACGGAATC 121680 121681 TATGCACGACGTTTAGGTATGGAGCCTTTTAAAATTTTAGATGCTGATTATCTTGGGCGT 121740 121741 CCTACTAAAATTATGACATCCATAGGTGTACTCAAACGTTGTGCCGGCGGTGATATCCTT 121800 121801 GACGAAAACTTTATCTGGCTCTCTACTAACGAAGCTGGGTTCTTTGATGAAGTGGAAAAT 121860 121861 CCATATCAGGCGGTTGAAGAGCAAGAGCAGGAAGAGAAAGAGCAAGAACAAATAGAAGAT 121920 121921 TTCACAGAATTCCCAGTCATGAAAGTTACTATTGAAAATAATGATCAGGCGTGGTCTTTA 121980 121981 TATCAGATGTTGAAAGCTTACTTTAAGGAATAATTATGCCGCTTTATGATTATAAATGTC 122040 122041 AATCCAAAGACTGTGCAAAAGAATACGAAAAAATCAAGAAAATTTCTGAAAGAGATACTG 122100 122101 ATGTATGTCCTGATTGTCATCGGCTGGCTGTTCGGTTAGTTTCCGCTCCTAAGCATGTGA 122160 122161 ATGGTGGATTTTACGACTTGCTTAAAGGGTAATTATGAAATATATTAATCGTTCTATTGC 122220 122221 AGCATTAGTATTAGCAGTGTCTTTAATAGGATGTACTGATGCTGATAATGCAACCAAAGT 122280 122281 TTTGTCTTCAAGTGGTTTTACTAATATTGAAATCACTGGATATAATTGGTTCGGTTGCTC 122340 122341 TGAAAATGATTTCCAGCATACTGGATTTCGTGCTATTGGACCTACCGGGCAGAAAGTAGA 122400 122401 AGGAACAGTATGTTCTGGGCTGTTCTTTAAGGATTCAACTATTCGTTTTAAATAAAAGGC 122460 122461 CTTCGGGCCTTTAGCTTTATGATTACCGGAGTATAATATTCCCGAAACCAAACGAGGATA 122520 122521 AGTGATGATTAAGAATGAAATTAAAATTCTGAGCGATATTGAACATATCAAAAAGCGTAG 122580 122581 TGGCATGTACATTGGCTCTTCTGCTAATGAAACGCATGAGCGCTTTATGTTTGGTAAATG 122640 122641 GGAAAGTGTTCAGTATGTACCTGGTCTTGTTAAGCTTATTGATGAAATTATCGATAACTC 122700 122701 AGTAGATGAAGGTATTCGTACTAAGTTTAAATTCGCGAATAAAATTAATGTTACTATTAA 122760 122761 AAACAATCAAGTAACAGTTGAAGATAACGGTCGCGGTATTCCACAAGCGATGGTTAAAAC 122820 122821 ACCTACCGGTGAAGAAATTCCTGGTCCTGTTGCCGCATGGACTATTCCAAAAGCAGGTGG 122880 122881 TAACTTTGGTGATGATAAAGAACGCGTCACCGGCGGTATGAACGGTGTTGGTTCTAGTTT 122940 122941 GACAAACATTTTTTCTGTGATGTTTGTCGGTGAAACTGGCGACGGTCAAAATAATATTGT 123000 123001 AGTTCGTTGTTCAAATGGCATGGAAAATAAATCATGGGAAGATATTCCTGGAAAATGGAA 123060 123061 AGGAACTCGTGTTACTTTCATTCCTGATTTTATGTCATTTGAAACTAATGAGCTGTCCCA 123120 123121 AGTTTATCTTGACATTACACTGGATCGTCTCCAGACACTTGCTGTAGTTTATCCTGATAT 123180 123181 TCAATTTACCTTTAATGGTAAAAAGGTTCAGGGCAATTTTAAGAAATATGCACGGCAGTA 123240 123241 TGATGAACATGCTATTGTTCAAGAGCAAGAAAATTGTTCTATTGCGGTTGGTCGTTCACC 123300 123301 GGATGGTTTTCGTCAATTAACATACGTCAATAACATTCATACTAAGAATGGTGGCCATCA 123360 123361 CATTGACTGCGCTATGGATGATATTTGTGAAGACCTTATTCCACAAATCAAACGTAAGTT 123420 123421 CAAAATTGATGTGACTAAAGCACGTGTCAAAGAATGTTTGACTATCGTTATGTTTGTTCG 123480 123481 TGATATGAAAAACATGCGATTTGATTCTCAAACTAAAGAGCGTTTGACTTCTCCATTTGG 123540 123541 CGAAATTCGTAGTCATATTCAACTTGATGCTAAAAAGATTTCACGTGCTATTCTAAATAA 123600 123601 TGAAGCAATTCTAATGCCGATTATTGAAGCTGCTTTGGCTCGTAAATTGGCGGCAGAAAA 123660 123661 AGCAGCAGAAACTAAAGCAGCTAAAAAGGCTTCTAAAGCTAAGGTTCATAAACATATCAA 123720 123721 AGCGAATCTTTGCGGTAAAGATGCTGATACTACTCTTTTCTTGACTGAGGGTGATTCGGC 123780 123781 TATCGGATATCTTATTGATGTTCGTGATAAAGAACTTCACGGTGGTTATCCATTGCGTGG 123840 123841 TAAAGTTCTCAACAGTTGGGGTATGTCTTATGCAGATATGCTTAAAAACAAAGAACTATT 123900 123901 TGATATTTGCGCAATCACTGGTCTAGTTCTCGGTGAAAAAGCGTTTGAAGAAAAAGAAGA 123960 123961 TGGCGAGTGGTTTACTTTCGAGCTAAATGGCGATACAATTATCGTAAATGAAAATGATGA 124020 124021 AGTACAGATTAATGGTAAATGGATAACAGTAGGTGAATTACGAAAAAATCTATAATGACT 124080 124081 TAATAGTGCGGGGTAAAACCCGCGTTTCTAAATTTAAGGGTGAAATTCATCATATCCTTC 124140 124141 CAAGATCAATGGGAGGTTCTGATGATAAAGAAAATTTGGTGAAACTGACTTTTCGTGAAC 124200 124201 ACTTTTTAGCACATTTTCTACTATATAAAATTCATCGTAATCGTGAAATGGCATATGCGA 124260 124261 TGAATAGAATGTTAAACACTGAAAAATATTTACGTTCTAGTAAATTATATGAAATTGCTA 124320 124321 GAATTTACCATCAAAGAGCAGTATCTGAATGGTCAAAAAACTTTATGAAAGATAAAGTTT 124380 124381 TAATGAGAAGTATTAAATCGGGTAAATGCGCCTTATTAATTAAAGGATCATTTAACCCAA 124440 124441 AGGAATGGTGCGGTGTTAATAAAGGTGTTAAGCTTCCTGGAATTAAAGGCATGACATGCT 124500 124501 TTAAAAATGAAAAGGGCGAAGTTTTTCGTCTTCATGTTAATGATCCACGCATTAAAACTG 124560 124561 AAAAATTAGTTGGTATTGGAAATACTGTTGCTGCTACTGCAAAAGCAGCTGAACTTGAAA 124620 124621 AAGCGAAACCATGGTATAATAAATCAGCGACAAATCCAGAGGCTGTAAAATTAATACCAA 124680 124681 ATTTATATGAATGGTACGTCACGAAATATGACCCCGATCATTATAAACGAACGGGAGTTG 124740 124741 CTAAATGGAAATCAGTTAATAATATAACTGTGAATTCAAAATTATTCGGCCGAGCATTTA 124800 124801 ATGAATTTAAACGCGGTTGGATTCCTGATGAAAAGTTCTATGAGGTGTATAATGAAATTT 124860 124861 GTAAAAATTGATTCTTCTAGCGTTGATATGAAAAAATATAAATTGCAGAACAATGTTCGT 124920 124921 CGTTCTATTAAATCCTCTTCAATGAACTATGCGAATGTCGCTATTATGACAGACGCAGAT 124980 124981 CACGATGGATAGCCTTCGGGCTATCTATAGAAATACCTCATAATTAAGAGATTATTGGAT 125040 125041 TAGGTTCTATTTATCCTTCTCTGCTCGGATTTTTTAGTAATTGGCCAGAATTGTTTGAGC 125100 125101 AAGGACGAATTCGCTTTGTCAAAACTCCTGTAATCATCGCTCAGGTCGGTAAAAAACAAG 125160 125161 AATGGTTTTATACAGTCGCTGAATATGAGAGTGCCAAAGATGCTCTACCTAAACATAGCA 125220 125221 TCCGTTATATTAAGGGACTTGGCTCTTTGGAAAAATCTGAATATCGTGAGATGATTCAAA 125280 125281 ACCCAGTATATGATGTTGTTAAACTTCCTGAGAACTGGAAAGAGCTTTTTGAAATGCTCA 125340

100

125341 TGGGAGATAATGCTGACCTTCGTAAAGAATGGATGAGCCAGTAGTTTACTTTACCACAAG 125400 125401 GATGTGGTATAATTAATTGGGCAAATGAGGATATTGAAATGAAATCATATAAAGTAAATT 125460 125461 TAGAACTTTTTGATAAAGCAGTTCATCGAGAATATAGAATCATTCAACGCTTTTTCGATA 125520 125521 TGGGAGAAGCCGAAGAATTTAAAACCCGCTTTAAAGATATTAGAGATAAAATTCAATCCG 125580 125581 ACACCGCAACTAAAGATGAACTACTAGAAGTTGCTGAAGTTATTAAGCGTAATATGAATT 125640 125641 AATGAGGAAATTATGATTATCACCACTGAAAAAGAAACAATTCTTGGTAATGGTTCTAAA 125700 125701 TCAAAAGCATTTAGCATCACAGCATCTCCTAAAGTATTTAAAATTCTGTCATCTGATTTG 125760 125761 TATACAAACAAGATTCGCGCAGTAGTCCGTGAATTGATTACTAACATGATTGATGCTCAT 125820 125821 GCACTTAATGGAAATCCTGAAAAATTTATCATACAAGTTCCTGGACGTTTAGACCCACGA 125880 125881 TTTGTTTGTCGAGATTTTGGTCCGGGTATGAGTGATTTTGATATTCAAGGTGATGATAAT 125940 125941 TCTCCTGGGTTGTATAATTCATACTTCAGTTCATCTAAAGCTGAATCTAATGACTTTATT 126000 126001 GGCGGATTTGGTTTAGGTTCTAAATCTCCGTTTAGTTATACTGATACGTTTAGTATTACT 126060 126061 TCGTATCATAAAGGTGAAATTCGTGGTTATGTAGCTTACATGGATGGTGATGGTCCACAG 126120 126121 ATTAAACCTACATTCGTAAAAGAAATGGGTCCAGATGATAAAACTGGTATTGAAATCGTA 126180 126181 GTTCCAGTTGAAGAAAAAGACTTTAGAAACTTTGCTTATGAAGTTTCTTATATCATGCGA 126240 126241 CCGTTCAAAGATTTGGCTATCATTAATGGTCTTGACCGCGAAATTGATTATTTTCCGGAT 126300 126301 TTTGATGACTATTACGGTGTAAATCCAGAAAGATACTGGCCTGATCGTGGTGGATTATAT 126360 126361 GCTATCTACGGTGGTATTGTTTATCCTATCGATGGTGTTATTAGAGACCGTAACTGGCTA 126420 126421 AGCATTCGCAATGAAGTGAATTACATTAAGTTTCCAATGGGTTCACTTGATATTGCTCCA 126480 126481 TCTCGCGAGGCTCTTTCACTGGATGATCGCACTCGTAAAAATATTATTGAACGAGTTAAA 126540 126541 GAACTCAGTGAGAAAGCATTTAATGAAGATGTAAAACGATTTAAAGAATCTACATCTCCT 126600 126601 CGTCACACATATCGTGAATTGATGAAGATGGGGTATTCTGCTCGAGATTATATGATTAGT 126660 126661 AATTCAGTCAAATTCACGACTAAAAATCTGTCATATAAAAAGATGCAGAGCATGTTTGAA 126720 126721 CCTGACAGTAAGTTATGCAACGCGGGAGTTGTGTATGAAGTAAATCTTGACCCTCGACTG 126780 126781 AAGCGCATTAAGCAAAGTCATGAAACTTCAGCCGTTGCATCAAGTTATCGTCTGTTTGGT 126840 126841 ATTAATACAACAAAAATTAATATCGTTATTGATAATATTAAAAATCGTGTTAATATTGTC 126900 126901 CGTGGATTAGCACGTGCGTTAGATGATAGTGAATTTAATAACACTTTGAATATTCATCAT 126960 126961 AACGAACGTCTTCTGTTTATTAATCCAGAAGTAGAATCGCAGATTGATTTGCTTCCTGAT 127020 127021 ATTATGGCGATGTTTGAAAGTGATGAAGTTAACATTCATTATTTGTCAGAAATTGAAGCT 127080 127081 TTAGTAAAAAGTTATATTCCAAAGGTAGTTAAAAGTAAAGCTCCTCGTCCTAAAGCTGCT 127140 127141 ACAGCGTTTAAGTTTGAAATTAAAGACGGGCGCTGGGAAAAAGAGGAATTATTTACGCTC 127200 127201 ACATCAGAAGCAGATGAAATTACTGGTTATGTAGCGTATATGCATCGTTCTGATATTTTC 127260 127261 TCTATGGATGGTACTACATCTCTTTGTCATCCATCTATGAATATTTTGATTCGTATGGCT 127320 127321 AATCTTATTGGCATTAATGAATTTTATGTTATTCGTCCGCTTTTACAGAAAAAGGTAAAA 127380 127381 GAACTCGGTCAGTGCCAATGTATTTTTGAAGCTTTGCGTGATTTATATGTAGATGCTTTT 127440 127441 GATGATGTAGATTATGATAAGTATGTAGGTTATTCAAGTTCAGCTAAACGATATATTGAT 127500 127501 AAAATTATCAAGTATCCTGAGTTAGATTTTATGATGAAGTACTTCAGTATAGATGAAGTT 127560 127561 TCTGAAGAATATACACGACTCGCTAATATGGTTAGTTCATTACAGGGTGTATATTTTAAT 127620 127621 GGTGGAAAAGATACCATCGGTCATGACATTTGGACAGTAACTAATCTTTTTGATGTATTA 127680 127681 TCAAATAATGCTTCAAAAAACAGTGATAAAATGGTTGCTGAGTTTACCAAGAAATTCCGT 127740 127741 ATTGTTTCCGACTTCATCGGTTATCGCAACTCTTTAAGTGATGATGAAGTTTCCCAAATC 127800 127801 GCTAAAACTATGAAGGCCCTTGCGGCCTAATAAGGAAAATTATGTACAATATTAAATGCC 127860 127861 TGACCAAAAACGAACAAGCTGAAATTGTTAAACTGTATTCAAGTGGTAATTACACCCAAC 127920 127921 AGGAATTGGCTGATTGGCAAGGTGTATCGGTTGACACAATCCGTCGTGTTTTGAAAAATG 127980 127981 CTGAAGAAGCTAAACGCCCTAAAGTTACTATTAGCGGTGATATTACAGTTAAAGTTAATA 128040 128041 GCGATGCAGTTATTGCTCCAGTTGCTAAATCTGACATTATTTGGAATGCATCTAAAAAAT 128100 128101 TCATTTCAATTACTGTTGATGGCGTAACTTATAACGCAACTCCTAATACTCATTCAAACT 128160 128161 TCCAGGAAATTCTTAATCTGCTTGTAGCGGATAAGTTGGAAGAAGCGGCACAAAAAATTA 128220 128221 ATGTTCGTCGTGCTGTTGAAAAATATATTTCCGGCGATGTTCGAATTGAAGGTGGAAGCT 128280 128281 TGTTCTATCAAAATATTGAATTGCGGTCTGGTTTGGTTGATCGTATTCTTGACTCGATGG 128340 128341 AAAAAGGCGAAAACTTTGAATTTTATTTTCCGTTCTTGGAAAATCTGTTGGAAAACCCAA 128400 128401 GCCAAAAAGCGGTATCTCGACTCTTTGATTTCTTGGTAGCAAACGATATTGAAATTACAG 128460 128461 AAGATGGTTACTTCTATGCTTGGAAAGTAGTTCGCAGCAATTACTTTGACTGTCACTCAA 128520 128521 ACACCTTTGATAACAGTCCGGGTAAAGTAGTTAAAATGCCACGTACTCGTGTGAATGACG 128580 128581 ATGATACACAAACTTGTTCTCGTGGTTTGCATGTGTGTTCTAAATCTTATATTCGTCACT 128640 128641 TTGGTAGTTCAACCAGCCGAGTTGTAAAAGTTAAAGTTCATCCTCGCGATGTAGTATCAA 128700 128701 TTCCGATTGATTACAACGATGCTAAAATGCGTACCTGCCAATATGAAGTAGTTGAAGACG 128760 128761 TTACTGAACAATTTAAATAAGGGCTTCGGCCCTTAACTAAGGAAAATTATGTTAGGTTAT 128820 128821 CAAGCACGAGTAAAAGAAGAATACGATCAATTAATGCTCAAAATTAATGCACTGAGCAAA 128880 128881 TTTTTAGAAAGCGCAAAGTTTCTAACAGTTAGCGCAGTTGAGCAAGAACTGCTACTTTCG 128940 128941 CAGTTCATCTCAATGAAATCTTATGCTGAATGTCTAGAGAAAAGAATTGCACAATTCAAG 129000 129001 TAAAATAAAGGGCTTCGGCCCTTTTGTTTTAAGAGAAATTATGATTTATATGAATATCGG 129060 129061 TGATTCCGACATAAAGGAAAGTTTAAATGCAGAAAACGAATCCTGGGTTACAGAGACTAT 129120 129121 TTCAGATTCCGACATTTACCCTATCGAACAGTGACTTGACCTGTGAAATGAAGGTCAAAA 129180 129181 TTGCTGATACTGCAAGATACTCTTTAAAACAAAACCCAAATCAAGATAAGGCAGAAGTTA 129240 129241 TCGAAAGATGCCGTATCGCTGTGTACGCAGAGTTTTTTGTGGCAGATTGGTTGAGTGGAT 129300

101

129301 ATGTCAATAAAGGCCAAGAGGATGTCGATGATCCGTACACATATGCATGGGATGTATTGG 129360 129361 CTCATCCAAAATACTGCGGGCTTCGTGTAGAAGTTAAGACACATCAAACTGACTCACGTT 129420 129421 GGATTTCGGTAACAACGGGATGCAGCGGAGAGTATCCATATGGTTCTGGAATAAATCTAG 129480 129481 GGCCCATTCTAAATCATCAAGTCGCTGACTGTATAATTATATTCAACACTAAAGAAATTC 129540 129541 ATCCAGGTGTCATCCAGTACACTCCGAAGTTCATCGGTGACAGAGAAGACCTTCGTAAAG 129600 129601 TTGTAAGAAAAAGCAACTACAACGGATGGTATCTTTCCATTTAAAAAATTTCACAAAACA 129660 129661 GTTTACATACCACAAGGACCGTGGTACTATACAACTATCAACTACTGATACGGATTTGGA 129720 129721 GAATAAAATGAAAATCGCTGAGATTGAACTATGAGTTCATTATGGTGGTGTTTTGTTTGG 129780 129781 TTAATTAGTATTCCAGTAATTTGTTTAACATTTACTTTTGTAATGAGGTTATTATGAAAA 129840 129841 TTTTGAATTCTGTACTTATTGCTTGTGCGTGGTGGGTTGCACAGGTTTCAGCGGTAGTAG 129900 129901 TTGGTATTCACATTTATTACGAATATTTTTAAAAAAGTTGTTTACAAGACTGTTCTTCCG 129960 129961 TGGTACTATTACCCTATCAACTATGGAGGAACAGAAAATGAAAAAGATTATTAAAGCTAT 130020 130021 ATGGAATGTAGTTATAATACTAATAGTTTTGAGTATATTCCCAATCGTTTTAATGATTGA 130080 130081 TGTATTAAACGTTTACTTTGGATTTATGTGAGGAAAATATGAAGCGTAAACGCAGTGCTT 130140 130141 TTACATTTATTGAATGGTTTTTCGATAATATTTTTCCGGCTTTATTCATTTTCATGCTGA 130200 130201 TTTTTGCCTTAGGTTCAGTTGTAGTTGGAATTTATTTGATGGCGGTAGTAGGAATGGATA 130260 130261 TTCATCAAAATGGTTTAAAATCCGTGGTTGAAACAATTTGGAATGGTGTAAAATGATGAA 130320 130321 TTTGCTGAGCGGTTGGTTTTATATTCTTATGTTTTACATTGGTGTAAATTTTCCATATTG 130380 130381 GATGGGATGGTCAACAACTGCATTTGGATTTTATACTCCTTGAGGTGAATTATGAAAAGT 130440 130441 TTTAAAGATGTAAAAGTTGGTGAAATTTTTTGTTTAGATAACGGTGATCAGTTAATTCGT 130500 130501 ATTTCACCTCTTAAGAGCACTAGCGAAAAAATGACAGTTAATGCTACTTTAGCAAATAAT 130560 130561 AGTAATGAACGTTTCTGTATTGAAAATGATACTGAAACTTATACTGTAGAAGAGTTTTGG 130620 130621 GAATTGAGCGTCGACTGCGACGAGTAATTTAATGGCCGTGTGTATTCATGCGGCCTTGGA 130680 130681 GTAGAAAATAATTTAGAGGAAATTAATATGAAATATATGACTGTTACTGATCTGAATGAT 130740 130741 GCAGGCGCTACTGTTATTGGTACAATCAAGGGTGGTGAATGGTTTTTAGGAACTCCGCAT 130800 130801 AAAGATATTTTATCTAAACCTGGATTTTACTTTTTAGTGAGTAAACTCGGTGGTCCATTT 130860 130861 AGTAATCCATGCGTATCTGCACGATTTTATGTAGGTAATCAGCGTTCTAAGCAAGGATTC 130920 130921 AGTGCGGTTTTAAGTCATATTCGTCAACGCCGGTCTCAACTTGCGCGTACTATTGCAAAT 130980 130981 AACAATGTTCCATACACAGTGTTTTATCTGCCTGCTTCTAAGATGAAACCTCTAACGACG 131040 131041 GGATTTGGAAAAGGTCAGCTAGCTTTGGCGTTTACTCGTAATCATCATTCTGAGTATCAA 131100 131101 ACACTCGAAGAAATGAACCGTATGTTGGCTGATAACTTTAAATTTGTTTTACAGGCATAT 131160 131161 TAATGAGTAATTTCCATAACGAACACGTGATGCAGTTCTATCGTAACAATCTTAAAACTA 131220 131221 AAGGCGTCTTCGGACGCCAGTGAGGAAAATATGAATATTGCAAAATTATTAGGAGTTATT 131280 131281 TCATTTATTTGTTGGATAGTAGCATGTGTTTTAACTATCTGTATCGATGCTAGCAGTGTG 131340 131341 TTTTCACAAGCTTTAGCCCAGGGTATGTGTGCATATTTAACATTTGTGTTGTTATCTAAT 131400 131401 GATTAAGAAAATCTTGGGCTATTCATTAGCCCTTGCTGCTTTATTGGTAGCACTATATTA 131460 131461 CGGAGTAATGTTCGGATTAATTCAAGTCGTGCTTTTCATTTCTGATGTTATTATGGCACT 131520 131521 ACATTCACTAGTATGGTAAATTTATGCAACTGAATAATCGCGATTTAAAAAGTATCATTG 131580 131581 ATAATGAAGCATTGGCTTATGCTATGTACACGGTTGAAAATCGTGCTATCCCAAATATGA 131640 131641 TTGATGGATTTAAGCCAGTTCAACGATTTGTTATTGCTCGAGCTCTTGATTTGGCACGAG 131700 131701 GAAATAAAGATAAGTTTCACAAACTCGCTTCTATTGCAGGTGGTGTAGCGGACCTTGGAT 131760 131761 ATCATCATGGTGAAAACTCTGCACAAGACGCAGGTGCTTTGATGGCTAATACTTGGAATA 131820 131821 ATAACTTTCCTCTGTTAGATGGTCAAGGAAACTTTGGTTCTCGTACTGTCCAAAAGGCAG 131880 131881 CGGCAAGTCGTTATATTTTTGCTCGTGTAAGTAAAAATTTCTATAACGTATATAAAGATA 131940 131941 CTGAATATGCTCCGGTACATCAAGATAAAGAACACATTCCGCCTGCTTTCTATTTGCCTA 132000 132001 TTATTCCTACTGTTCTTCTTAATGGCGTTTCCGGTATTGCAACTGGTTATGCAACTTACA 132060 132061 TTCTTCCTCATAGTGTTTCTTCTGTCAAGAAAGCTGTACTGCAAGCTCTTCAAGGAAAGA 132120 132121 AAGTAACTAAACCGAAAGTAGAATTCCCAGAATTTCGTGGTGAAGTCGTTGAAATTGATG 132180 132181 GGCAATATGAAATTCGTGGAACATATAAGTTTACTTCACGAACTCAAATGCATATCACTG 132240 132241 AGATTCCGTATAAGTATGATCGTGAAACTTATGTGAGTAAAATCTTAGACCCACTTGAAA 132300 132301 ATAAAGGCTTCATTACATGGGATGATGCTTGTGGTGAGCATGGTTTTGGCTTCAAAGTTA 132360 132361 AATTCCGCAAAGAATATTCTTTGAGCGATAACGAAGAAGAACGCCATGCAAAAATTATGA 132420 132421 AAGACTTCGGACTGATTGAGCGTCGTTCCCAGAATATTACGGTTATTAATGAGAAAGGAA 132480 132481 AGCTGCAAGTTTACGATAACGTAGTTGATTTAATTAAAGACTTTGTTGAAGTTCGTAAAA 132540 132541 CTTATGTCCAAAAACGAATTGATAACAAAATTAAAGAAACTGAGTCAGCTTTTCGTTTAG 132600 132601 CCTTTGCCAAAGCACATTTCATTAAGAAAGTAATTTCAGGTGAAATTGTTGTACAGGGTA 132660 132661 AAACTCGTAAAGAACTGACCGAAGAACTTTCGAAAATCGATATGTATTCTTCTTATGTTG 132720 132721 ATAAACTAGTTGGAATGAATATTTTTCATATGACTTCCGATGAAGCAAAGAAACTTGCTG 132780 132781 AAGAAGCTAAAGCTAAAAAAGAAGAAAACGAATATTGGAAAACTACTGATGTAGTTACTG 132840 132841 AATACACCAAAGATTTAGAGGAAATCAAATGAGTCCATTCATTGGTATTACAAGCGCTGC 132900 132901 ATTAGTATCTGGTAGCATTTTACTGGCGGGTTTAGGCGTTGTTCCAGCCGTAGCAGGAGG 132960 132961 TCTTCTTGCGTTCGGAATTCAACGTGTTATCATGACAGTTATCACAGTCATGCAGTAATT 133020 133021 TTAGGGAGAGCCGAGGCTCTCCCTTTTTTATTTTAAAAATTTTTTCACAAAACGGTTTAC 133080 133081 AACCAAAGCATACTGTGGTACTATACAACTATCAACTACTGATACAGAATTACGGAGATT 133140 133141 AGAAAATGTCTAAAGTAACTTACATCATCAAAGCTTCTAACGATGTTCTGAATGAAAAAA 133200 133201 CTGCTACGATTTTAATTACCATTGCTAAGAAAGATTTCATTACAGCTGCAGAAGTTCGTG 133260

102

133261 AGGTGCATCCAGATTTAGGTAACGCAGTAGTTAATAGTAATATTGGGGTATTGATTAAAA 133320 133321 AAGGCCTGGTGGAGAAATCTGGTGATGGATTAATCATTACTGGTGAAGCTCAGGATATTA 133380 133381 TTTCAAATGCAGCAACTTTATATGCACAGGAAAATGCTCCGGAACTGCTGAAAAAACGAG 133440 133441 CAACTCGTAAAGCTCGCGAGATTACTTCCGATATGGAAGAAGATAAAGACCTCATGTTAA 133500 133501 AACTTTTAGATAAAAATGGATTTGTTCTTAAAAAGGTTGAAATTTATCGTAGTAATTATC 133560 133561 TTGCTATTTTAGAAAAACGCACTAACGGAATTCGTAATTTTGAAATTAATAACAATGGAA 133620 133621 ATATGCGAATTTTTGGATACAAAATGATGGAACATCATATTCAGAAATTTACTGACATCG 133680 133681 GAATGTCATGTAAAATCGCTAAAAACGGTAATGTGTATCTTGACATTAAACGCTCGGCAG 133740 133741 AAAACATTGAAGCTGTAATCACTGTAGCATCTGAACTGTGAGGAATAAATAATGAACAAG 133800 133801 TTAGAAATTGTCAATGAACTTCGTCGTTGCGCAGAACCTACTCAAGAGGGTTGGGATATT 133860 133861 TGGTACCATGGAGCTTATCTTGGAACTATCGTAAAGATTAAGACTGGTAAATACATGATT 133920 133921 ATTCGTGAAAGTAAAGATGCTCCAGTAGGTATTCGCAATAATTTTATGGCAGCGATAAGT 133980 133981 TCATTTACGGATGCAGCTTACGAAATTTACCTTGCTGATTATAAAGAATTCCAGGAATCT 134040 134041 CAACCGGTTATTCGCTCAATTGGCGTCAACAAAGCTCAACAGAAAACTTTGTGGCAGCGT 134100 134101 ATTAAAGGATGGTTTAAATGAACCCATTTATCAATCGTTTAAAAATGCTGAATGTTCCTT 134160 134161 TATCTCGTGAAACTCCAGAAAGTCTTGTTGAAAAATTTAAAGCGCATGGTTATAAATGCA 134220 134221 CAGAAGAAGATATTCTGAAAGAAGTTCCTGAAATCTGTTGGCAGACTGCGTACTGGGATG 134280 134281 AAAACCAAAAGTATCAACGACGAATTGTTTGCGCAGCCAACCGTTTTAAATTAAAAGATG 134340 134341 GACGAACTCTTATTATTCCAGGTGCTCGTCATTATTCTAAAGATATGGCAGAAGTTTTAG 134400 134401 ATGTAGTTAAACCTCAATTAGTTACTCAGCAAGTTTGTGATGATGACCAAGGGTTTATTG 134460 134461 ACCAATATAGTAATTATTGGACACGTGAAGAAGCAATGATTATTGCAACTTACGCTGGAC 134520 134521 AAGTAAGTATTGAACGTGGTAGTGAAAAAGAACTTTACTCTGAGGACCTTTACTAATGAA 134580 134581 TATTAAAAAGTTTCAAATTGATGGAATTATGAATCAAATCCAGGCACTGGAATATGCCAA 134640 134641 TAAAATGATGTCAACTAATTGGGGAATTTATACCAATGAGCCGGGATTTCAGTTCTGTGA 134700 134701 TATGGAATTCACTAAAAAGCTCGTAGGAAAAGATTATGTATGTCCATTTAGTTCTCCAGT 134760 134761 AAATGGAATGCTAAAACCTGCTCTACGCGATCTTTATATTGCGATGAACGAAGAGATGAT 134820 134821 AAAAGAGTTAAAACGTCAACTGAAGGTGATTCAATTTGGCCAGGGAAATTAATTCAAAAT 134880 134881 CTGATTATTTTAATTCTCTAAACGATAAAGATAAAAATCTAATACGGCATTTTATTGTTG 134940 134941 AGATGGGATATACCGATACACGCGATTTAAGAGAACATATATTTGAATGTGGTGTAGCTA 135000 135001 AAAAGTTTTCATTCACATGCAAATGTTTAAGAGAGGTAATTCAGCACTATGAACAATTTA 135060 135061 GTCGCAAAGCATAATTTTAATAAAGCTTCTGTTCATAAGGATAAGAAGAAAGCGTTTAAA 135120 135121 GAATCTAATCGCAAACAGAAACATAAGGGGAAGGTCTATGATTATTGATTCTCAGTCCGT 135180 135181 GGTTCAATATACATTCAAAATTGATATTCTAGAAAAGCTATATAAGTTTCTGCCAAACCT 135240 135241 ATACCATTCAATTGTCAATGAATTAGTTGAAGAGTTACATCTTGAGAATAATGATTTCTT 135300 135301 GATTGGAACTTATAAAGACCTCTCAAAAGCAGGGTATTTTTACGTAATTCCAGCTCCAGG 135360 135361 AAAAAATATTGATGATGTATTAAAAACTATAATGATTTATGTCCATGATTATGAAATTGA 135420 135421 AGATTATTTCGAATGAGTCATAATCTTGAAAAGGTAATCGAGCATAATGTAGCTCAGGAA 135480 135481 CGTGAATCGTTCAAGGAATTCGTAGAAAAAATTTTTGAAGAAAATTACACAGACCAGTTT 135540 135541 ACAAATCAAGCGTCTGATGATATTATAACAAAGTCAACTAATTGAGTGGTATAGTTAATG 135600 135601 AATAAAAACATTGATACAGTTCGTGAAATTATTACTGTTGCATCTATTTTGATTAAATTT 135660 135661 TCCAGAGAAGATATTGTTGAGAATCGTGCTAATTTTATTGCATTTCTAAATGAGATTGGA 135720 135721 GTAACGCATGAAGGTAGAAAGTTAAATCAAAATTCATTCCGTAAAATTGTTTCTGAATTA 135780 135781 ACTCAAGAAGATAAGAAAACCCTCATCGACGAATTCAACGAGGGTTTTGAGGGTGTATAT 135840 135841 CGATATCTAGAGATGTATACGAACAAATAATTATTTAGCCCTTCCTAATATTCTGGCCGC 135900 135901 CTGAGCACATATTGATTCAAGGCGGTCATTACTTATATGATCATTTCTATACCAGTACAT 135960 135961 GGTTATCGTTCCAGCATAGATATTATCCAAATTAAAATATGGACAACTGTACATGTAGTT 136020 136021 TATTTCGGGAGTAGGCTTTTTAGTTGGTAAAAAAGCAAATTTTGAGTTGGAATAATAATG 136080 136081 ACGTCCATTTAAATGAACTGTATATTCATCCATAGTTTTATCAACAGGATATCCTCCAAG 136140 136141 TGATTTTTCACTTATTGTTGAAGGTAATTTTCCTTCGTATGCTATAATATCAACAAAATA 136200 136201 GTTTAAGTTTTTAGGGCGGAAAGAATACACCGCACTAAAGTCTGCCTCAGATGATATATG 136260 136261 AACTATCTGGAGTTGTTCCAGGGCGACAGATTCAAAGCGTGCAGTTCTTTCCTTTTCAAT 136320 136321 AATTTCACTGTATGTTTCATACTTTGATTGCTTATAGTACTCAAAGAAACTATCTCCCCT 136380 136381 ATACCAAACAATCGCCATTATAAACAAAAGAATTACGACAGCTACCCGGGAAGCAAGAAC 136440 136441 CTTCCCGGTAGCGTTATCTTTGAACAAGCGATCTAGAACACCAAATAGAATATCAGAGGG 136500 136501 CGAAAATGATATTCTAGGTGCTGCCATAGACCCTCCTTTTAAGATATTTATACGTAATGC 136560 136561 TTGAATAAACGCTTATACCAAGGCTTCTGTTCTTTTTCAGGCCATGAAGGGAATTCACCA 136620 136621 CCTAAATGCTCATGCTTTTCTAAAAGAGCAAAGAACCGCTTAAGGTTTTTATAATAGAAT 136680 136681 TTTTCCTTTTTATTGGCGACAGAAGCTTCAATCATATTATTTAAAACTTGGAACTCTTTA 136740 136741 TATAATTCTTCAATTTTTCTATTACGAATTAAAACTCGCTTATATGTTTCGTCTTCTTTC 136800 136801 CAACCGTCATCAGTCCATATATCAAATTCGCCAGGCTCATCGAAAGTTATACCAACCGGG 136860 136861 CTTCCAATGTCACTTATAAAAATTTCTTCTTTATTAAAAGTCCATGCGCGTTTTCCGCGA 136920 136921 TGGTCTTCTTCATAAATCCAATCCTGAGTACGTTCATCAAATACAACCGCGTATCCTTCT 136980 136981 TTAGGTTCTAAAGGTTTTTTAATTGTTGAATGAGCAGGAAGACCGAGGCCTTTAACCGGT 137040 137041 TTGTAATTTTCTTCTTTGTAAAATTCTTTAGTGTCAAAATAATAATGATATATTTTCATA 137100 137101 TTTAGAAGGGGCCGAAGCCCCTCTCCTTATGCTAAACGAACGATATAGTTAAAAGCAATG 137160 137161 TTTTTAACCGTGTTTTCTGTATTACCTGTACTATTTACAGTGATAGTATGACCATGTGAT 137220

103

137221 CCAATTGCTACCGTGTGGGTATGAGCACCAATACCTACAGAGTGGGAATGGTCGCCAGCA 137280 137281 CTGCTAGTCCCAAAAGAGAAAGTGTGACTGTGGTTCCCTGCTGCATTAGTGTTACTCCCA 137340 137341 CCCGCCCTGTATGATATGGCATATGATGACATCTTATTACCACCTACACCAGTACCATTC 137400 137401 CATGCCTCGATGTAGTGGCTGTGCTCACCATTTGTGCTAGTAGAACCACTACCAGAGTGA 137460 137461 GTGTGTCCACCCGTACTGTTAGTTCCCTTCGTACCATAGTCAAAGCTTGATGTGGTTTTA 137520 137521 GTACCTAAGTCAGTACTTGAAGCCGATGCACTATGGCTATGAGCCTTAACACCATCTGCC 137580 137581 TCAGCGCTCAAAACAGCACGACCACTTGGTTTACCCTTGATAGTTTGCCCGCGCATATCT 137640 137641 GGAATAACACCGCTAGGATATGCAACAGCTAACTTTGGATATGCGGACTTATCAAAGGTC 137700 137701 TGACCTTCCATCAAAGCAAATCCAGCAGGAACTGAATCACTCGGCCAAGGAATCGGAGCA 137760 137761 CCAATTGGGTAACTCGACATGATATCAGTTTTAAGTGATTCAATTGTACTGTTTAAGTTA 137820 137821 GCAAAATTACCAGAACCACCAGTGATATTACCAGTTCTATCAAATCTGACTTTGCCTGCT 137880 137881 ATTAAATCGCGAGGTGAAATAAAATCACCGTTTTTAATAAATTCCCATCCAAAATCAGCA 137940 137941 GTCTGTGGACCTGTAGAACCGTTATCTCCGCCGCCATGGTAATGAACTCGGAAATTACCA 138000 138001 TTATTAATTAAAGTCCCTAATGAATAGCAGCCATTGCCTTGAACATAACGTTGTTTCAAA 138060 138061 ATAGGAACATATGCACTAGCATCAGTTCTATCAATATTCATATAGAACGGCGCACGGACG 138120 138121 TCTTCATTATTCTGGGAAGCAAATGAACCTGCACCCGCCGGGCGAACAGCATCAGTACAT 138180 138181 TCTGCATCAATGTATGCCGACTGCCCCAATTGCATTCTAAAGTTGGCATTAATGCGAGAG 138240 138241 TTACTGTTTATCGTAGTTAAAGCATTATTTTGATCTACTATAAAAGAATCTCTTCCTAAC 138300 138301 CCAACCATGCCATCGTTTAATCCTATTCTCACAGGTCTCAAAGAGCTGTGAATGTCTCCA 138360 138361 CTTTCTCCTTCATTTTGATTGGTTGGAATAATATAAAAGTTACTTTCCGAACGACGGAAA 138420 138421 ATAGCACCATATTCAGCGTTCCAAATTCTCAGTGCGTTTGCTGTTCCGCCAATTTTAACT 138480 138481 TGTCCAGTAATAGAAGAACCACCTTGGACAAACAAACCGTTAGACATAGTAACATTGCCG 138540 138541 GCTAAAGCGCTTGATCCAACAACTCTAAAATTTCCGTTGGCAATAATACCTTTAGCATAA 138600 138601 ACATCCCCAGCAAATTGAGCTTCAATACGTCCAATAGTTTCGTCGCCGGTTGGAGCTTTA 138660 138661 CGATGAGCATAAAAATAATATCCTTGACTATCTGATACTTGGAAAACCGTTTCGCGAGAT 138720 138721 CTATCACCAGTGGCATTAAATGAGTTACCCCATGCTTTAATAATCACATAGTTTTTATTC 138780 138781 TGTCCTTCGCGAGTACCACCGTTCCATTGGATAGTCCTTGTGCCATCAACTTGGCTAGGA 138840 138841 GCTCCAAATTTAAGACCCGCAGTATTATTAGATTTAGTTAAAAATATCTCGTTATCTAAT 138900 138901 TTAATAGGTTGAATGGAAGAAATAGTTCCGTCAGCGTAAAATTGTACATTATTAGAGTCA 138960 138961 GTTACCAATTTCAAAATACCCGGGTTAATTTCCATACCTTGTTGGGTATTGATATTCATC 139020 139021 TGACCTGTACCACGGAAATAGTGGTTCATTTTACCGCCAGCATTGTACCCGATATGGGTT 139080 139081 TGTCCGTCTCCAGCATTGTTATTATCAGCTTGTGTTTGAACAGACAAGAGAGCAGCATTT 139140 139141 GTACCAGGCATTATCCAAGTTGCGCCTTGGTCCTCAGAACGACCAAATATACCTTTACGA 139200 139201 GTACTACGGAAACTGTCAGGAGTAATAGAAGCAACAGAATATCCACCGCCAACTAGATCA 139260 139261 AATACACCAGTTTTTTTGTATGACAAGCCAGTTACAGTGTCGCCGAGAACAAGATACTTA 139320 139321 TCGCCCATTACACCGACGTTGCCATAATCACTAGACGGGAAATTTGTAGTGAATGTACCT 139380 139381 AATGCAAGGCTATTACGGATAATCATTCTGCCATCGTCACGAATACCGTATAGTTTAAAT 139440 139441 ACTGGTGTATCACCAGACCACCAAGAAACTTCATCAGCCAGGCCTGTTTGTGCAGTAACA 139500 139501 ATTTCATGATAAATTGTACCACCGGACTTAGCGCGAACTTTACGAAGATAGTTTACACCA 139560 139561 TTTGTTTCACCGGTTCCAGGATAAACATAATTAACCAAAGAGTGAGAATCATATTGTCCA 139620 139621 AATGCTTTGGCATCATGAATAACGGTATCAACCGCAATGCGTTTTGTTACTAACGAATCT 139680 139681 GATGCTAAAATACGGTTAGCCTGAAATTCGCCTCCATTTATAGAGCGGAAATAGAATTCA 139740 139741 CTGTTGGCAGTGCTTCCTGTTCCTTGTCTAACCCTAAGGCGTATTTCACCGTCAGTTGTA 139800 139801 GTTTGAGGGCGAGCATATATAACGCCACGTTCAGTGCCATCGGCATTTTCAAACCATAAA 139860 139861 TGGGCATTTGAAGTATCGTTTGTTGCTCTTGCATAAAATGAACCCTGTGTAGATCTGAAA 139920 139921 ATTTTTGCAGTGACGCCATCAGTAGAACCAATGGGTCCGTTTACAGTCATTCCACCTGTT 139980 139981 TGTACATAATCGCCATTTAATCTCAAAAGTCCGTTAATAGTAACGTTGCCATCAACTTGC 140040 140041 CCGCCTTTAGCAAAACCTAGATCGATGATATTTCCTGAATCATCTTTAGTAAAAATTGTT 140100 140101 CTATCTTTTAAGTTTATAGCCAATTCACCTTCGGCTAATACTGAAGCAGCAGGACGTGTT 140160 140161 CCTGCGATTTTGCTTCTTTTAAATTGTATTTGTTTTAAAGTAGCCATAAGTCCTCTTAAT 140220 140221 AATAGCCGAAATCTTGAACAGAATCCTTAATTACGATTTGGTCAAATCGTGGAACGTGTG 140280 140281 AGGGTTGAGATGCAGGATTCTGCGAGAAAAAGTTTGGCGCTGTTAAATTACCTGTCATGG 140340 140341 TGTCACCAGACCGTAGCACCCTAGAGTTTGCATTTGCAGTAACAGTATTTATTGCTCCAT 140400 140401 CAACATAGTCCTTTCTAGTAAGGTCATTCGCTGCTATAGGAGCAGCCGCACCACTTCTTA 140460 140461 CTTGACCAGCTGCCGACACAACACCTTTTGTGTTAATATCACCATTGCGTGTATTAATTA 140520 140521 CAACAGTTCGGCCTGTTGAACCAAATGACGATTTAAATCCTACGCCATACCATGAAACAA 140580 140581 TATCGATATTTGCTTTATCAAAAGTAGCACCATCACCGTTACCCCCATAAATCCCGCATG 140640 140641 GGCTCATGATGTTTGGAGCATATGGGACTTGAATGCCAGCGTTAAATGTTACCTTTGATG 140700 140701 CATAAGTACCACCATTAGCTTTAGAAACGAAATCGTTATCAGCAGCTTGTGGTTTGTTAT 140760 140761 ATTCTGAATATATTTTAAATGATTTATAGAGTACATCGTCACCGGCTGGATTCAATGGAA 140820 140821 AATTTCCTTGATGCCAAATGACAGAGCCTCCAGTTGTTGAACCTACTTTTAAATCAGCCA 140880 140881 TTGTATGCCCCTTTATTTTAATAGTATTTATAAAGAAAAAGGGAACCCGAAGGCTCCCTC 140940 140941 AATTTAAACTTCTCTAAATTCTTGCCCAAACACTTTACCAGTTTTAGACGATGCTTGCGT 141000 141001 AGGAAGTACCATTATATCCGGAGGTGAAGCGGATTCGCAGATATAATTAACACGAATACC 141060 141061 ATTGACGCCAAATTCAGCAGGTTTCGAAATGCCGCCATTTCTTGATACTTCAGAAAAGCT 141120 141121 TAAATTTCTCATGCCACCTTGGCCAGCTTGTGCAGTTCTCTGTGCGTATATCGTAAATCC 141180

104

141181 TACTGCGTTTTCTGGAACAACTACATAATCTTCCTTTAATTCCCATGACCCAGCTTGCCC 141240 141241 AGTAAATTCAGCTTGTGTTGAAGAAATATATCCGTTAGATGCATTATAAAAACGGATAGA 141300 141301 TATATTTGTAGTTCCAAGAGCAAGTAAATCAGCATCAGCATATAACTGAGCTTTAAGATA 141360 141361 AAGAACATCTCCAGGAATTAAATTATAATCAGATAATTTACTTATAGCAGCTGAAGTTGG 141420 141421 CAATCTCGCAATTTCGTTATTAGTTCCACCAACTGCCGACATGAATTGCTCAACACTTTC 141480 141481 ATACGTTCTTCTTGGAAACCCGGTAGCTCCTACATCTTCTAAACTGTCAAATACAACATC 141540 141541 TAAAATAGTTTGATAATCATCTGTGCTTTTTCTATTACTCAGTTTAACATGCTCTAATGC 141600 141601 GATAGCTCTTTTAGAAGAAGTATAAAAAGCAGCATATGATACGTCAAATCTTGACAATAT 141660 141661 AGAATCAGATGGAAAGGCAGACGTTCCGGCGGTTCTTAACCAAGATACTACTTCAGGAGG 141720 141721 AAAATTAACCTTTCCACTAGTTAATATAGCAACAATTCGATTATTCGTCAAAGAATTCAT 141780 141781 GAAACTAACAAAAGCAGCTGATGTAGTATCATTTGAAGTCGAAAAAGCATATGACTTACT 141840 141841 ATCAACTAATGCTCCGGTGGAAGGGTCAAAAACTCTTAAATGAAGGCCTGCGCTAAATGT 141900 141901 TTGACTTCCTACAGGATTATCCTGAAATTTAACATATGATGGTCCTGCTGTAGAAAGCGG 141960 141961 GCAAGAACCCGCTATACTTATTTTATATCTTACTGAATTACTTTCCGATAAAAATGGCGT 142020 142021 TTGGACATATCCTTGTCCAAACTCTGCCATAAATTTTTCCATAATACCTCTTATTCAACC 142080 142081 CATTCAAATTTAACCGTTTTATTCACTGGGTCAGGAACAATGCGAACATTACCAATTCGC 142140 142141 AAGAAATCACGAATAGTAAGATTCCCCATTGTAGCATTATCAGATGGTAAAGCACCGATA 142200 142201 TCAGATGGTTGAGGAGGGTTACCTCCGTCAAATACCTGAACAAAACTTGACCAAGAGTTT 142260 142261 TTGGTTTTCTGCCATGTACGTGTCCAGCGAGTGGTACGCGCTTCTGGCGTCGTTGGATAA 142320 142321 GTAATCCAATCTTGGTAAAGCGAATCAAGTGTGTTACCAAACTGAGTCAGTGTACCAGGA 142380 142381 GATTTAACTTCTTCGCCACGTTCTAAGTATGGAAGCCCAGTCACTTCATTAGTTTTTTCA 142440 142441 ACCATTTTAAAATAACCCGGGAACTGGTTATAAGTGGCTGAATCATTAATATCGATTGAC 142500 142501 CAGAATCCTACAGTATCAGATGTTGGCGCACGGGTATATAAATCAGATGTTTTAGTACCC 142560 142561 TGAGAACGAATTCTCGAGTTAACAGTTAAACCGCCTGAATTTATAGTAACACCTTTGGCA 142620 142621 ATGATTAAGCCTTCACCAATTGTAATCTGACCGGATTGATTATTAATTAATAATGGGCGT 142680 142681 AATCCATTAAAACCACCAGTCTGATCACCGGCTGCAGTGAGCAAAAAATAGGTATTAGAG 142740 142741 GCATCATTACGAATAAAGAATCCGTAATCACCGTTTATTGCTCTAAAAGCATTTGCAGAC 142800 142801 TTGCTGATGAATTCACCATTGGCTGTAACTGAACGACCGAATGTTGCAGTGCCATTCACA 142860 142861 TTCATCAAACCGGAAGCATTAATGTTTATTGGCATTACAGTACCATTAATGTTAAACGCT 142920 142921 ATATTACCGTCTTTATTACGTTGAGAATAAAAGTGATGAGATGTGTCATCGCCAACTTCA 142980 142981 AACACTGTCGAACGGGTCGTATCACTACCGCCGCCAAATTGGTTACCCCATACACGAATA 143040 143041 CTCATTGACTGTGCAGGATTTGCCCCGGATGCAGGACCTTTTTCGAAAACGATACTAGTC 143100 143101 GGGGCTCCTGTATTACGGATGGTAAATGTTCTATTAGCGGCCAATGAACCACCAAATTCA 143160 143161 CCAGTACTAGATGATACAAGAGGGGCACTCAGATTCGTTTGTTGGGTTAAGGTTAGTGAA 143220 143221 CCATTAACCGTCTGTGCAATATCCCTACGAATGAACTGAGATGAATCTAGACCATCCAAT 143280 143281 AAATTTGTATCAGCAGCTTTTGCTTTTAGTGGCAAATAATTTGCTAATACACGGTTTAAT 143340 143341 TCATATGGTGATACCGCATAGCTATTTTTCTCATACAGTTCTAAATCTTGGGTAGAACCG 143400 143401 ACTGTATCATTACCAACGAATGTAATTGAACCAGATGAAGTTTTAACAAAACCTCTTATT 143460 143461 GCAGTAGTAGCTGCCCAAGTAGGTTCACTCTGCGCAATCCATTTTAAATTTTTTGGAGAT 143520 143521 ACAGCAGTATTTGCTGACGTTCCAGTCACAGTTTCAGACTGAGTTGCAACTTTAATAACA 143580 143581 CCCTCTTGCGCTTCAGTAGATTTAGTACCTAAAAGCTTTTTAGGAGTTATTAAAACATTA 143640 143641 TCTAATGTTCCCGCAGCAGCTTCGACCTGCGTAGCTACACGAAGTGTACCACGTTGTGTC 143700 143701 TCATTTGCTTCAAGAATATTAAGTGTATAATGGTCCCAGAGAGTTCCTGATTCAACTAAT 143760 143761 CCAGATAGAGCAACAACAGAAGTACGATCAGTACTATTAAATCTGGTTTTAATTTTTAAT 143820 143821 GGTGTAGAGATACGAGTATCGTCGACGCCTGCGTCGAATTCAACTTGTGTAGCAATTTCA 143880 143881 GCTATACCACTTAAACTTTCAGTTGCTCTACGGTCATTTAAAGTTTTAGGAGTGACTGCA 143940 143941 CGAGTATAATCAGTTCCTGTATTAACTTCACTTTGCGTAGCAATTTCAATTAAACCAATT 144000 144001 CTTCCATCAGTTGATGTCTTTTTATGTAACGTTTCTGGCGTTACAACAGCATTTGCCCAT 144060 144061 CCTTGCTGACTTTGTCCAGCAATTACTTCACTTTCAACTGCTAAAATTACTGCACCTTGC 144120 144121 TGTGTTGGAGTAGCTTTATACTGATCCAAAGCTTTAGGTGAAACAACTAAATTATCAGTG 144180 144181 TTTTTATTATAAACATTCGTACCATTTAATTCACGGCTAGAAGCTGGAGTAGCACCTGCA 144240 144241 GTAGATACAAAGGTTACAATACCAGATAATGATTCAGAACCTTGACGAGCTTGAAGCTTT 144300 144301 TTAGGAGTGATGATTGTAGTATCATCGGTTCCTGCATTAGTTTCTTGCTGCGTAGCAATT 144360 144361 TCTGCGACACCTCTACGAGTTTCTGTAGCAGTTCTTTCATTCAGCTTTTTAGGAGTGATG 144420 144421 ATAATATCATCAGCAAAAGAGAATGTGGTGTTCTGATTCACTTGAGCAGTAGTTGCTATT 144480 144481 CTTGCAATACCTCTGCGAGTTTCTGTAGCAGTACGATTAGCTAACGTTTCTGGAGTAATT 144540 144541 GCTAATTCTTTTTGTGGAGAATTTTCTAAATCGACATTAGCTTGAGCTTGTGTAGCTAAA 144600 144601 GCAATTACGCCTAATCTTGCTCTAGTAGAATCATTTAAAGAATCTACTCTTTCTACAGTT 144660 144661 GGAACGTTTTGCTGTACAACCCAATATTTTCCATCAGAATCTTCTATGTAAGCAAGCTCC 144720 144721 AAAACTGGAACATAATTAGTTTCACCGTTAAAAACTAATTCTTGAACTGTAACCCATTCA 144780 144781 GCTTCAGGTAGATATTCTGAGCGTTTTGGGAATTGCAGCAATTGAACTGAAGAAGCAATT 144840 144841 TTATCTTCATCAGCAGCTTTGATTTTAACTGTTTGTCCTTTTCTCATGTAATTCATGGAA 144900 144901 ATTTTAACAGTATCACCAACAGAAATATTAGTTGGAAGCTTAAGCTCAATTGTTTGAGTT 144960 144961 GTTCCGTTATTCGCACCAAATACCATAACTTCTTCATTTGGACGAATGTTTGAATTAGTC 145020 145021 GTTATGATACGTAAACGCGCTTTACTATCCCCGTCAAACAGTCTCCATAATTTCTCATTA 145080 145081 TCATCAAACATCAAGAAACCGTCAATCGATGTACGGCCTTCAATGGAATGAGTTCCAACT 145140

105

145141 TCTTGTACTGAAGTCGTTTCATCGTATGTAGTAACAATTGTATGATAAAGCGGATTTAGT 145200 145201 TTATCTAAATCGACGAAATTAATAATATCGCCATGATTAGCAAATCTTGGAAGTTTGACA 145260 145261 TTAATTGGTGCAGCAGAAGTAAATCTACGTACGATAAAATCGTTGGATTGCGCTTGATAA 145320 145321 GTATTCGCTGGTGTTACAACTATAGCTTCTCTACTATAATCAGCAACATACATTTGCCAC 145380 145381 AGACGATTACTAAAAATTAAAACTAGCTGTGACTTTGGATGAGTCATTAGTACTGAACGT 145440 145441 ACCTGTTCACCTCTAAAGTTTACAATACTTTGTACTGGAGCTACAATTAAAACTTGGTTA 145500 145501 ACTCCAGGTTTTCCTCCAATATCTTGGAGAACGATAGTATCACCATCAATTGGAGAAGAT 145560 145561 GGTAAAGTAAACGTGATGTCATTTCCAGCTGCGGTGTTAACCGAAATTGCTTCACCAGAT 145620 145621 TTTAATTGATATGAACCAGATGAAACCGTAATCCAGTTAGCATCGGTACGTAATGCTCTC 145680 145681 CAGCGTCCGCTATTAAAAGCTCCTGCTGGTTTTGGAATATCATTTATAGCAGCCCAAAAG 145740 145741 CGGTTATCATAAATGATTACAAAATCTTTTAAATATCCACGAGTTGGATCATACTGTTGA 145800 145801 ACTGTGTTTTCTTGAATTAAGTAATCAACGTTAACACCGTCAGTTCCTACGGTACGATCA 145860 145861 GCTAAAGCTACGTTGATTATTTTATCACCACCTGCGTCCAGACCATCTTCTGCTCTGAAC 145920 145921 TTTCTTTTAATCTCGGCCATTCTCCCGGGCTCCTATTGTGTTTTCAATAATAAGTATTTA 145980 145981 TACTTGTTTACTTTAAGATTTGGATGGTATATAATAGAAATCTCACTAATTGAACGAGGT 146040 146041 TCATATGGATTTAGAAATGATGTTGGATGAAGATTACAAAGAAGGAATCTGCTTAATTGA 146100 146101 CTTTAGTCAAATTGCGCTTTCAACTGCTTTGGTAAACTTCCCAGATAAAGAAAAAATTAA 146160 146161 TTTATCAATGGTTCGTCATTTGATATTGAACTCAATTAAGTTTAATGTCAAAAAAGCAAA 146220 146221 AACGCTTGGATACACTAAAATTGTACTGTGTATTGATAACGCGAAATCTGGATATTGGCG 146280 146281 TCGTGATTTCGCTTATTATTATAAGAAAAACCGTGGAAAAGCACGAGAAGAATCTACTTG 146340 146341 GGACTGGGAAGGTTATTTTGAATCCAGCCATAAAGTTATAGATGAATTGAAAGCTTATAT 146400 146401 GCCATACATTGTTATGGATATTGATAAGTATGAAGCAGATGACCACATTGCTGTTCTTGT 146460 146461 TAAAAAGTTCTCTTTAGAAGGACATAAGATTTTAATCATTTCGTCAGATGGTGACTTTAC 146520 146521 TCAGCTTCACAAATATCCAAATGTTAAGCAATGGTCTCCGATGCATAAGAAATGGGTTAA 146580 146581 AATTAAAAGCGGTTCTGCTGAAATTGACTGTATGACTAAAATCCTTAAAGGCGACAAAAA 146640 146641 GGATAACGTTGCTTCAGTTAAAGTACGATCTGACTTTTGGTTTACCAGAGTTGAAGGTGA 146700 146701 ACGAACTCCTTCAATGAAAACTTCAATCGTTGAAGCTATTGCTAATGACCGTGAGCAAGC 146760 146761 TAAGGTGCTTCTCACTGAATCTGAATATAATCGTTATAAAGAAAATTTAGTTCTAATTGA 146820 146821 TTTTGATTATATTCCTGATAATATTGCTTCAAACATTGTGAATTACTATAATTCATATAA 146880 146881 ATTACCACCGCGTGGCAAAATTTATTCATATTTTGTAAAAGCGGGTCTTTCTAAATTAAC 146940 146941 TAATAGCATTAATGAATTTTGAGGTGAATAATGGCTAAAAAAGAAATGGTTGAATTTGAT 147000 147001 GAAGCTATCCATGGCGAAGACTTGGCTAAATTTATTAAAGAAGCATCTGATCATAAACTG 147060 147061 AAAATTTCCGGTTATAATGAACTGATTAAAGATATTCGAATTCGTGCTAAAGATGAACTT 147120 147121 GGCGTTGATGGTAAGATGTTTAATCGTCTATTAGCTTTGTATCATAAAGATAACCGTGAT 147180 147181 GTGTTTGAAGCTGAAACTGAAGAGGTAGTTGAACTTTATGACACAGTTTTCTCTAAATGA 147240 147241 TATTCGTCCGGTCGATGAGACCGGTCTTTCAGAAAAAGAACTTTCAATTAAGAAAGAAAA 147300 147301 GGATGAAATAGCAAAGCTTCTTGACCGCCAAGAAAATGGATTTATTATTGAAAAAATGGT 147360 147361 AGAAGAGTTTGGAATGAGTTATCTTGAAGCTACAACAGCATTCTTAGAAGAAAATTCTAT 147420 147421 TCCTGAAACTCAATTTGCTAAATTTATTCCTTCGGGTATAATTGAAAAAATTCAGTCAGA 147480 147481 AGCTATTGACGAAAATCTTTTACGTCCTTCTGTTGTTCGTTGTGAAAAAACTAATACATT 147540 147541 AGATTTTCTACTATGATTAAACTCCGCATGCCTGCTGGTGGTGAAAGATACATTGATGGT 147600 147601 AAATCAGTTTATAAATTATACTTAATGATAAAACAACATATGAATGGAAAGTATGATGTA 147660 147661 ATTAAGTATAATTGGTGCATGCGGGTGTCTGATGCCGCTTATCAAAAGCGAAGGGATAAG 147720 147721 TATTTTTTCCAGAAGTTATCAGAAAAATATAAATTAAAGGAACTTGCTTTAATCTTTATA 147780 147781 AGCAATTTGGTTGCTAACCAAGATGCTTGGATTGGTGACATCTCTGACGCTGATGCACTT 147840 147841 GTGTTTTATCGTGAATATATCGGACGCTTAAAGCAAATTAAATTTAAGTTTGAAGAAGAT 147900 147901 ATTCGCAACATTTATTATTTTAGTAAAAAAGTTGAAGTTTCTGCTTTTAAAGAAATTTTT 147960 147961 GAGTATAATCCAAAAGTTCAATCAAGTTATATTTTTAAACTTCTGCAATCGAACATAATT 148020 148021 TCGTTTGAGACGTTTATCTTGCTTGATTCGTTTTTAAATATAATTGATAAACATGATGAA 148080 148081 CAGACTGATAATTTAGTCTGGAATAATTATTCTATAAAGTTAAAGGCTTATAGAAAAATT 148140 148141 TTAAATATTGATTCACAGAAAGCTAAAAATGTTTTCATTGAAACTGTGAAATCTTGCAAG 148200 148201 TATTGATATGAATATAGTATATTGGTTTACATTTGAAGACCGTGTCAAAAATAAGACTCC 148260 148261 GCCATACTACTATATCGGTAGTAAATTAAATTGCTCATTTGAGAACGGAATAATATATGA 148320 148321 CTCTTCCGGAAAGGAATACTGGAGCTCATGTAAACAAAAAAGATTTTTGAATGCGCTAAT 148380 148381 GCTTCAAAAACCGAGCGTTAAAATAATTCAAATTGATGATGACTTGGATGTTATTGAAGC 148440 148441 AGAACGAAAATACCAACTTGAAGTAAATGCCAGAGATAATCCAGACTATTTTAATCTGGT 148500 148501 ATATGCTGGTGGTGGATTTGGTGTGAGTGGTGAAACTCATCCAGCCAAAGACCCGGAAGT 148560 148561 TAGAGAGCATATGAGATTGGCTAATTATATGAACCGTGACGATTTTAGACCTTGGAAAAC 148620 148621 ATCACGAGCTAATATAGAGTCTTGGAAATTATCTCATATTGCTTACGAGAATTATGTGTT 148680 148681 ATTATTATCCTCTAATCTGTACGGTAAAACTCCTGGATGGCGAAGAGTTAAAGGTAATAT 148740 148741 AAATATAACTGATACAACTGCTAAATCGATGGTAAAGTATTTCAACTCAGGTTGGATACC 148800 148801 TCTCGAAGACCCAGAGTATTGCGAATTATGCCAGCTATGAGGTAAAGTGTCATAGCACCA 148860 148861 ACTGTTAATTAAATTAAATTAAAAAGGAAATAAAAATGTTTAAACGTAAATCTACTGCTG 148920 148921 AACTCGCTGCACAAATGGCTAAACTGAATGGCAATAAAGGTTTTTCTTCTGAAGATAAAG 148980 148981 GCGAGTGGAAACTGAAACTCGATAATGCGGGTAACGGTCAAGCAGTAATTCGTTTTCTTC 149040 149041 CGTCTAAAAATGATGAACAAGCACCATTCGCAATTCTTGTAAATCACGGTTTCAAGAAAA 149100

106

149101 ATGGTAAATGGTATATTGAAACATGTTCATCTACCCATGGTGATTACGATTCTTGCCCAG 149160 149161 TATGTCAATACATCAGTAAAAATGATCTATACAACACTGACAATAAAGAGTACAGTCTTG 149220 149221 TTAAACGTAAAACTTCTTACTGGGCTAACATTCTTGTAGTAAAAGACCCAGCTGCTCCAG 149280 149281 AAAACGAAGGTAAAGTATTTAAATACCGTTTCGGTAAGAAAATCTGGGATAAAATCAATG 149340 149341 CAATGATTGCGGTTGATGTTGAAATGGGTGAAACTCCAGTTGATGTAACTTGTCCGTGGG 149400 149401 AAGGTGCTAACTTTGTACTGAAAGTTAAACAAGTTTCTGGATTTAGTAACTACGATGAAT 149460 149461 CTAAATTCCTGAATCAATCTGCGATTCCAAACATTGACGATGAATCTTTCCAGAAAGAAC 149520 149521 TGTTCGAACAAATGGTTGACCTTTCTGAAATGACTTCTAAAGATAAATTCAAATCGTTTG 149580 149581 AAGAACTTAATACTAAATTCGGTCAAGTTATGGGAACTGCTGTGATGGGCGGTGCTGCTG 149640 149641 CAACTGCTGCTAAGAAAGCTGATAAAGTTGCTGATGATTTGGATGCATTCAATGTTGATG 149700 149701 ACTTCAATACAAAAACTGAAGATGATTTTATGAGCTCAAGCTCTGGTAGTTCATCTAGTG 149760 149761 CTGATGACACGGACCTGGATGACCTTTTGAATGACCTTTAATAGATTATATTACTAATTA 149820 149821 ATTGGGGACCCTAGAGGTCCCCTTTTTTATTTTAAAAATTTTTTCACAAAACGGTTTACA 149880 149881 AGCATAAAGCTTTATGGTACTATACAACTATCGGCAATACTGCTAATAATTAAAGAGGAA 149940 149941 AATAATATGGCTAAAGTTGATATTGACATCGTTGATTTTGAATATATTGAAGAGATTATT 150000 150001 CGTAATCGTTATCCTGAACTTAGTATCACAAGCGTGCAAGATTCTAAGTTTTGGAGTATT 150060 150061 CAAATCGTTATTGAAGGTCCTCTTGAAGACCTCACCCGCTTTATGGCTAATGAATATTGT 150120 150121 GATGGCATGGATTCTGAAGACGCAGAATTTTACATGGGACTGATTGAACAATAATTATCA 150180 150181 AGGGGCTATCAAGCCCCTATTAAAATGAGGAAAATCAAAATGGAAATCGGCAAAAAATAC 150240 150241 GAGTTAAATCCACATCGTATTAAATCTTTCATTGATATTAGTTCATCAAATGCTAGTATG 150300 150301 GTCGGCATCATTCAAGAAAATGGCGGTTGGTTTGAAGTTAAATCAATATCAAGTTTAGAT 150360 150361 GGCTTTGATTATGTAACCGAAATCATTTGTGCTAATGGTGAAATCTATAATGATGATGGT 150420 150421 ATGGGTGATGATTATTTTGAACTTAGTGAAGAAGAGTTTTATTGTTTCCGCGAATATAAA 150480 150481 GAACCGACTTCTGAAGAAGATGAAGTCAAAGACAAGGTTTCTGGCGTAACAAAAATTCAC 150540 150541 TGCATTGTTGACGAAAACAATGTAGATGAAATCATTGAACTTTTGCGAAAAACTTTCAAA 150600 150601 AAGTAGTTTACATCAGGGTAGTAGTGTGATACTATTACCCTATCAAAACTAATGGAGAAA 150660 150661 AGAAAATGTTCGCACCTTATATTATGGCAGCAGTTATGTTGGTCTGTTTATATCTTTTGA 150720 150721 TTAAAGCTTGCTAAGGAGAATAAAATGAGATTACAACGCCAGAGCATCAAAGATTCAGAA 150780 150781 GTTAGAGGTAAATGGTATTTTAATATCATCGGTAAAGATTCTGAACTTGTTGAAAAAGCT 150840 150841 GAACATCTTTTACGTGATATGGGATGGGAAGATGAATGCGATGGATGTCCTCTTTATGAA 150900 150901 GACGGAGAAAGCGCAGGATTTTGGATTTACCATTCTGACGTCGAGCAGTTTAAAGCTGAT 150960 150961 TGGAAAATTGTGAAAAAGTCTGTTTGAGGAAAATATTATGTATGTCATTGAAATTATCCA 151020 151021 AGTAAGCATTCGTTTTCAATTAAAATAGGATTTACGTAATGATTAAATTGGTATTCGCTT 151080 151081 ATTCTCCAACTAAAACGGTCGACGGCTTTAATGAATTAGCATTCGGTTTAGGTGATGGTT 151140 151141 TACCATGGGGACGAGTTAAAAAGGACCTCCAGAATTTTAAAGCTCGTACTGAAGGCACAA 151200 151201 TTATGATTATGGGTGCTAAAACGTTCCAGTCATTGCCTACATTACTTCCTGGTCGTAGCC 151260 151261 ATATTGTGGTGTGTGACCTTGCGCGTGATTATCCTGTAACTAAAGACGGCGATTTAGCAC 151320 151321 ATTTCTATATTACTTGGGAGCAATATATAACTTACATTTCTGGCGGCGAAATTCAAGTGT 151380 151381 CAAGCCCTAATGCACCATTCGAAACTATGCTTGATCAGAATTCTAAAGTAAGTGTAATTG 151440 151441 GCGGGCCTGCTCTGTTATATGCTGCATTACCTTATGCAGATGAAGTAGTTGTTTCTCGCA 151500 151501 TCGTTAAAAGGCATCGTGTTAATTCAACAGTTCAATTAGACGCAAGTTTTCTTGATGATA 151560 151561 TAAGCAAGCGTGAAATGGTTGAAACGCATTGGTATAAAATAGATGAAGTAACAACCCTTA 151620 151621 CGGAATCAGTATATAAATGAAACAATACCAAGATTTAATTAAAGACATTTTTGAAAATGG 151680 151681 TTATGAAACCGATGATCGTACAGGCACAGGAACAATTGCTCTGTTCGGTACTAAATTACG 151740 151741 CTGGGATTTAACTAAAGGTTTTCCTGCGGTAACAACTAAGAAGCTCGCCTGGAAAGCTTG 151800 151801 CATTGCTGAGCTAATATGGTTTTTATCAGGAAGCACAAATGTCAATGATTTACGATTAAT 151860 151861 TCAACACGATTCGTTAATCCAAGGCAAAACAGTCTGGGATGAAAATTACGAAAATCAAGC 151920 151921 AAAAGATTTAGGATACCATAGCGGTGAACTTGGTCCAATTTATGGAAAACAGTGGCGTGA 151980 151981 TTTTGGTGGTGTAGACCAAATTATAGAAGTTATTGATCGTATTAAAAAACTGCCAAATGA 152040 152041 TAGGCGTCAAATTGTTTCTGCATGGAATCCAGCTGAACTTAAATATATGGCATTACCGCC 152100 152101 TTGTCATATGTTCTATCAGTTTAATGTGCGTAATGGCTATTTGGATTTGCAGTGGTATCA 152160 152161 ACGCTCAGTAGATGTTTTCTTGGGTTAATTGAGGCCTGAGTATAAGGTGACTTATACTTG 152220 152221 TAATCTATCTAAACGGGGAACCTCTCTAGTAGACAATCCCGTGCTAAATTGTAGGACTGC 152280 152281 CCTTTAATAAATACTTCTATATTTAAAGAGGTATTTATGAAAAGCGGAATTTATCAGATT 152340 152341 AAAAATACTTTAAACAATAAAGTATATGTAGGAAGTGCTAAAGATTTTGAAAAGAGATGG 152400 152401 AAGAGGCATTTTAAAGATTTAGAAAAAGGATGCCATTCTTCTATAAAACTTCAGAGGTCT 152460 152461 TTTAACAAACATGGTAATGTGTTTGAATGTTCTATTTTGGAAGAAATTCCATATGAGAAA 152520 152521 GATTTGATTATTGAACGAGAAAATTTTTGGATTAAAGAGCTTAATTCTAAAATTAATGGA 152580 152581 TACAATATTGCTGATGCAACGTTTGGTGATACATGTTCTACGCATCCATTAAAAGAAGAA 152640 152641 ATTATTAAGAAACGTTCTGAAACTGTTAAAGCTAAGATGCTTAAACTTGGACCTGATGGT 152700 152701 CGGAAAGCTCTTTACAGTAAACCCGGAAGTAAAAACGGGCGTTGGAATCCAGAAACCCAT 152760 152761 AAGTTTTGTAAGTGCGGTGTTCGCATACAAACTTCTGCTTATACTTGTAGTAAATGCAGA 152820 152821 AATCGTTCAGGTGAAAATAATTCATTCTTTAATCATAAGCATTCAGACATAACTAAATCT 152880 152881 AAAATATCAGAAAAGATGAAAGGTAAAAAGCCTAGTAATATTAAAAAGATTTCATGTGAT 152940 152941 GGGGTTATTTTTGATTGTGCAGCAGATGCAGCTAGACATTTTAAAATTTCGTCTGGATTA 153000 153001 GTTACTTATCGTGTAAAATCTGATAAATGGAATTGGTTCTACATAAATGCCTAACGACTA 153060

107

153061 TCCCTTTGGGGAGTAGGGTCAAGTGACTCGAAACGATAGACAACTTGCTTTAACAAGTTG 153120 153121 GAGATATAGTCTGCTCTGCATGGTGACATGCAGCTGGATATAATTCCGGGGTAAGATTAA 153180 153181 CGACCTTATCTGAACATAATGCTACCGTTTAATATTGCGTCATATGCTACGTTAGTTCAT 153240 153241 ATTGTAGCTAAGATGTGTAATCTTATTCCAGGGGATTTGATATTTTCTGGTGGTAATACT 153300 153301 CATATCTATATGAATCACGTAGAACAATGTAAAGAAATTTTGAGGCGTGAACCTAAAGAG 153360 153361 CTTTGTGAGCTGGTAATAAGTGGTCTACCTTATAAATTCCGATATCTTTCTACTAAAGAA 153420 153421 CAATTAAAATATGTTCTTAAACTTAGGCCTAAAGATTTCGTTCTTAACAACTATGTATCA 153480 153481 CACCCTCCTATTAAAGGAAAGATGGCGGTGTAATTTTATTATTGCGAGGATATATGATTT 153540 153541 TACGATTTAAAGATACTTCTGGTGTAGTTCTTTTTACACTTCCTAACCCAAGCGAGTTAG 153600 153601 AAGTTCCAGGACCAGAACAGCCTATTACCATTTATGGTAAAAAATACTATACTCATAAAA 153660 153661 TGACTCGTGAGTATTTTGATAATAAAATTTCCACAGTTAAAACTTCTTCTGACTGTTACT 153720 153721 ACGATATTACTGTTTTAACGGAAAAACAATATGACGAATTATTCCAGCGTGGGCCGTCTA 153780 153781 TGCCGGGTAGTGAATAAATATAAATCCGACTTTGATGTTAATATTCACCGCGGTACATTT 153840 153841 TGGGGAAATTACGTCGGTAAAGATGCTGGCAGCCGGGAGGCTGCCATTGAATTATTCAAA 153900 153901 AAAGATTTTATACGTCGAATTAAATCCGGAGAAATAACTAAAGCACATTTAGAGCCTTTA 153960 153961 CGTGGAATGAGGCTAGGATGCACATGTAAACCAAAGCCGTGTCATGGTGATATAATAGCT 154020 154021 CATATAGTTAACCGATTGTTTAAAGACGATTTTCAAGTTGAGGACTTATGCAATTAATTA 154080 154081 ATGTTATCAAAAGTAGTGGTGTTTCTCAGAGCTTTGACCCACAAAAAATTATTAAAGTTT 154140 154141 TATCTTGGGCAGCTGAAGGAACATCAGTAGATCCTTATGAATTATATGAAAATATTAAAT 154200 154201 CTTATCTCCGTGATGGAATGACAACTGATGATATTCAGACTATTGTCATTAAGGCTGCTG 154260 154261 CGAATTCTATTTCGGTTGAAGAACCTGATTATCAATATGTAGCTGCACGCTGTTTAATGT 154320 154321 TTGCTCTTCGTAAGCATGTTTATGGGCAGTATGAACCACGTTCATTTATTGACCATATTT 154380 154381 CTTATTGTGTAAATGCAGGTAAATACGACCCTGAATTATTGTCAAAATATTCAGCAGAAG 154440 154441 AAATTACATTTTTAGAATCAAAAATTAAGCACGAACGGGATATGGAATTTACTTATTCCG 154500 154501 GGGCAATGCAATTAAAAGAAAAATATCTAGTTAAAGATAAAACCACTGGTCAAATTTATG 154560 154561 AAACTCCACAGTTTGCATTTATGACTATTGGAATGGCACTGCATCAAGATGAACCTGTTG 154620 154621 ATAGATTAAAACATGTTATCCGTTTTTATGAAGCAGTATCTACTCGACAGATTTCATTGC 154680 154681 CAACTCCTATTATGGCTGGTTGTCGTACTCCGACTCGACAGTTTAGTTCATGTGTTGTTA 154740 154741 TTGAGGCAGGAGATTCATTGAAGTCTATCAATAAGGCTTCTGCTTCAATTGTTGAATATA 154800 154801 TCTCTAAACGCGCTGGAATTGGTATTAACGTTGGTATGATTCGTGCCGAAGGTTCTAAGA 154860 154861 TTGGCATGGGTGAAGTACGCCATACTGGTGTTATTCCTTTTTGGAAACATTTTCAGACTG 154920 154921 CAGTTAAATCATGTTCACAGGGTGGAATTCGTGGCGGCGCTGCTACTGCTTATTATCCTA 154980 154981 TTTGGCATTTGGAAGTTGAAAATCTTCTCGTTTTGAAAAATAACAAAGGCGTAGAAGAAA 155040 155041 ACCGCATTCGTCATATGGATTATGGTGTTCAACTGAATGATTTGATGATGGAACGTTTTG 155100 155101 GAAAAAACGATTACATTACTTTGTTCAGTCCGCATGAAATGGGTGGCGAGCTTTATTATT 155160 155161 CTTATTTTAAAGACCAAGACCGTTTCCGTGAATTATACGAAGCAGCAGAAAAAGACCCTA 155220 155221 ATATTCGTAAAAAGCGTATTAAAGCCCGTGAACTATTTGAATTGCTCATGACTGAACGTT 155280 155281 CAGGAACAGCAAGGATTTATGTGCAGTTCATTGATAATACGAATAACTATACTCCGTTTA 155340 155341 TTCGTGAAAAGGCACCTATTCGTCAGAGTAACTTGTGCTGTGAAATTGCTATTCCAACAA 155400 155401 ATGATGTGAATAGCCCTGATGCTGAAATTGGATTGTGTACTCTCTCTGCATTCGTATTAG 155460 155461 ATAATTTTGACTGGCAAGACCAAGATAAAATTAATGAATTGGCAGAAGTTCAAGTTCGTG 155520 155521 CTCTTGATAATCTGTTGGATTACCAAGGATATCCGGTTCCTGAAGCAGAAAAAGCTAAAA 155580 155581 AGCGTCGTAACCTCGGTGTAGGTGTTACCAACTATGCAGCTTGGCTGGCAAGTAACTTTG 155640 155641 CTTCTTATGAAGATGCTAACGATTTAACACATGAACTATTTGAGAGATTACAGTATGGAC 155700 155701 TCATTAAAGCATCCATTAAGCTCGCCAAAGAAAAAGGACCTTGCGAATATTATTCAGACA 155760 155761 CTCGTTGGTCTCGAGGCGAATTACCTATCGACTGGTACAATAAAAAGATTGACCAAATCG 155820 155821 CAGCTCCAAAATACGTTTGTGACTGGTCGGCGCTGCGGGAAGACCTTAAGCTATTTGGCA 155880 155881 TCCGTAATAGCACATTATCAGCACTTATGCCATGTGAGTCATCTTCCCAAGTTTCTAACA 155940 155941 GTACAAACGGCATCGAGCCTCCACGTGGACCGGTAAGTGTTAAAGAATCAAAAGAGGGTT 156000 156001 CCTTTAATCAAGTCGTGCCCAATATTGAGCATAACATAGACCTCTATGATTATACATGGA 156060 156061 AATTAGCTAAGAAAGGTAATAAACCTTATCTTACGCAGGTAGCTATTATGCTGAAATGGG 156120 156121 TATGTCAATCAGCTTCAGCGAATACATATTATGACCCGCAGATTTTTCCAAAAGGAAAGG 156180 156181 TTCCAATGTCAATAATGATTGATGACATGCTATACGGATGGTATTATGGCATTAAAAATT 156240 156241 TCTATTATCATAATACCCGTGATGGTTCTGGTACTGATGATTATGAAATAGAAACTCCTA 156300 156301 AAGCCGATGATTGTGCAGCGTGTAAATTGTAATGAATTATCAAAAAATCTATAACGACCT 156360 156361 AATTTCCCGAGCTCAGGCTCGGGAACCTTTATCCGAATATAAAGAGACACATCATATAAT 156420 156421 CCCTAGATGCATGGGAGGTTCTGATGATAAAGAAAATTTAGTTGAATTAACAGCTAGAGA 156480 156481 GCATTTTATAGCGCATGCTATTTTATCAAAGATTTATCCGGTAAAATCTGTTATATTCGC 156540 156541 ATTTTTCATGATGTGCAATATGAAAGGAACTAAGAAACGTCATTATAAAGTTCATTCTAA 156600 156601 AATATATGCCCATGCAAAGAAGTTAAATTCGCAATTTCGCAAAGGTACGGTCATTTCTGA 156660 156661 AGAAACGAGACTGAAAATGTCAAAAGCGAAAACAGGTCTGCGTTTAACAGAAGAAACCAA 156720 156721 ACACAAAATATCGGCGGCAACCAAAGGAAGGGCTAAAAGCGAAGAAACTAAGAAAAAGAT 156780 156781 GAGAAAGCCTAAAACTGAAGAAGCTAAAAAGAATATAGCTGCTGCTAAAGTCGGCGTGCT 156840 156841 TAATCCGATGTATGGTACAATTTCTCCGACAAGAGATGTTCCTCATACTAAAGAAACCCG 156900 156901 TGATTTGATTTCTTTGAGAACTAAACAAGGAGCAGAGTATCCACCTTGCCCGCACTGTGG 156960 156961 TAAGAAAGTTAATAAAGGCAATGCTTTAAGATGGCATTATGATAAATGTAAATTTAAGGA 157020

108

157021 TTCTAAATGAGTACAGTTTTTAATACAAATCCAGTTGATGTTTTGAATGAACCGATGTTC 157080 157081 TTTGGTTCTGGATTAGGTTTAGCTCGATATGATATTCAACGACATCGAGTATTTGAAGAA 157140 157141 CTCATTGAGCGGCAGATCAGTTTTTTTTGGCGTCCTGAAGAAGTAAACTTAATGATGGAT 157200 157201 GCTGCGCAATTTAATAAGCTTCCTCAGTATCAGCAAAATATTTTTACTAACAACCTGAAG 157260 157261 TATCAATCACTTTTGGATAGCATTCAGGGTCGTGCGCCATCTGCTGTACTTATGTCATTA 157320 157321 ATTTCAGACCCAAGTCTTGATACATGGGTTGCTACATGGACTTTTAGTGAAACTATTCAC 157380 157381 AGTCGTTCATATACTCATATCATGCGAAATCTTTATACTGATCCATCGAAGGTATTTGAT 157440 157441 GAGATTGTATTAGATGAAGCTATTATGAAACGTGCTGAATCAATTGGACGTTATTATGAT 157500 157501 GATGTTCTGACTAAAACCCGTGAATGGGAAAATGCTAAAGAATTTGTAGAACTAGCTAAA 157560 157561 GAATCTCCTGATGCCGACTTTCGTTTAAACCGAGCTATTAAACAAGAAGCCGAAGCTAAA 157620 157621 CGTGCTTTAATGAAGTCTCTTTACCTCTGTTTGCACGTTATTAATGCCTTAGAAGCTATT 157680 157681 CGTTTTTATGTATCTTTTGCATGTACCTTTAACTTCCATAAGAACATGGAAATCATGGAA 157740 157741 GGTAATGCCAAGATTATGAAGTTCATTGCTCGTGATGAGCAGCTTCATCTTAAAGGCACT 157800 157801 CAATATATTATTCGTCAACTTCAACTTGGCACTGATGGCGATGAATGGGTTAAAATTGCT 157860 157861 CAAGAGTGTGAACAAGAAGCAGTTGATATTTTCATGGAAGTTAATCGCCAAGAAAAAGAT 157920 157921 TGGGCAGTTCATTTATTTAAAGATGGCGATGTTCCTGGATTAAATACAAATAGCATGTGG 157980 157981 AGCTTTATTGATTACTTAACTGTATCTCGTATGAAACAGTGTGGTCTTCCATGCCCAATT 158040 158041 ACCGATGCTCCGGTTAAACATCCATATCCTTGGATTCGTGAATATCTTAATTCTGATAAT 158100 158101 GTTCAATCCGCACCACAAGAAGTAGAACTGTCATCCTACCTTGTTGCACAGATTGATAAT 158160 158161 GATGTTGATGATAAAGTTATGATGAGTTTTAAAAAATACTTTTAAGGAGTGGGCCGCAAG 158220 158221 GCCCATTTTATTATGAAAGAAATTGCAACAGAATATTCATTTATTAAATATACTGAGCTA 158280 158281 GAATTAGACGACAACGGAAGTATAAAACAATTATCTATTCCAAACAAGTATAACGTAATT 158340 158341 TATGCTATTGCTATAAATGATGAGCTTGTTTATATTGGAAAAACTAAAAATTTACGTAAA 158400 158401 AGAATAAACTATTATAGAACTGCTATTAATCGTAAAGACAAAACGTCTGATTCTACTAAA 158460 158461 TCTGCATTAATTCATTCTGCGCTAAAGGAAGGAAGCAAAGTTGAATTTTACGCCCGCCAA 158520 158521 TGTTTTAATCTTTCTATGACAAATGAGTTAGGTACAATGACAATCGCAACGATTGACTTA 158580 158581 GAGGAGCCGCTATTCATTAAACTGTTTAACCCGCCTTGGAATATTCAACATAAGAAAAAA 158640 158641 TGATGCTTCCACATGGAGTGTGGTACTATATTCAAAACACAAAAGAGGATACACAATGCA 158700 158701 AGAACTTTTTAACAATTTAATGGAACTATGTAAGGATTCACAGCGTAAGTTTTTTTACTC 158760 158761 GGATGATGTAAGTGCATCTGGAAGAACTTATAGAATTTTCTCATATAATTATGCATCTTA 158820 158821 TTCTGATTGGTTACTTCCAGATGCACTGGAATGTCGTGGAATCATGTTTGAAATGGATGG 158880 158881 AGAAAAACCGATAAGAATTGCCTCTCGTCCTATGGAAAAGTTTTTTAACTTAAATGAAAA 158940 158941 TCCATTCACGATGAATATCGATTTAAATGATGTTGACTACATTCTAACAAAAGAAGACGG 159000 159001 GTCTTTGGTATCAACTTATTTAGACGGTGATGAAATTCTGTTCAAATCAAAAGGTTCAAT 159060 159061 CAAATCTGAACAGGCTTTAATGGCTAATGGGATTTTGATGAATATTAATCACCATCGGTT 159120 159121 GCGTGATAGACTTAAAGAATTAGCTGAAGATGGATTTACTGCTAACTTCGAATTCGTTGC 159180 159181 TCCGACGAATAGAATCGTTCTTGCTTACCAAGAAATGAAAATTATTTTACTGAATGTTCG 159240 159241 TGAAAACGAAACGGGTGAATACATTTCATACGATGATATTTATAAAGATGCTGCTCTTCG 159300 159301 TCCATATCTAGTTGAACGATTCGAAATCGATAGCCCTAAATGGGTAGAAGAAGCTAAAAA 159360 159361 TGCAGAAAACATCGAAGGCTATGTTGCTGTGATGAAAGATGGTTCTCATTTTAAAATTAA 159420 159421 GTCTGACTGGTATGTGTCTCTTCATAGTACAAAAAGTTCATTAGATAATCCAGAAAAATT 159480 159481 GTTTAAGACTATTATTGACGGCGCATCAGATGATCTTAAAGCAATGTACGCTGACGATGA 159540 159541 ATATTCATATAGAAAAATTGAAGCATTTGAAACGACTTATCTGAAGTACTTAGACCGAGC 159600 159601 TCTGTTTTTAGTTCTTGACTGTCACAATAAGCATTGTGGTAAAGATAGAAAGACTTATGC 159660 159661 GATGGAAGCGCAAGGTGTTGCTAAAGGTGCTGGAATGGAACATCTGTTCGGTATCATTAT 159720 159721 GAGCCTATACCAGGGGTACGATAGTCAAGAGAAAGTTATGTGTGAAATCGAACAGAATTT 159780 159781 TTTGAAAAATTATAAAAAATTTATCCCAGAAGGATACTAAGCTGTTTACAAGTCCCTCGT 159840 159841 GTTGTGTTACAGTAGTCTTACTGGCATAACATGAGGACTTTATGATGGATTTGCAGCTTA 159900 159901 TTACTATTGAAATGGTCGTTGAAGCATACGGTGATACTACAGATGGGATTTCTGTATTCA 159960 159961 AAGGAAATCGTCGAGTTGGATATATCACCGATCTTAAGAAAGATTTAGCTAAGCAAGTCA 160020 160021 AGCGGAAAACGACCATTAAAGAATATCGAAATCGTCGTCTTGAGCAAGCCCGTGATATGC 160080 160081 TTCCTGATGCGGTTGAAGAGATGAAAGTCTTTTTAGAAAATCAACTCGCTAAGTATGATT 160140 160141 GTGAAGTGTTCATTAATCAGACTCAACCCAATGTTCATATCAATAGCTGCAAATGCTATA 160200 160201 TCATTGTTAATCCTTTAACGGGAAAACATCGTCTTGGAATTAGTAATCCAAATCGTAGTG 160260 160261 CATCGGATATGGCAGAAGATGTTGAGGCATGCTTTAAAATTTCTAAATCTCCAGCTGAAC 160320 160321 ATCATATTTTAATTAACGGTCTTTCTCAAGACGATATTATAGAGGTTATTAAAACTTTAT 160380 160381 GCATGTAAGTAATTTTACAGCTGGATTGCTATTACTTGTAATAGCATTTGGCGGAACATC 160440 160441 TATTATTTTAAAAAATAAGGTAGAAAGATTAGAAACATCAGTTACTGAAATTACAAAAAC 160500 160501 AGCCAATGAAAACGCTTTAGCATTAAATAATTTGCGAATTCAGTATAATTATATTGATGC 160560 160561 GATGAATAATAAAAATCGTGAGGCAATTGCTGCTATTGAGCGTGAAAATGAAAAACTGCG 160620 160621 CAAAGACGCAAAGAAGGCGGATGTGGTGGCTCATAAGCCAGGATTGGTTGAAAAACAAAT 160680 160681 CAACAACTCCTTCAACAAGTTCGCAGAAGACATCCAGGACCTTTCTAAATGATTAAACTA 160740 160741 TCAGCAGTAATATTATCTATTGGTCTTCTAGTTGGTTGTTCGACAAAGCCTCTAGAAGTA 160800 160801 AAGAAAGAAACAGTTCATCCTAATTGGCCTGTACAGATAAAGTCATATGACGAAGCTAAA 160860 160861 CTATCTTGGCAAGTTAAAGTTATCGATGGTAAAGCTTGGGTCGGTATGCCATTTGAAGAT 160920 160921 TCTCAGGAATTTCGTATTTGGCTTAATGATGTAAAACGATATGTACATGACCAGAAAACT 160980

109

160981 ATGATATGCTATTATCGTCAAGAGTTAAAAGAGGATAAATGTAAATGATTTCATGGCATC 161040 161041 AATTTGAACATCTCAAAGGATTGATTTATGAATCCGAGATGGCTGCAATGATTTATGGAC 161100 161101 GCCAGATTCAGCGGTTAGAATCTTTACCTCCAACTAATGATGTTTTATTAGCTCAATCAC 161160 161161 GTGCTAATCTCAAAAATGAATATCAAAATAAGTGGGGCAAAGCATCTAAAGACCTGCATG 161220 161221 ATTATATTCAATCACTGGTTGAGAAAAAATAAATGAAAAAGATTATTTTGACTATTGGCT 161280 161281 GTCCTGGTTCTGGTAAGAGTACTTGGGCTCGTGAATTTATTGCTAAGAATCCCGGGTTTT 161340 161341 ATAATATCAATCGTGATGACTATCGCCAATCTATTATGGCGCATGAAGAACGCGATGAGT 161400 161401 ATAAGTATACCAAAAAGAAAGAAGGCATCGTAACTGGTATGCAGTTTGATACAGCTAAAA 161460 161461 GTATTCTGTACGGCGGTGATTCTGTTAAGGGCGTAATCATTTCAGATACTAACTTGAATC 161520 161521 CTGAACGTCGCCTAGCATGGGAAACTTTTGCCAAAGAATACGGCTGGAAAGTTGAACATA 161580 161581 AAGTGTTTGATGTTCCTTGGACTGAATTGGTTAAACGCAACTCAAAACGCGGAACTAAAG 161640 161641 CAGTACCAATTGATGTTTTACGTTCAATGTATAAAAGCATGCGAGAGTATCTCGGTCTTC 161700 161701 CGGTATATAAAGGGACTCCTGGTAAACCAAAAGCAGTTATTTTTGATGTTGATGGCACGT 161760 161761 TAGCAAAAATGAATGGTCGTGGTCCTTATGACCTTGAAAAATGCGATACCGATATTATTA 161820 161821 ATCCAATGGTCGTTGAACTATCCAAGATGTATGCTCTTATGGGTTATCAAATCGTAGTCG 161880 161881 TTTCAGGCCGTGAAAGTGGAACCGAAGAAGATCCAACGAAATATTATCGTATGACCCGTA 161940 161941 AATGGGTTGAGGACATTGCTGGTGTTCCATTAGTCATGCAGTGTCAACGCGAACAAGGCG 162000 162001 ATACCCGTAAAGATGATGTAGTTAAAGAAGAAATTTTCTGGAAACACATCGCACCACATT 162060 162061 TTGATGTGAAATTAGCTATTGATGACCGAACTCAAGTAGTTGAAATGTGGCGCCGCATCG 162120 162121 GTGTTGAATGCTGGCAAGTCGCTTCGGGAGATTTTTAATGGCTTGGCACCATGAAACTTG 162180 162181 GGCTATTGTTATTGTAAATAGCGGTTTAGTTGGTACTAGTAATGGGCAATTTTGTGTATT 162240 162241 TACTAGTGAAAATAGAGCATGGGAGGAATGCCTTAAATTAAGAGAAAAGAATCCTGATGT 162300 162301 TGAACTAGTAGTAAAGAAAACTAAACTGCCTTTACCATGGAAAACGTATGAATAACCTAG 162360 162361 AAAAGATTTATCGTCTTTGTGATAAAATTGAAAAAGAAAAGAAATATCTATTTTGTCTAT 162420 162421 GGCCTATTGTTGACGGAAGAGTAGGCCTAGATGTTCTTGATTATGAAACAGAAGACAAAG 162480 162481 TAGATGGCGCAACTTTTGATAACGCTTTGGATGTTATTGATTGGCTCGAAGAAAATTATG 162540 162541 CGAGGTAAATATGTTTCCGACTTACTCTAAAATCGTAGAAGTAGTGTTTAGCCAAATTAT 162600 162601 CGCTAATAATATGTTTGAAAAACTTGATAACGCAGCTGAGCTTCGAATCCACGCTCAAGT 162660 162661 GACTCATGTATTGAACACTTTGCTTCCAGACCAGGTGGATTCTATTGCCATTACGTTGTA 162720 162721 TCCAGGTTCCGCGCATATCATTGTTGTATTCGGTCTTGATGCTGAGCTAGCTATCAAAGG 162780 162781 CGACATTCGCTTTGAATCTCAAACTGCGGAATTCAAAGCGATTTAATGGTTTACTTTACG 162840 162841 GTAGAGTTGTGATATTATAGCTCTACCAAAACAAATGAGGAAATTGAAATGAGCGAATGG 162900 162901 TTTGAAGAAGATAAGGTTTATCGCTTTAAAACTGGGTATAAAGATATTTTTAATGAAACT 162960 162961 TGCGGGGCTAATAAACGAATTGCCCAGTTTATTGGGGAAAATTCATTTAAAGTAAAAATA 163020 163021 GATCTTGCGAAAAATGTTATTAGCATTAAACGCGAAATTGATGACTGCTGGTATAAAGCT 163080 163081 GTTGATGTAATGGGTGAATGCTATAAAGATAGCCCGTTATTTTCAATTGCTTATATGTTA 163140 163141 GAATATTCTTTTTTCGAAGAAGTTCAAAAAGATGATTCTGTCAGTAAATTTGAAATTAAA 163200 163201 ACTGATAAAGAAATTAAGTGGAAAGTAGTAGGTATTACTGGTTGTATGTTTTATATCTAT 163260 163261 GCTCAAACTGATACGAAGGAAGAAGCTAAAAAGAAAGCTCTAGAATATCTTGAAGAGTAT 163320 163321 GAAGAAGGTCCGGTAATGATTACTCAAGATGCTGAATTAGTTTCTGTCAAATTAGTTAAA 163380 163381 AACGTTGAAAGTAAGGAGCTGGGATCAACATGCTGCTAAGTGAAAAACCAATTACTGTTA 163440 163441 AAGAATTCCAAGAAAAAGTTAAACTATTTGCACAGGAATTAGTAAATAAGGTTTCTGAAC 163500 163501 GATTTCCTGAAACATCGGTTCGTGTTATTACCGAAACTCCTCGTTCAGTATTAGTAATTG 163560 163561 TGAATCCAGGTGATGGCGATCAAATATCGCATCTTAAACTGGATTTTGATGGATTAGTTG 163620 163621 AAGCACAAAGGGTGTATGGCGTACTATGATGAATTTAACTGATATAATTGATAATTGTCT 163680 163681 TGAAAATGATACTGGCGATCATAGAGCGCTTGACTCTGAAACAGCAAAGTTCATTAGAAT 163740 163741 AACTTTAATGAATGATACTCTGGTGAATAGTATTCATCCTTCTGTGTATGATGCTATTAT 163800 163801 TGTGACGAAGTATCCGGTTGAGCTTCACAAAAAGATGACTGGCGCCGTTTTTATTGATAA 163860 163861 GAAAAACCGCTTTAAAGATGGGCAGAATATAATTAGTTCTGTTATTAAAAGTATAACTAA 163920 163921 ACTTCGTCACGAAATTTATCGGGTTGAAACTGCTAAATCTGCTTATCTGGTGATTATGAA 163980 163981 ATGAAAGCGAGTACAGTACTTCAAATTGCATATTTAGTATCGCAGGAATCAAAATGTTGC 164040 164041 TCCTGGAAGGTAGGAGCAGTAATTGAAAAGAATGGACGTATTATTTCTACTGGGTATAAT 164100 164101 GGTTCACCTGCAGGGGGTGTGAACTGTTGTGATTATGCTGCTGAGCAAGGTTGGTTGTTG 164160 164161 AATAAGCCTAAACATACTATCATTCAAGGTCATAAGCCTGAATGCGTATCATTTGGTTCA 164220 164221 ACTGATCGTTTTGTCTTGGCGAAAGAACATCGTAGTGCTCACTCGGAATGGTCATCTAAA 164280 164281 AATGAAATTCATGCTGAACTAAATGCAATTTTGTTTGCTGCACGAAATGGTTCTTCTATT 164340 164341 GAAGGTGCTACTATGTATGTAACACTTTCTCCATGTCCAGATTGCGCAAAAGCGATAGCT 164400 164401 CAATCTGGAATTAAAAAGCTGGTTTATTGCGAAACATACGATAAAAATAAACCTGGCTGG 164460 164461 GATGATATTCTGCGAAATGCAGGTATTGAAGTGTTTAATGTTCCTAAGAAAAACTTGAAT 164520 164521 AAGTTAAACTGGGAAAATATCAACGAATTCTGTGGTGAATAATGAAATTTCGTTTGGTAA 164580 164581 AGCTCACAGCAATTAGTTCTTATTCTAACGAGAACATCTCATTTGCTGTAGAGTATAAGA 164640 164641 AATATTTTTTCTCTAAATGGAAACAGTATTATAAGACAAATTGGGTTTGTAATGATAGAC 164700 164701 CATATAGTTGGAAATCTGATTTAGAAAAATGCCAAAAATTACTTTCCACTCTTAAAGAAC 164760 164761 GTGGAACAACTCATATTAAAACTGTAATAGGTAAATAAATGAAACTGACGACTGAACAAA 164820 164821 AAGTAGCAATTCGTGAAATTTTGAAAACTAAATTGTCCATGGGTGTTTCAAACGTAGTTT 164880 164881 TTGAAAAGTCTGATGGTACTATTCGTGTTATGAAAGGTACTCGTGATGCAGACTTTATGC 164940

110

164941 CAACCATGCAAACTGGTAAATTGACGGAATCTACTAGGAAAGAATCTACTGACATGATTC 165000 165001 CAGTATTTGATGTTGAACTTGGTGCGTGGCGAGGTTTTTCTATTGACAAATTGATTTCCG 165060 165061 TTAATGGTATGAAAGTTGAGCATTTGCTCCAATTTATTGGTAAATAAATGCTTTAAGAAT 165120 165121 TATTTGTTATTATTAATTCATCTGTTAACAGAAAGGAAAAACGATGTCTGAAGTACAACA 165180 165181 GCTACCAATTCGTGCTGTCGGTGAATATGTTATTTTAGTTTCTGAACCTGCACAAGCCGG 165240 165241 TGATGAAGAAGTTACAGAATCAGGACTTATTATCGGTAAACGTGTTCAAGGTGAAGTTCC 165300 165301 TGAACTGTGTGTAGTTCACTCTGTCGGTCCTGATGTTCCTGAAGGTTTCTGCGAAGTTGG 165360 165361 TGATTTGACTTCTCTTCCAGTTGGTCAAATTCGAAATGTTCCGCATCCTTTTGTAGCTCT 165420 165421 GGGTCTTAAGCAGCCAAAAGAAATTAAACAAAAATTCGTTACTTGTCACTATAAAGCTAT 165480 165481 TCCGTGTCTTTATAAGTGATATAAATAATAATATGAATTGGGTGTCGGAATAATAAGTTA 165540 165541 ACCGAACAATTCTATGTGGTAGTCTACAACTGAGAGATCTGTCGAAAGAAGATGAAATTC 165600 165601 AGAAGAACGTGACTACCGAGTTTTAATCTCTAACGAGAATTTTTAAATGATTAAACAATT 165660 165661 ACAACACGCTCTTGAACTGCAACGAAACGCATGGAATAATGGTCACGAAAACTATGGCGC 165720 165721 ATCTATTGATGTTGAAGCCGAAGCTCTTGAAATCCTGCGTTATTTCAAACATCTGAATCC 165780 165781 TGCTCAAACTGCATTAGCTGCTGAGCTTCAGGAAAAAGATGAACTTAAGTATGCTAAGCC 165840 165841 TCTGGCTTCTGCTGCACGAAAAGCAGTTCGTCACTTTGTGGTAACATTGAAGTAATTTAT 165900 165901 TGGAGATTCACTGCCTTAGTGTGAGCTAAATCGAGGAGCCGTCGAACTGTCTGATTAATG 165960 165961 ATTTGCGAATCATTATAGTTTTAAGACCCCGACAGTTTTACGGTGTACCTCTTGAATGTT 166020 166021 ACTATCATGCGTCAGAAAAGTGTTATCTGTGTAAGTCTTGGTGGTATGATGACGAGGTTT 166080 166081 ATGGTTATCCTGTCGGTAAATATTCAAAACCTATGTTCCCCTTGAGGGCTTTCGCAGGCA 166140 166141 ATGCCAATAAGTCCTGCATTTTCATTTAAAAGAGAATTTATAATGGCAAAACAAGCTAAA 166200 166201 GCAAAGAAAGCAGTTGAAAAGAAAGTTGGTGATTCTAAACGCGCTGGTTACAAGCGTGGG 166260 166261 TCGAACTCTCGTATCAATCAAACTGTTGAGAAGATCATGCGCCGAGCACGTGCGGTTCTT 166320 166321 CGAGATGATGCTTCTCGTTTTGGTAAGCAGAAAGCATAAGTTGAGGACTCCTTCGGGAGT 166380 166381 CCTTTTTTATTTTCCAAAGATTGCACAAAGTTGTTTACAGTAACGGTTCCTTTGTGATAG 166440 166441 TATTATCTTACACAAACAAAGGAGAATAAAATGAAAACGATTAATCTGAACGCTACAGTT 166500 166501 AAAACTAAATGCTTCAATGGTAAATATAATGAAACTATGTGGTTCTTAATGGCAGTTGAA 166560 166561 GGTGATATTATTGAAGTAGAAACAACAGAAGGTATGGGAACAGATTTCACCTTTACAGTT 166620 166621 CAAGTTCATAATTTCTTTACTGGTTGGATTTATGAATTGAATACAGTAATCGTTGGAAAA 166680 166681 ATTGAACAAAATGAATTAGGCGAATGGCATTATGTTACAGCTCGCCAACGTGCTGAACGC 166740 166741 TTAATTGAGAAGATGAAAAAAGTTGGTAAACTTGACATGCAGCATTGGAAAGTAGTAAAA 166800 166801 TAATTGTTTACTTTGGTACAGGACATGATATTATATACCTGTACCGAAATTAAACATCTT 166860 166861 GGAGAATAAAATGAACTACATTAACTTTGAACGTAAATATGTTTCTAATGGTATTGCAGG 166920 166921 TTCTATTGATACCATCTGCCTTTGGAAACATCAAAATGGATCAGTATGCGAAATTGAACA 166980 166981 GTATATGACTCCTAACTACGTTTATATGCGATTTGAAAACGGTATCACGGTTTCAATCAC 167040 167041 AATGGAAGGTTCCAACTTCAAAATCGCTCTGGATGATGATTTCCGTCAACGCGATTTAGG 167100 167101 GACTCATCCTTGTTGGAATGGTGCTAATCGTAAACTCTTAGTTAAAACTTGGATTCGTCA 167160 167161 TATTCTGAGTAACAGAGCTAAACCTGAGCACTTGGAAGCAATCTTTGATGTAGTTCTTAA 167220 167221 CGAATTTGATATTTAAAATAAAATGAGGGGCTTCAGCCCCTTACTGAGGAAATTATTATG 167280 167281 TTTATGACCACTTATTTTGATACTCGTAAAAACTTCTGCGAAGTAGTTTTCTCAAAGGCG 167340 167341 CCTAAAGACCTTCCTGCACATTTGCAACCTACCAGTGAATCGATTAAAAACTACGTTGAT 167400 167401 GTGGTTTGTCCTTTAGAGTTTCGTACTGTAAATGGGCGCGATACTTTAGCTATCACTAAA 167460 167461 CTCAATCGCGAAATTGACATTGACCCTTCAATTGCGCGTGAAATTAACATTTCTGATATT 167520 167521 GGCGGCGGTAATGTTAAATCGCACGGTTTTCAGATGAGGTTCTAATGAAATTCTTTTTAG 167580 167581 GTCAAACTGTTGAATTAAAGGGAGTTGGTATACCTGGATTAATTTCTAAGGTTCTACCTC 167640 167641 CATTTAAATGGAGTGGTATTCAAATAAAAGAGGCTTATATTGTTTCCTGGGTAAATGGAA 167700 167701 ATGAAGACCTTCGTATGGGTGATGAATTATCTCCTATCTACGGATTAAAGGAATTAGTAT 167760 167761 GAATATAATTAATAAGATTTTTGGAATTCAGTACATTAAGGTCACATATAAAGTAACAGA 167820 167821 TAAAAATCCATATACTGATGAACATGAAGAACCACAAGTTGAGTCTATTATATTAGAAAA 167880 167881 AGGCAGTGACTGGCCAGTTGAATTTCGTCTACCAAACTATGGTCATTGGGCTGATGTTGA 167940 167941 AATTATAAGCATTGAAAATGTCTGAGTTAGAGATTAGAAGTAATTTTAGGTGGCCATCAT 168000 168001 GTGCATTAAGTAATTTCGCCCATTGGCCTTTCGTTATGGATGGTATTCAATTTGGAGGTC 168060 168061 TTGAAGGATTCCTCCAAGGATGCAAGGTGAAAAATGTTGAACAACAACGTCGTATATTTG 168120 168121 GGTTATCCGGGCTTGCCGCCCAACAAGCTGGAAGGTCTTATGCTAGAGCTCAGGACCGTG 168180 168181 GGACCCTCTTCTGGCTTGGAGTTCCGTTTTCAAGATACTCCCCGGCGTGGAAAGAATTAT 168240 168241 ACACAAATGCATATTTTGAAGCAGCGATCCAAAACAAGGGCTTTCGTGATGCATTACAAG 168300 168301 CCTCGAAAGGAAAAGTTTTGAAGCACAGCATGGCTAGTGGTCTAACAAAAGATGATACAA 168360 168361 TACTAACCGAAGCTGAATTTATTGATGTGTTAAACCTATTAAGAGACTCTCTATGAAGCC 168420 168421 TACTATTTTAACCGATATTGATGGAGTATGTTTAAGCTGGCAATCAGGTCTTCCTTATTT 168480 168481 TGCTCAGAAATATAATCTTCCGTTAGAACATATTTTAAAAATGATACAAGATGAGAAATT 168540 168541 TATTTCTCCAGGTAAACTTTTTAATTGTGATGAAGAACTTGGCGTCAAGTTAATTGAAAA 168600 168601 ATACAATCGTTCAGATTTTATTCGTTACTTGTCTCCGTATAAAGATGCCTTGTGTGTAAT 168660 168661 CAATAAATTAAAAGAAGATTATAATTTTGTAGCTGTTACAGCACTGGGTGATTCTATTGA 168720 168721 CGCTCTGCTGAATCGTCAATTTAATTTGAATGCTCTTTTTCCTGGTGCCTTCTCAGAAGT 168780 168781 ACTGATGTGTAGTCATGATTCTTCAAAAGAAGAGTTGTTCAAAAAGGCAAAAGAGAAATA 168840 168841 TAACGTAATTTGTTATATTGACGATCTCGCTCACCACTGCGATCATGCGAGTGAAATATT 168900

111

168901 AAGTGTTCCTGTTTATTGGATGGCTCGAGGGGAGCGTGACAATATTCCAAAAACTGCTCA 168960 168961 GCGAGTTTATACATGGAATGATGTAGAGAATAAGCTTTTTTCACCAAAGGAAAATAAAGA 169020 169021 AAGTTTTGATAGTGAAAAAGCTATAAAAGATGTAATTGAGAAGATGATTAAAAACGATTC 169080 169081 TTTTCCTTGGAACACTACCTGGAGAACTCCTGGATTTAATCCTTATAATCCATATCATCC 169140 169141 ATATTATACGCACTCACACCAGATGCATCCATTCCATACATGGAGTTATATTAAGCCTGG 169200 169201 CGATGCAGGGTATTTTAATAGACTTACTAGTGGTAGTGGTGATAATATTTTCCAAGGAGC 169260 169261 ATTCTAATGTTTGTTGTTCACACTATTTATGAAAATGAAGGTAATACTACACGNAATTTG 169320 169321 TTATATTGACGATCTCGCTCACCACTGCGATCATGCGAGTGAAATATTAAGTGTTCCTGT 169380 169381 TTATTGGAT 169389

112

APPENDIX

Supplementary Materials

CHAPTER 2—OPTIMIZATION OF T4 PHAGE ENGINEERING VIA CRISPR/CAS9

Table S1. crRNA sequences organized by selected gene of interest Gene crRNA Sequence 5'-3' soc soc-cr1 AGTAACTGGTTAATAACTCA soc-cr2 GAAGATTTGTGGAAAGTAAC soc-cr3 TTGCTGCAAATGAAGATTTG soc-cr4 AAGAAAATCAACGTACTGAA soc-cr5 GAATATGCTGCTTTTTCTGA soc-cr6 AATATGCTGCTTTTTCTGAA soc-cr7 CTTTTTCTGAAGGGAATGTC soc-cr8 TCTGACGTTCACAAAATTTC soc-cr9 TTGTGAACGTCAGAATAAAG soc-cr10 TGTGAACGTCAGAATAAAGA soc-cr11 AAATAAGAAAATTGAAGGAA soc-cr12 GATGGAAATAAGAAAATTGA soc-cr13 ACATTTGAGCAGAAATTAGA soc-cr14 AATTACATGGCTAGTACTCG

hoc hoc-cr1 GCAGGTCCTTTTAGTACATA hoc-cr2 CGTAACTCCTGCTAGTCCTG hoc-cr3 TTAATAGTCTTTTGACCGGC hoc-cr4 GGCAGCAGTAAATTGAACTG hoc-cr5 TGTATCCATTACGCGATTCT hoc-cr6 ACCAGATGTAAGCTGAGCTA hoc-cr7 ACGTTAGTTGACCCTTCTAC hoc-cr8 ACACCCAGTGGTCAAACTGG hoc-cr9 GTTTCATCAATAACCCCTGT

gp36 36-cr1 AATTTTCCATTGAATCCAGC 36-cr2 AAAGAAAAAGGGAACCCGAA 36-cr3 ATAGTATTTATAAAGAAAAA 36-cr4 ACAATGGCTGATTTAAAAGT 36-cr5 TAGAGTACATCGTCACCGGC 36-cr6 TAAATACTATTCAAATAAAG 36-cr7 TCAAATAAAGGGGCATACAA

113

36-cr8 ATAAATACTATTCAAATAAA 36-cr9 AAAGTAGGTTCAACAACTGG 36-cr10 TTAAAAGTAGGTTCAACAAC

gp38 38-cr1 AGAACCTAAAGAAGGATACG 38-cr2 GTATAAATATCTTAAAAGGA 38-cr3 TTGAATGAGCAGGAAGACCG 38-cr4 ATATATGGACTGATGACGGT 38-cr5 TCTATTATAAAAACCTTAAG 38-cr6 GTCCATATATCAAATTCGCC 38-cr7 ATTTATGAAGAAGACCATCG 38-cr8 GGAAGACCGAGGCCTTTAAC 38-cr9 GAAAAGCATGAGCATTTAGG 38-cr10 TTTGATATATGGACTGATGA 38-cr11 ATATATTTTCATATTTAGAA

Table S2. Primers used in NEBuilder HiFi DNA Assembly to Construct Donor Plasmids

Primer Sequence Description Names NRG-975 GAGTTTTCGTTCCACTGAGCGATGTTGTTTCTTGGATGC soc-Donor- F-Hifi NRG-976 GATCTTTTCTACGGGGTCTGCGCACTTTCGTCCGTAAT soc-Donor- R-Hifi NRG-979 GCTCAGTGGAACGAAAACTC pCRISPR- R-Hifi NRG-980 CAGACCCCGTAGAAAAGATC pCRISPR- F-Hifi NRG-1310 ACGTGAGTTTTCAACTAATTCCTTTTTAATCAAAGAAGG hoc-Donor- ATTATC F-Hifi NRG-1315 GCTCAGTGGAACCCAGTTGCCATATCTGAAG hoc-Donor- R-Hifi

Figure S1. Nucleotide Sequences for Donor Constructs

1. NRGp16 insertion sequence (nluc T4Δsoc) 2553 bp ROH up hoc—nluc—ROH down soc GATGTTGTTTCTTGGATGCGTGAACAAAAAGACTGTATTGATGATGAATTCCGCGAA CTTCTGACTTCTCTTGGTGAAATGTCACGTGGTGAAAAAGAAGCTTCTGCTGTATGG AAAAAATGGAAAGCACGTTATATTGAAGCGCAAGAAAAACGCATTGATGAAATGTC CCCCGAAGACCAGCTCGAAATTAAATTTGAGCTTGTGGATATATTTCATTTCGTATT AAATATGTTTGTTGGCCTTGGAATGAATGCGGAAGAAATCTTTAAACTTTATTATCT

114

GAAGAACAAACATAATTTTGAACGTCAAGATAATGGATATTAAACAAAAATTTTAT AGAACATATATAGTAAAAGTTAGGACGCCGAAAGGCGTCTTTTGGTACGCTGGGAA ACATGAATCATTTATTGTAAATCCATATAATGATAAATATCCGGGTTCAGGTAAAAT ACTATGGAACATATATCGTAAGTATGGATTTAATTATAAAATACGATGGTCAAAATG CCATGGTTCTAGAGAAAAATCATATGAAGTTGAACGTGAGCTAATATCTGCATTAAA ACGTAAACACCCAGATACTTGCATTAATATTTCTCCTGGTGGTCAGGGTGGAGAAGG AAGAAAATGGACTGAGCAACAACGATTAGAACATAAACTTAGATTAAACAATCCTG AAACAAAAACTCGGATGAAGAATTCACAACGTATAGCCCAAAATAGGGCAGAAAG AAAAGCTCGGCAATCTGAAGTAATGAAAAAGTTTTATTCGAATGGCGGAAATAAAA AGATTTCAGAAGGAACTTCAAGGGCGCAAAGAAAAGCACCGCATTGGCATGAACCA CTTAAAAGCGAAATACACGAGTTATGGGTTTCTTTAGGTAAACCAGCAACAGGCCC GGTTGTAAAGGCGCTTAAAGGAAAATATGATGTAACAAGTTCGGCTCTTAAGAATTT AATTTACTTATTCAGAAAAGAAGATGTATAAATAATCATGTAATTTAAATAAAGGAG AATTACATGGTATTCACTTTGGAGGATTTCGTAGGTGACTGGCGCCAGACAGCCGGT TACAATTTAGACCAAGTACTGGAACAGGGAGGTGTCAGTTCACTTTTTCAAAATTTG GGCGTTTCGGTTACACCCATCCAGCGCATTGTCCTTAGTGGAGAAAACGGGCTTAAA ATCGACATCCATGTTATTATCCCCTATGAGGGGCTGTCGGGGGATCAGATGGGTCAG ATTGAGAAAATCTTCAAAGTCGTCTACCCGGTTGATGACCATCACTTCAAGGTTATT CTTCATTACGGCACGCTGGTCATTGATGGCGTTACGCCTAATATGATTGACTACTTTG GCCGCCCCTATGAAGGGATCGCAGTGTTCGACGGCAAGAAGATCACTGTAACTGGA ACATTGTGGAATGGCAATAAAATCATTGACGAACGTCTGATTAACCCGGACGGCTCT TTGCTGTTTCGTGTTACGATCAACGGGGTCACGGGCTGGCGTCTTTGTGAGCGCATTT TGGCTTAATAACTCAAGGACTCCTTCGGGAGTCCTTTTTTCATTTAAATGGTTTACTT TCCAAAATGAGTATGGTATAATAGAATTATCTTATAGAGGAGAGTACTATGTTAAAT CGTTGGATTAAACCAAATGAAGATTTAGATATTATCATTTCACGACATGTAATGAAG AAATATGAACTACAACCATGGTCTACAGAAGTTGTTGTGCATTCATTTATGATGTAC GCAGATGGTTCTGTCGAATTTAATGTAGAGATTCGATATGATTATGGTGAGAAGCAA GTCGAATTCAAAAGAGGCTTTTTGTAATGTTTATCTTTAATTGGTTTAAAAGTTTCTT TACGGATTTTTTCTCTACAACTCCTGGGGAAGGTGTAGTTCCTATTTCAAATGACTAC CTTCCTTTAACTGTAGTTGAATATGTTTATATGGGAGATGGAACAGTAGAAGCAGTT ACTATGACTTATGAAGAAGCCCAAGAATATTATAAAAATCCTTGGCGCTGGTCAACA CCTACTACATCATCTAACACACAGAATACACAGTCTAGTTCTGATTCATATGATACT AATGTTCCTGTTCATGTATGGGCAGGTGATTCATGTGGAAGTTCTTGTGATTCTAGTT GTTCATCTACATCTTGTGATTGAGGAAAATTATGGAAGCAATTTTGTTTGAAATGTCT ATCAATAGTATTAGTATGGCGTTTGTCAAGGATGTTCCAATTACTGTAGCAGTAATG ATTGATAAAAGATATGACAATAATATGTATCTAGTAGAAGATTTTATTTCAATGCCA ATTCCAGAAGATGTTGAAATAAAACTTAAAAAGATCGGAATTATTGAAACTGTACA AAATTCTCCATTTATGGCAATTCAAGCATTTACTAAATCTAACTATATTGATGTTGCT GAAGCATATTATAATAATAAACCGTTATCCTTCTATTCATATGATTCAATATATGATT GGAAAATAGATAAAGGAAATAAATTTATAATTACGGACGAAAGTGCG

2. NRGp17 insertion sequence (nluc:CBM T4Δsoc) 2895 bp ROH up hoc—nluc-linker (GSSG)—CBM—ROH down soc GATGTTGTTTCTTGGATGCGTGAACAAAAAGACTGTATTGATGATGAATTCCGCGAA CTTCTGACTTCTCTTGGTGAAATGTCACGTGGTGAAAAAGAAGCTTCTGCTGTATGG

115

AAAAAATGGAAAGCACGTTATATTGAAGCGCAAGAAAAACGCATTGATGAAATGTC CCCCGAAGACCAGCTCGAAATTAAATTTGAGCTTGTGGATATATTTCATTTCGTATT AAATATGTTTGTTGGCCTTGGAATGAATGCGGAAGAAATCTTTAAACTTTATTATCT GAAGAACAAACATAATTTTGAACGTCAAGATAATGGATATTAAACAAAAATTTTAT AGAACATATATAGTAAAAGTTAGGACGCCGAAAGGCGTCTTTTGGTACGCTGGGAA ACATGAATCATTTATTGTAAATCCATATAATGATAAATATCCGGGTTCAGGTAAAAT ACTATGGAACATATATCGTAAGTATGGATTTAATTATAAAATACGATGGTCAAAATG CCATGGTTCTAGAGAAAAATCATATGAAGTTGAACGTGAGCTAATATCTGCATTAAA ACGTAAACACCCAGATACTTGCATTAATATTTCTCCTGGTGGTCAGGGTGGAGAAGG AAGAAAATGGACTGAGCAACAACGATTAGAACATAAACTTAGATTAAACAATCCTG AAACAAAAACTCGGATGAAGAATTCACAACGTATAGCCCAAAATAGGGCAGAAAG AAAAGCTCGGCAATCTGAAGTAATGAAAAAGTTTTATTCGAATGGCGGAAATAAAA AGATTTCAGAAGGAACTTCAAGGGCGCAAAGAAAAGCACCGCATTGGCATGAACCA CTTAAAAGCGAAATACACGAGTTATGGGTTTCTTTAGGTAAACCAGCAACAGGCCC GGTTGTAAAGGCGCTTAAAGGAAAATATGATGTAACAAGTTCGGCTCTTAAGAATTT AATTTACTTATTCAGAAAAGAAGATGTATAAATAATCATGTAATTTAAATAAAGGAG AATTACATGGTATTCACTTTGGAGGATTTCGTAGGTGACTGGCGCCAGACAGCCGGT TACAATTTAGACCAAGTACTGGAACAGGGAGGTGTCAGTTCACTTTTTCAAAATTTG GGCGTTTCGGTTACACCCATCCAGCGCATTGTCCTTAGTGGAGAAAACGGGCTTAAA ATCGACATCCATGTTATTATCCCCTATGAGGGGCTGTCGGGGGATCAGATGGGTCAG ATTGAGAAAATCTTCAAAGTCGTCTACCCGGTTGATGACCATCACTTCAAGGTTATT CTTCATTACGGCACGCTGGTCATTGATGGCGTTACGCCTAATATGATTGACTACTTTG GCCGCCCCTATGAAGGGATCGCAGTGTTCGACGGCAAGAAGATCACTGTAACTGGA ACATTGTGGAATGGCAATAAAATCATTGACGAACGTCTGATTAACCCGGACGGCTCT TTGCTGTTTCGTGTTACGATCAACGGGGTCACGGGCTGGCGTCTTTGTGAGCGCATTT TGGCTGGCTCGAGCGGCCCTACGTCAGGTCCGGCCGGTTGCCAAGTTTTATGGGGGG TCAACCAGTGGAACACAGGCTTTACGGCGAACGTTACTGTCAAGAACACAAGCTCC GCTCCTGTGGATGGTTGGACACTGACCTTTTCTTTCCCCTCAGGTCAGCAAGTGACA CAGGCGTGGAGTTCTACGGTTACACAATCTGGTTCTGCTGTTACTGTCCGTAACGCG CCCTGGAATGGAAGCATCCCAGCGGGCGGGACCGCACAGTTTGGCTTCAATGGCTC TCATACAGGGACAAACGCAGCACCAACAGCATTTTCCTTGAATGGAACCCCTTGCAC TGTCGGATAATAACTCAAGGACTCCTTCGGGAGTCCTTTTTTCATTTAAATGGTTTAC TTTCCAAAATGAGTATGGTATAATAGAATTATCTTATAGAGGAGAGTACTATGTTAA ATCGTTGGATTAAACCAAATGAAGATTTAGATATTATCATTTCACGACATGTAATGA AGAAATATGAACTACAACCATGGTCTACAGAAGTTGTTGTGCATTCATTTATGATGT ACGCAGATGGTTCTGTCGAATTTAATGTAGAGATTCGATATGATTATGGTGAGAAGC AAGTCGAATTCAAAAGAGGCTTTTTGTAATGTTTATCTTTAATTGGTTTAAAAGTTTC TTTACGGATTTTTTCTCTACAACTCCTGGGGAAGGTGTAGTTCCTATTTCAAATGACT ACCTTCCTTTAACTGTAGTTGAATATGTTTATATGGGAGATGGAACAGTAGAAGCAG TTACTATGACTTATGAAGAAGCCCAAGAATATTATAAAAATCCTTGGCGCTGGTCAA CACCTACTACATCATCTAACACACAGAATACACAGTCTAGTTCTGATTCATATGATA CTAATGTTCCTGTTCATGTATGGGCAGGTGATTCATGTGGAAGTTCTTGTGATTCTAG TTGTTCATCTACATCTTGTGATTGAGGAAAATTATGGAAGCAATTTTGTTTGAAATGT CTATCAATAGTATTAGTATGGCGTTTGTCAAGGATGTTCCAATTACTGTAGCAGTAA TGATTGATAAAAGATATGACAATAATATGTATCTAGTAGAAGATTTTATTTCAATGC CAATTCCAGAAGATGTTGAAATAAAACTTAAAAAGATCGGAATTATTGAAACTGTA

116

CAAAATTCTCCATTTATGGCAATTCAAGCATTTACTAAATCTAACTATATTGATGTTG CTGAAGCATATTATAATAATAAACCGTTATCCTTCTATTCATATGATTCAATATATGA TTGGAAAATAGATAAAGGAAATAAATTTATAATTACGGACGAAAGTGCG

3. NRGp18 insertion sequence (nluc:CBM T4Δhoc) 3859 bp ROH up hoc—nluc-linker (GSSG)—CBM—ROH down hoc CCAGTTGCCATATCTGAAGCGAGGATTAAATCTATATCCATCGGCCTCAAACGAAAA GAAATCTCTTAATTCGTGGAACGTGCTCTCTTCACAATCGATGCGTACATGACTGAA GTCGTGAAAATGTACTTTAATATCCATAATTATGCCTTACTAAATTTGCCTTTAGAAT CTCTTTTCATGAGACGACCTTTAATAAATCCGTCGGGAATAATACCGTCTGGTTGTAT TAATTTATTTATTGCGCCATTATTGACCCAAAAAGTTCCTGTGGTAGTCGGTTTGACT TTACATCCTTTTCTGGACTTTCTATTAGGATGAACCATCCCTTTTACAAATCCTTCTG GAACAAGTTCTCCAGGTTTAATAAAAATATTTTTAGTTCCATTAGTATAACAAGTTTT ACCTAATACCGTGCCCGGTGAGTTTTCAAATCTTTTAGCGGAAGATTCTTTCATCTTT GCTATAACATCTGTAGTCATAACAATTCCACCAATTCCACCAGGTTTCATATTATAAT AATTTTTGCTTTTTATTAGTTCAGGAGTTATAATTTCTTCTTCATACATGTACGCTTCT TCGGAAGTTTTAAACTCTTTTAGTATTGTTCTAGAGAAATTGTTTTCACCATATTTCT TTATAGCCTGCTGAATTGCCTTACCGGAACCAAGGTAACCATCATTCAAGTCATCAG TAGAGTGCTTTCCTATATACTTTTTACCATTTATTAGATTTGTTGTTTCATATACAAA GTGGTACATACTATTTTCCGAGTAATAAATATATCTATATTTATACTGAGGAAATATT ATGATAGATAAAGATTATATTGCAGAGCTGAAGGCTCTTGATGATAACAAAGAAGC TAAAGCTAAATTAGCTGAATATGCTGAACAGTTTGGTATAAAGGTCAAAAAGAATA AATCTTTTGATAATATCGTTGTTGATATTGAAGAAGCCCTCCAGAAGCTCGCTAGTG AACCTATGCCAGAGACTGATGGGTTATCTATTAAAGACTTAATTGATGCTGCTGATG CCGCAGAGGGATTAAAATATGACGATGAAGAAGTCAATCCAGAAGCAGCACTTCTG ATTGATTCTCCGATTAAATCTGACATTAAAATTGAAGTAGTAGAAACGGATAAAATT CCTGAAAATACCGATGTTTTGATTGAAGATACTCCTTTTGTTGAAGAAAAATTCGAA CAGGCTGTAGCTGAGATTATTGAATCTGAAAAGCCGTCTGTATTTACTCTTCCGGAA AACTTTAGTCCGAATCTTCAACTGATTGGAAAAAATCTAGGATTCTGTACTGTTCCTT GGTGGATTTATCAATGGATTGCTGAAACTCCTGATTGGAAATCTCACCCAACTAGTT TTGAACATGCGTCAGCACACCAAACTTTATTTAGCTTAATTTATTACATTAATCGCGA TGGATCAGTTTTAATTCGTGAAACACGCAACTCTTCTTTCGTAACATTAAAATAAGG ATAACTTATGGTATTCACTTTGGAGGATTTCGTAGGTGACTGGCGCCAGACAGCCGG TTACAATTTAGACCAAGTACTGGAACAGGGAGGTGTCAGTTCACTTTTTCAAAATTT GGGCGTTTCGGTTACACCCATCCAGCGCATTGTCCTTAGTGGAGAAAACGGGCTTAA AATCGACATCCATGTTATTATCCCCTATGAGGGGCTGTCGGGGGATCAGATGGGTCA GATTGAGAAAATCTTCAAAGTCGTCTACCCGGTTGATGACCATCACTTCAAGGTTAT TCTTCATTACGGCACGCTGGTCATTGATGGCGTTACGCCTAATATGATTGACTACTTT GGCCGCCCCTATGAAGGGATCGCAGTGTTCGACGGCAAGAAGATCACTGTAACTGG AACATTGTGGAATGGCAATAAAATCATTGACGAACGTCTGATTAACCCGGACGGCT CTTTGCTGTTTCGTGTTACGATCAACGGGGTCACGGGCTGGCGTCTTTGTGAGCGCA TTTTGGCTGGCTCGAGCGGCCCTACGTCAGGTCCGGCCGGTTGCCAAGTTTTATGGG GGGTCAACCAGTGGAACACAGGCTTTACGGCGAACGTTACTGTCAAGAACACAAGC TCCGCTCCTGTGGATGGTTGGACACTGACCTTTTCTTTCCCCTCAGGTCAGCAAGTGA CACAGGCGTGGAGTTCTACGGTTACACAATCTGGTTCTGCTGTTACTGTCCGTAACG

117

CGCCCTGGAATGGAAGCATCCCAGCGGGCGGGACCGCACAGTTTGGCTTCAATGGC TCTCATACAGGGACAAACGCAGCACCAACAGCATTTTCCTTGAATGGAACCCCTTGC ACTGTCGGATAATCATAAGGGGCTTCGGCCCCTTTCTTCATTTTGAAAGCACACAAA ACACAATCAGAAAATGATGTATATAATGGCACCAACTCGATAACATGAGATTGATT ATGAGAACTGAGGTTGTGGTGTTTACTCTTCATGAGTCTGGAAAGTCATTCATTGAA ATTGCTCGTGAATTAAACTTACAGGCAAAAGAAGTGGCTGTATTATGGGCTCGAGA AAAAGTTGTCTATAGAAAAAGACATATCAATAAAAAGGTGAAAAATGGAACAGTAT GATCTTTATGAAAATGAATCTTTTGCTAATCAATTACGCGAAAAAGCATTAAAAAGT AAACAGTTTAAGCTAGAGTGTTTTATTAAAGATTTTTCAGAACTTGCTAATAAAGCA GCTGAACAAGGTAAAACACATTTTAATTATTATTGTATTGCTCGTGATAAATTGATT ACAGAAGAAATTGGTGATTGGCTGAGAAAAGAAGGATTCAGCTTTAAAGTCAATAG TGATCAGCGTGATGGTGATTGGTTAGAAATTACATTTTGAGGATTAATTATGTTTAA AAAGTATAGCAGTCTTGAAAATCATTACAACTCTAAATTTATTGAAAAACTTTATAG CTTGGGATTGACTGGTGGGGAGTGGGTAGCTCGTGAAAAGATTCACGGCACAAATT TCTCATTGATTATTGAGCGTGATAAAGTGACTTGCGCTAAACGCACTGGACCGATTC TTCCTGCTGAAGATTTCTTTGGGTATGAAATTATTTTGAAGAATTATGCTGATTCCAT TAAAGCTGTACAAGATATTATGGAAACCTCAGCGGTTGTATCTTATCAAGTCTTTGG CGAATTCGCTGGACCTGGCATTCAGAAGAATGTTGATTATTGTGATAAAGATTTTTA TGTATTTGACATTATTGTTACTACAGAAAGCGGTGATGTGACTTATGTAGATGATTA TATGATGGAATCATTCTGTAATACATTTAAATTTAAAATGGCTCCACTTTTAGGTCGC GGTAAATTTGAAGAGCTTATTAAATTGCCAAATGATTTAGATTCTGTCGTCCAAGAT TATAATTTTACAGTAGACCATGCTGGATTAGTTGATGCAAATAAATGCGTTTGGAAT GCCGAAGCAAAAGGCGAAGTATTTACTGCTGAAGGATATGTATTGAAACCTTGTTAT CCTTCTTGGCTTCGTAATGGAAATCGTGTAGCGATTAAATGCAAGAACTCTAAATTT AGTGAAAAGAAAAAGTCTGATAAGCCTATTAAAGCTAAAGTTGAGCTATCAGAAGC TGATAACAAATTGGTGGGAATTTTAGCTTGTTACGTTACACTGAACCGCGTAAATAA CGTTATTTCTAAAATTGGCGAAATTGGTCCAAAGGATTTTGGAAAGGTGATGGGGCT AACTGTTCAAGATATTTTGGAAGAAACTTCTCGTGAAGGTATTACTCTAACTCAAGC AGATAATCCTTCTTTGATTAAAAAGGAATTAGTTG

4. NRGp20 insertion sequence (CBM:Hoc T4) 4472 bp ROH up hoc—CBM-linker (PGG)—Hoc-ROH down hoc CAGTTGCCATATCTGAAGCGAGGATTAAATCTATATCCATCGGCCTCAAACGAAAAG AAATCTCTTAATTCGTGGAACGTGCTCTCTTCACAATCGATGCGTACATGACTGAAG TCGTGAAAATGTACTTTAATATCCATAATTATGCCTTACTAAATTTGCCTTTAGAATC TCTTTTCATGAGACGACCTTTAATAAATCCGTCGGGAATAATACCGTCTGGTTGTATT AATTTATTTATTGCGCCATTATTGACCCAAAAAGTTCCTGTGGTAGTCGGTTTGACTT TACATCCTTTTCTGGACTTTCTATTAGGATGAACCATCCCTTTTACAAATCCTTCTGG AACAAGTTCTCCAGGTTTAATAAAAATATTTTTAGTTCCATTAGTATAACAAGTTTTA CCTAATACCGTGCCCGGTGAGTTTTCAAATCTTTTAGCGGAAGATTCTTTCATCTTTG CTATAACATCTGTAGTCATAACAATTCCACCAATTCCACCAGGTTTCATATTATAATA ATTTTTGCTTTTTATTAGTTCAGGAGTTATAATTTCTTCTTCATACATGTACGCTTCTT CGGAAGTTTTAAACTCTTTTAGTATTGTTCTAGAGAAATTGTTTTCACCATATTTCTT TATAGCCTGCTGAATTGCCTTACCGGAACCAAGGTAACCATCATTCAAGTCATCAGT AGAGTGCTTTCCTATATACTTTTTACCATTTATTAGATTTGTTGTTTCATATACAAAG TGGTACATACTATTTTCCGAGTAATAAATATATCTATATTTATACTGAGGAAATATTA

118

TGATAGATAAAGATTATATTGCAGAGCTGAAGGCTCTTGATGATAACAAAGAAGCT AAAGCTAAATTAGCTGAATATGCTGAACAGTTTGGTATAAAGGTCAAAAAGAATAA ATCTTTTGATAATATCGTTGTTGATATTGAAGAAGCCCTCCAGAAGCTCGCTAGTGA ACCTATGCCAGAGACTGATGGGTTATCTATTAAAGACTTAATTGATGCTGCTGATGC CGCAGAGGGATTAAAATATGACGATGAAGAAGTCAATCCAGAAGCAGCACTTCTGA TTGATTCTCCGATTAAATCTGACATTAAAATTGAAGTAGTAGAAACGGATAAAATTC CTGAAAATACCGATGTTTTGATTGAAGATACTCCTTTTGTTGAAGAAAAATTCGAAC AGGCTGTAGCTGAGATTATTGAATCTGAAAAGCCGTCTGTATTTACTCTTCCGGAAA ACTTTAGTCCGAATCTTCAACTGATTGGAAAAAATCTAGGATTCTGTACTGTTCCTTG GTGGATTTATCAATGGATTGCTGAAACTCCTGATTGGAAATCTCACCCAACTAGTTT TGAACATGCGTCAGCACACCAAACTTTATTTAGCTTAATTTATTACATTAATCGCGAT GGATCAGTTTTAATTCGTGAAACACGCAACTCTTCTTTCGTAACATTAAAATAAGGA TAACTTATGCCTACGTCAGGTCCGGCCGGTTGCCAAGTTTTATGGGGGGTCAACCAG TGGAACACAGGCTTTACGGCGAACGTTACTGTCAAGAACACAAGCTCCGCTCCTGTG GATGGTTGGACACTGACCTTTTCTTTCCCCTCAGGTCAGCAAGTGACACAGGCGTGG AGTTCTACGGTTACACAATCTGGTTCTGCTGTTACTGTCCGTAACGCGCCCTGGAAT GGAAGCATCCCAGCGGGCGGGACCGCACAGTTTGGCTTCAATGGCTCTCATACAGG GACAAACGCAGCACCAACAGCATTTTCCTTGAATGGAACCCCTTGCACTGTCGGACC AGGCGGCATGACTTTTACAGTTGATATAACTCCTAAAACACCTACTGGTGTAATAGA CGAGACTAAGCAGTTTACTGCTACACCCAGTGGTCAAACTGGAGGCGGAACTATTA CATATGCTTGGAGCGTAGATAATGTTCCACAAGATGGAGCTGAAGCAACTTTTAGTT ATGTACTAAAAGGACCTGCCGGTCAAAAGACTATTAAAGTAGTTGCAACAAATACA CTTTCTGAAGGAGGCCCGGAAACGGCTGAAGCGACAACAACTATCACAGTTAAAAA TAAGACACAGACGACTACCTTAGCCGTAACTCCTGCTAGTCCTGCGGCTGGAGTGAT TGGAACCCCAGTTCAATTTACTGCTGCCTTAGCTTCTCAACCTGATGGAGCATCTGCT ACGTATCAGTGGTATGTAGATGATTCACAAGTTGGTGGAGAAACTAACTCTACATTT AGCTATACTCCAACTACAAGTGGAGTAAAAAGAATTAAATGCGTAGCCCAAGTAAC CGCGACAGATTATGATGCACTAAGCGTTACTTCTAATGAAGTATCATTAACGGTTAA TAAGAAGACAATGAATCCACAGGTTACATTGACTCCTCCTTCTATTAATGTTCAGCA AGATGCTTCGGCTACATTTACGGCTAATGTTACGGGTGCTCCAGAAGAAGCACAAAT TACTTACTCATGGAAGAAAGATTCTTCTCCTGTAGAAGGGTCAACTAACGTATATAC TGTCGATACCTCATCTGTTGGAAGTCAAACTATTGAAGTTACTGCAACTGTTACTGCT GCAGATTATAACCCTGTAACCGTTACCAAAACTGGTAATGTAACAGTCACGGCTAAA GTTGCTCCAGAACCAGAAGGTGAATTACCTTATGTTCATCCTCTTCCACACCGTAGC TCAGCTTACATCTGGTGCGGTTGGTGGGTTATGGATGAAATCCAAAAAATGACCGAA GAAGGTAAAGATTGGAAAACTGACGACCCAGATAGTAAATATTACCTGCATCGTTA CACTCTCCAGAAGATGATGAAAGACTATCCAGAAGTTGATGTTCAAGAATCGCGTA ATGGATACATCATTCATAAAACTGCTTTAGAAACTGGTATCATCTATACCTATCCAT AATCATAAGGGGCTTCGGCCCCTTTCTTCATTTTGAAAGCACACAAAACACAATCAG AAAATGATGTATATAATGGCACCAACTCGATAACATGAGATTGATTATGAGAACTG AGGTTGTGGTGTTTACTCTTCATGAGTCTGGAAAGTCATTCATTGAAATTGCTCGTGA ATTAAACTTACAGGCAAAAGAAGTGGCTGTATTATGGGCTCGAGAAAAAGTTGTCT ATAGAAAAAGACATATCAATAAAAAGGTGAAAAATGGAACAGTATGATCTTTATGA AAATGAATCTTTTGCTAATCAATTACGCGAAAAAGCATTAAAAAGTAAACAGTTTAA GCTAGAGTGTTTTATTAAAGATTTTTCAGAACTTGCTAATAAAGCAGCTGAACAAGG TAAAACACATTTTAATTATTATTGTATTGCTCGTGATAAATTGATTACAGAAGAAAT

119

TGGTGATTGGCTGAGAAAAGAAGGATTCAGCTTTAAAGTCAATAGTGATCAGCGTG ATGGTGATTGGTTAGAAATTACATTTTGAGGATTAATTATGTTTAAAAAGTATAGCA GTCTTGAAAATCATTACAACTCTAAATTTATTGAAAAACTTTATAGCTTGGGATTGA CTGGTGGGGAGTGGGTAGCTCGTGAAAAGATTCACGGCACAAATTTCTCATTGATTA TTGAGCGTGATAAAGTGACTTGCGCTAAACGCACTGGACCGATTCTTCCTGCTGAAG ATTTCTTTGGGTATGAAATTATTTTGAAGAATTATGCTGATTCCATTAAAGCTGTACA AGATATTATGGAAACCTCAGCGGTTGTATCTTATCAAGTCTTTGGCGAATTCGCTGG ACCTGGCATTCAGAAGAATGTTGATTATTGTGATAAAGATTTTTATGTATTTGACATT ATTGTTACTACAGAAAGCGGTGATGTGACTTATGTAGATGATTATATGATGGAATCA TTCTGTAATACATTTAAATTTAAAATGGCTCCACTTTTAGGTCGCGGTAAATTTGAAG AGCTTATTAAATTGCCAAATGATTTAGATTCTGTCGTCCAAGATTATAATTTTACAGT AGACCATGCTGGATTAGTTGATGCAAATAAATGCGTTTGGAATGCCGAAGCAAAAG GCGAAGTATTTACTGCTGAAGGATATGTATTGAAACCTTGTTATCCTTCTTGGCTTCG TAATGGAAATCGTGTAGCGATTAAATGCAAGAACTCTAAATTTAGTGAAAAGAAAA AGTCTGATAAGCCTATTAAAGCTAAAGTTGAGCTATCAGAAGCTGATAACAAATTG GTGGGAATTTTAGCTTGTTACGTTACACTGAACCGCGTAAATAACGTTATTTCTAAA ATTGGCGAAATTGGTCCAAAGGATTTTGGAAAGGTGATGGGGCTAACTGTTCAAGA TATTTTGGAAGAAACTTCTCGTGAAGGTATTACTCTAACTCAAGCAGATAATCCTTC TTTGATTAAAAAGGAATTAGTT

Table S3. ImageJ Analysis of Recombination Frequency

ImageJ Analysis of Positive Recombination Counts for soc/HR Slice (plate) Count (Max Total Area Average Particle % Area 36/slice) Size soc-HR-1 0 0 0 0 soc-HR-2 1 7120 7120 0.29 soc-HR-3 1 421 421 0.017 soc-HR-4 0 0 0 0 soc-HR-5 0 0 0 0 soc-HR-6 0 0 0 0 soc-HR-7 1 520 520 0.021 soc-HR-8 0 0 0 0 soc-HR-9 1 949 949 0.039 soc-HR-10 1 415 415 0.017 soc-HR-11 0 0 0 0 soc-HR-12 3 5789 1929.667 0.236 soc-HR-13 1 1980 1980 0.081 soc-HR-14 0 0 0 0 Total 9/504

120

ImageJ Analysis of Positive Recombination Counts for soc/CRISPR (5 log EOP gRNA)/HR Slice (plate) Count (Max Total Area Average Particle % Area 36/slice) Size soc-CRISPR/HR-1 36 154674 4296.5 6.294 soc-CRISPR/HR-2 36 178615 4961.528 7.268 soc-CRISPR/HR-3 36 169290 4702.5 6.888 soc-CRISPR/HR-4 35 160874 4596.4 6.546 soc-CRISPR/HR-5 36 159446 4429.056 6.488 soc-CRISPR/HR-6 35 161097 4602.771 6.555 soc-CRISPR/HR-7 36 137910 3830.833 5.612 soc-CRISPR/HR-8 36 182661 5073.917 7.432 soc-CRISPR/HR-9 36 174572 4849.222 7.103 soc-CRISPR/HR-10 36 164310 4564.167 6.686 soc-CRISPR/HR-11 36 220094 6113.722 8.956 soc-CRISPR/HR-12 36 226490 6291.389 9.216 soc-CRISPR/HR-13 36 167747 4659.639 6.826 soc-CRISPR/HR-14 36 177850 4940.278 7.237 Total 502/503

ImageJ Analysis of Positive Recombination Counts for hoc/HR Slice (plate) Count (Max Total Area Average Particle % Area 36/slice) Size hoc-HR-1 2 6569 3284.5 0.267 hoc-HR-2 7 12468 1781.143 0.507 hoc-HR-3 7 18098 2585.429 0.736 hoc-HR-4 3 4085 1361.667 0.166 hoc-HR-5 0 0 0 0 hoc-HR-6 3 2166 722 0.088 hoc-HR-7 5 11600 2320 0.472 hoc-HR-8 12 23765 1980.417 0.967 hoc-HR-9 8 18928 2366 0.77 hoc-HR-10 5 11319 2263.8 0.461 hoc-HR-11 6 4995 832.5 0.203 hoc-HR-12 7 19813 2830.429 0.806 hoc-HR-13 6 14114 2352.333 0.574 hoc-HR-14 3 2895 965 0.118 Total 74/502

ImageJ Analysis of Positive Recombination Counts for hoc/CRISPR (2 log EOP gRNA)/HR Slice (plate) Count (Max Total Area Average Particle % Area 36/slice) Size hoc-CRISPR/HR-1 36 116663 3240.639 4.747 hoc-CRISPR/HR-2 34 134407 3953.147 5.469 hoc-CRISPR/HR-3 36 132567 3682.417 5.394

121

hoc-CRISPR/HR-4 36 109684 3046.778 4.463 hoc-CRISPR/HR-5 35 103164 2947.543 4.198 hoc-CRISPR/HR-6 36 148596 4016.108 6.046 hoc-CRISPR/HR-7 32 225064 7033.25 9.158 hoc-CRISPR/HR-8 36 222070 6168.611 9.036 hoc-CRISPR/HR-9 36 214191 5949.75 8.715 hoc-CRISPR/HR- 36 177154 4920.944 7.208 10 hoc-CRISPR/HR- 36 217783 6049.528 8.862 11 hoc-CRISPR/HR- 36 218548 6070.778 8.893 12 hoc-CRISPR/HR- 36 128334 3564.833 5.222 13 hoc-CRISPR/HR- 33 261704 7930.424 10.649 14 total 494/496

CHAPTER 3—PHAGE-BASED BIOSENSORS: IN VIVO ANALYSIS OF NATIVE T4 PHAGE PROMOTERS TO ENHANCE REPORTER ENZYME EXPRESSION

Figure S1. Nucleotide Sequences for Donor Construction

NRGp42 donor sequence (3180 bp) ROH up soc - Golden Gate site - RBS - nluc:cbm - Terminator - ROH down soc

CGCACTTTCGTCCGTAATTATAAATTTATTTCCTTTATCTATTTTCCAATCATATATTG AATCATATGAATAGAAGGATAACGGTTTATTATTATAATATGCTTCAGCAACATCAA TATAGTTAGATTTAGTAAATGCTTGAATTGCCATAAATGGAGAATTTTGTACAGTTT CAATAATTCCGATCTTTTTAAGTTTTATTTCAACATCTTCTGGAATTGGCATTGAAAT AAAATCTTCTACTAGATACATATTATTGTCATATCTTTTATCAATCATTACTGCTACA GTAATTGGAACATCCTTGACAAACGCCATACTAATACTATTGATAGACATTTCAAAC AAAATTGCTTCCATAATTTTCCTCAATCACAAGATGTAGATGAACAACTAGAATCAC AAGAACTTCCACATGAATCACCTGCCCATACATGAACAGGAACATTAGTATCATATG AATCAGAACTAGACTGTGTATTCTGTGTGTTAGATGATGTAGTAGGTGTTGACCAGC GCCAAGGATTTTTATAATATTCTTGGGCTTCTTCATAAGTCATAGTAACTGCTTCTAC TGTTCCATCTCCCATATAAACATATTCAACTACAGTTAAAGGAAGGTAGTCATTTGA AATAGGAACTACACCTTCCCCAGGAGTTGTAGAGAAAAAATCCGTAAAGAAACTTT TAAACCAATTAAAGATAAACATTACAAAAAGCCTCTTTTGAATTCGACTTGCTTCTC ACCATAATCATATCGAATCTCTGCATTAAATTCGACAGAACCATCTGCGTACATCAT AAATGAATGCACAACAACTTCTGTAGACCATGGTTGTAGTTCATATTTCTTCATTAC ATGTCGTGAAATGATAATATCTAAATCTTCATTTGGTTTAATCCAACGATTTAACATA GTACTCTCCTCTATAAGATAATTCTATTATACCATACTCATTTTGGAAAGTAAACCAT TTAAATGAAAAAATGACTCCCGAAGGAGTCTTGAGTTAGGACCAAAACGAAAAAAG GCCCCCCTTTCGGCATGGCTCAGTGAGCTGGGACCAAAACGAAAAAAGGCCCCCCA

122

GTGAGCTGGGACCAAAACGAAAAAAGGCCCCCCGACATAGCGCATGGCTCAGTGAG CTGGGACCAAAACGAAAAAAGGCCCCCCTTTCGGGAGGCCTCTTTTCTGGAATTTGG TACCGAGTTATCCGACAGTGCAAGGGGTTCCATTCAAGGAAAATGCTGTTGGTGCTG CGTTTGTCCCTGTATGAGAGCCATTGAAGCCAAACTGTGCGGTCCCGCCCGCTGGGA TGCTTCCATTCCAGGGCGCGTTACGGACAGTAACAGCAGAACCAGATTGTGTAACCG TAGAACTCCACGCCTGTGTCACTTGCTGACCTGAGGGGAAAGAAAAGGTCAGTGTC CAACCATCCACAGGAGCGGAGCTTGTGTTCTTGACAGTAACGTTCGCCGTAAAGCCT GTGTTCCACTGGTTGACCCCCCATAAAACTTGGCAACCGGCCGGACCTGACGTAGGG CCGCTCGAGCCAGCCAAAATGCGCTCACAAAGACGCCAGCCCGTGACCCCGTTGAT CGTAACACGAAACAGCAAAGAGCCGTCCGGGTTAATCAGACGTTCGTCAATGATTTT ATTGCCATTCCACAATGTTCCAGTTACAGTGATCTTCTTGCCGTCGAACACTGCGATC CCTTCATAGGGGCGGCCAAAGTAGTCAATCATATTAGGCGTAACGCCATCAATGACC AGCGTGCCGTAATGAAGAATAACCTTGAAGTGATGGTCATCAACCGGGTAGACGAC TTTGAAGATTTTCTCAATCTGACCCATCTGATCCCCCGACAGCCCCTCATAGGGGAT AATAACATGGATGTCGATTTTAAGCCCGTTTTCTCCACTAAGGACAATGCGCTGGAT GGGTGTAACCGAAACGCCCAAATTTTGAAAAAGTGAACTGACACCTCCCTGTTCCAG TACTTGGTCTAAATTGTAACCGGCTGTCTGGCGCCAGTCACCTACGAAATCCTCCAA AGTGAATACCATGTAATTCTCCTTTATTTAAATTACATGATTAAAACAGCATAGCTCT AAAACGAGACCTTTGAGCTTCCGAGACTGGTCTCAGTTTTGGGACCGTAATTCTCCT TTATTTAAATTACATGATTATTTATACATCTTCTTTTCTGAATAAGTAAATTAAATTC TTAAGAGCCGAACTTGTTACATCATATTTTCCTTTAAGCGCCTTTACAACCGGGCCTG TTGCTGGTTTACCTAAAGAAACCCATAACTCGTGTATTTCGCTTTTAAGTGGTTCATG CCAATGCGGTGCTTTTCTTTGCGCCCTTGAAGTTCCTTCTGAAATCTTTTTATTTCCGC CATTCGAATAAAACTTTTTCATTACTTCAGATTGCCGAGCTTTTCTTTCTGCCCTATTT TGGGCTATACGTTGTGAATTCTTCATCCGAGTTTTTGTTTCAGGATTGTTTAATCTAA GTTTATGTTCTAATCGTTGTTGCTCAGTCCATTTTCTTCCTTCTCCACCCTGACCACCA GGAGAAATATTAATGCAAGTATCTGGGTGTTTACGTTTTAATGCAGATATTAGCTCA CGTTAAACTTCATATGATTTTTCTCTAGAACCATGGCATTTTGACCATCGTATTTTAT AATTAAATCCATACTTACGATATATGTTCCATAGTATTTTACCTGAACCCGGATATTT ATCATTATATGGATTTACAATAAATGATTCATGTTTCCCAGCGTACCAAAAGACGCC TTTCGGCGTCCTAACTTTTACTATATATGTTCTATAAAATTTTTGTTTAATATCCATTA TCTTGACGTTCAAAATTATGTTTGTTCTTCAGATAATAAAGTTTAAAGATTTCTTCCG CATTCATTCCAAGGCCAACAAACATATTTAATACGAAATGAAATATATCCACAAGCT CAAATTTAATTTCGAGCTGGTCTTCGGGGGACATTTCATCAATGCGTTTTTCTTGCGC TTCAATATAACGTGCTTTCCATTTTTTCCATACAGCAGAAGCTTCTTTTTCACCACGT GACATTTCACCAAGAGAAGTCAGAAGTTCGCGGAATTCATCATCAATACAGTCTTTT TGTTCACGCATCCAAGAAACAACATC

Table S2. Promoter sequences

Promoter Abbreviate Associated Sequence 5'-3' Class d Name Gene Early E1 gp55 GAGAAGTATTATAATCAAAATCATCATCAATGTAA ACTGATTTTTTCAACTTTCTTACTTCACCGCGTAA

123

E2 motB TGGTGTTATAGTACCACAACTAACCGAGGAAGTAA ACAACTTTTTATCGTTTTGTTGGAAGAGATAGAGG E3 ndd TAGTTGTATAGTACCACGGTCCTTGTGGTATGTAAA CTGTTTTGTGAAATTTTTTAAATGGAAAGATACC E4 ipl TGAGGTAATAGTATCACTACCTCATCAGTATGTAA ACAACTTTGTGAAATTATTTTAAATCATCTGCCCA E5 dna ligase TAAGATAATACTATCACAAAGGAACTATACTGTAA ACAACTTTGTGCAATCTTTGGAAAATAAAAAAGGA Middle M1 gp34i AGCTTCGACCTGCGTAGCTACACGAAGTGTACCAC GTTGTGTCTCATTTGCTTCAAGAATATTAAGTGTAT AATGGTCCCAGAGAGTTC M2 gp43 TAGGCTCTTGATATATTATACTCCAAATAAGGGGC CGAAGCCCCTTGCTTAATTACCAATCGTATATTTAG GAACGAGCTTCCATTCATG M3 rllA TGCGGTGTCGGATTGAATTTTATCTCTAATATCTTT AAAGCGGGTTTTAAATTCTTCGGCTTCTCCCATATC GAAAAAGCGTTGAATGAT M4 gp46 CTTTTAGACCATTCTATCATATCATCATAATCTAAA AAGTATTCATCAAATTCAGCCATGCAAACAACGCC TTGTGCTGTTTTTGATGT M5 tRNAscl AGTGCGGTATGAGTTAATAATAACAAATAATTCTT AAAGCATATTTACCATTTATGATGATACGTATTTAC GATACATTCAAGACCCAA Late L1 soc CTTAAGAATTTAATTTACTTATTCAGAAAAGAAGA TGTATAAATAATCATGTAATTTAAATAAAGGAGAA L2 gp23 AGAAATCTAATAAAGATGAAAGCACTATTACTGAG AGTATAAATACTCCTGATACTGAAGCAGCCGGACT L3 gp22 GCCTATATGGCTCTCGCAGAGGCCATGAAAAAAGC GTTATAAATATTATTATCTAAACAACAGGACTACA L4 gp18 GCTGAGTATGTTCCAGTATCTCATGGTATGTCAATG GTATAAATATATTAAAGCATATTAAAGAGGATTA L5 gp67 TTAAAGGTATAATCACAGAAGATGAGTGGAATGAT GAAATAAATAATATTAAGATAGAATTTCATCGGGA

124