The Lie Model for Euclidean Geometry

Total Page:16

File Type:pdf, Size:1020Kb

The Lie Model for Euclidean Geometry MM Research Preprints,95–111 No. 19, Dec. 2000. Beijing 95 The Lie Model for Euclidean Geometry Hongbo Li Academy of Mathematics and Systems Science Chinese Academy of Sciences, Beijing 100080 Abstract. In this paper we investigate the Lie model of Lie sphere geometry using Clif- ford algebra. We employ it to Euclidean geometric problems involving oriented contact to simplify algebraic description and computation. 1. Introduction According to Cecil (1992), Lie (1872) introduced his sphere geometry in his dissertation to study contact transformations. The subject was actively pursued through the early part of the twentieth century, culminating with the publication of the third volume of Blaschke’s Vorlesungen ¨uber Differentialgeometrie (1929), which is devoted entirely to Lie sphere geom- etry and its subgeometries, particularly in dimensions two and three. After this, the subject fell out of favor until 1981, when Pinkall used it as the principal tool to classify Dupin hy- persurfaces in R4 in his dissertation. Since then, it has been employed by several differential geometers to study Dupin, isoparametric and taut submanifolds (eg. Cecil and Chern, 1987). It has also been used by Wu (1984/1994) in automated geometry theorem proving. Despite its important role played in differential geometry, Lie sphere geometry has limited applicability in classical geometry. This is because a Lie sphere transformation has classical geometric interpretation only when it is a M¨obius transformation or the orientation-reversing transformation. In other words, a general Lie sphere transformation does NOT have classical geometric interpretation. For classical geometry, Lie sphere geometry can contribute to simplifying description and computation of tangencies of spheres and hyperplanes. Because of this, we would like to “attach” Lie sphere geometry to the homogeneous model of Euclidean geometry in (Li, Hestenes and Rockwood, 2000a) as a supplementary tool. This goal is achieved in this paper. The tool, called the Lie model, is essentially a coordinate-free reformulation of Lie sphere geometry for the purpose of applying it to Euclidean geometry. It is used to solve geometric problems involving oriented contact of spheres and hyperplanes, and can help obtaining sim- plifications. Unfortunately, this may be as much as it can contribute to classical geometry. The model can also be extended to spherical and hyperbolic geometries via their homoge- neous models in (Li, Hestenes and Rockwood, 2000b, c). This paper is arranged as follows: in section ?? we introduce the Lie model using the language of Clifford algebra (Hestenes and Sobczyk, 1984); in section ?? we investigate further basic properties of this model; in section ?? we provide examples to illustrate how to apply it to Euclidean geometry. 96 H. Li 2. The Lie model The Lie model will be established upon the homogeneous model. So first let us review the homogeneous model for Euclidean geometry (Li, Hestenes and Rockwood, 2000a; Li, 1998). 2.1. The homogeneous model n n Let {e1,..., en} be an orthonormal basis of R . A point c of R corresponds to the vector from the origin to the point, denoted by c as well. The origin corresponds to the zero vector. We embed Rn into a Minkowski space of n + 2 dimensions as a subspace. Denote the n+1,1 n+1,1 Minkowski space by R . Let {e−2, e−1, e1,..., en} be an an orthonormal basis of R , 2 2 where −e−2 = e−1 = 1. The 2-space spanned by e−2, e−1 is Minkowski, and has two null 1-subspaces. Let e, e0 be null vectors in the two 1-subspaces respectively. Rescale them to make e · e0 = −1. Now we map Rn in a one-to-one manner into the null cone of Rn+1,1 as follows: c2 c 7→ c´ = e + c + e, for c ∈ Rn. (2.1) 0 2 The range of the mapping is {x ∈ Rn+1,1|x2 = 0, x · e = −1}. (2.2) By this mapping, a point c of Rn can be represented by the null vector c´. In particular, n the origin of R can be represented by e0. Vector e corresponds to the unique point at infinity for the compactification of Rn. This representation is is called the homogeneous model for Euclidean geometry. The homogeneous model can also be described as follows. Any null vector x of Rn+1,1 represents a point or the point at infinity of Rn. It represents the point at infinity if and only if x · e = 0. Two null vectors represent the same point or the point at infinity if and only if they differ by a nonzero scale. The following is a fundamental property of the homogeneous model: Theorem 2.1. Let Br−1,1 be a Minkowski r-blade in Gn+1,1, 2 ≤ r ≤ n + 1. Then Br−1,1 represents an (r − 2)-dimensional sphere or plane in the sense that a point represented by a null vector a is on it if and only if a ∧ Br−1,1 = 0. It represents a plane if and only if e ∧ Br−1,1 = 0. The representation is unique up to a nonzero scale. The (r − 2)-dimensional sphere passing through r affinely independent points a1,..., ar n of R can be represented by a´1 ∧· · ·∧a´r; the (r −2)-dimensional plane passing through r −1 n affinely independent points a1, ..., ar−1 of R can be represented by e ∧ a´1 ∧ · · · ∧ a´r−1. When r = n + 1, the dual form of the above theorem is Theorem 2.2. Let s be a vector of Rn+1,1 satisfying s2 > 0. Then it represents a sphere or hyperplane in the sense that a point represented by a null vector a is on it if and only if a · s = 0. It represents a hyperplane if and only if e · s = 0. The representation is unique up to a nonzero scale. The following are standard representations in the homogeneous model. Lie sphere geometry 97 ρ2 1. A sphere with center c and radius ρ > 0 is represented by c´ − e. 2 2. A hyperplane with unit normal n and distance δ > 0 away from the origin in the direction of n is represented by n + δe. 3. A hyperspace with unit normal n is represented by either of ±n. 4. A sphere with center c and passing through point a is represented by a´ · (e ∧ c´). 5. A hyperplane with normal n and passing through point a is represented by a´ · (e ∧ n). The following are formulas and explanations for some inner products in Rn+1,1: • For two points c´1 and c´2, (c´ − c´ )2 |c − c |2 c´ · c´ = − 1 2 = − 1 2 . (2.3) 1 2 2 2 • For point c´ and hyperplane n + δe, c´ · (n + δe) = c · n − δ. (2.4) It is positive, zero or negative if the vector from the hyperplane to the point is along n, zero or along −n respectively. Its absolute value equals the distance between the point and the hyperplane. ρ2 • For point c´ and sphere c´ − e, 1 2 2 ρ2 ρ2 − |c − c |2 c´ · (c´ − e) = 1 2 . (2.5) 1 2 2 2 It is positive, zero or negative if the point is inside, on or outside the sphere respectively. Its absolute value equals half the distance between the point and the sphere. • For two hyperplanes n1 + δ1e and n2 + δ2e, (n1 + δ1e) · (n2 + δ2e) = n1 · n2. (2.6) ρ2 • For hyperplane n + δe and sphere c´ − e, 2 ρ2 (n + δe) · (c´ − e) = (n + δe) · c´. (2.7) 2 It is positive, zero or negative if the vector from the hyperplane to the center c is along n, zero or along −n respectively. Its absolute value equals the distance between the center and the hyperplane. 98 H. Li ρ2 ρ2 • For two spheres c´ − 1 e and c´ − 2 e, 1 2 2 2 ρ2 ρ2 ρ2 + ρ2 − |c − c |2 (c´ − 1 e) · (c´ − 2 e) = 1 2 1 2 . (2.8) 1 2 2 2 2 It is zero if the two spheres are perpendicular to each other. When the two spheres intersect, (??) equals cosine the angle of intersection multiplied by ρ1ρ2. The following are geometric interpretations of the outer product of s1, s2, which are vectors of nonnegative square in Rn+1,1: 1. If s1 ∧ s2 = 0, s1, s2 represent the same the geometric object. If s1 ∧ s2 6= 0 but 2 (s1 ∧ s2) = 0, then • if s1 represents a point or the point at infinity, it must be on the sphere or hyperplane represented by s2; • if s1, s2 represent two spheres or a sphere and a hyperplane, they must be tangent to each other; • if s1, s2 represent two hyperplanes, they must be parallel to each other. In all these cases we say the geometric objects represented by s1 and s2 are in contact. Let s1 ∧ s2 6= 0. The blade represents the pencil of spheres and hyperplanes that contact both s1 and s2, together with the point of contact, in the sense that a point, the point at infinity, a sphere or a hyperplane represented by a vector s of nonnegative square is in contact with both s1, s2 if and only if s ∧ s1 ∧ s2 = 0. The pencil is called a contact pencil. 2 2. If (s1 ∧ s2) < 0, then s1, s2 must represent two intersecting spheres or hyperplanes. The blade s1 ∧ s2 represents the pencil ofaa spheres and hyperplanes that pass through the intersection of s1 and s2, together with the points of intersection. The pencil is called a concurrent pencil.
Recommended publications
  • Quaternions and Cli Ord Geometric Algebras
    Quaternions and Cliord Geometric Algebras Robert Benjamin Easter First Draft Edition (v1) (c) copyright 2015, Robert Benjamin Easter, all rights reserved. Preface As a rst rough draft that has been put together very quickly, this book is likely to contain errata and disorganization. The references list and inline citations are very incompete, so the reader should search around for more references. I do not claim to be the inventor of any of the mathematics found here. However, some parts of this book may be considered new in some sense and were in small parts my own original research. Much of the contents was originally written by me as contributions to a web encyclopedia project just for fun, but for various reasons was inappropriate in an encyclopedic volume. I did not originally intend to write this book. This is not a dissertation, nor did its development receive any funding or proper peer review. I oer this free book to the public, such as it is, in the hope it could be helpful to an interested reader. June 19, 2015 - Robert B. Easter. (v1) [email protected] 3 Table of contents Preface . 3 List of gures . 9 1 Quaternion Algebra . 11 1.1 The Quaternion Formula . 11 1.2 The Scalar and Vector Parts . 15 1.3 The Quaternion Product . 16 1.4 The Dot Product . 16 1.5 The Cross Product . 17 1.6 Conjugates . 18 1.7 Tensor or Magnitude . 20 1.8 Versors . 20 1.9 Biradials . 22 1.10 Quaternion Identities . 23 1.11 The Biradial b/a .
    [Show full text]
  • Codimension One Isometric Immersions Betweenlorentz Spaces by L
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 252, August 1979 CODIMENSION ONE ISOMETRIC IMMERSIONS BETWEENLORENTZ SPACES BY L. K. GRAVES In memory of my father, Lucius Kingman Graves Abstract. The theorem of Hartman and Nirenberg classifies codimension one isometric immersions between Euclidean spaces as cylinders over plane curves. Corresponding results are given here for Lorentz spaces, which are Euclidean spaces with one negative-definite direction (also known as Minkowski spaces). The pivotal result involves the completeness of the relative nullity foliation of such an immersion. When this foliation carries a nondegenerate metric, results analogous to the Hartman-Nirenberg theorem obtain. Otherwise, a new description, based on particular surfaces in the three-dimensional Lorentz space, is required. The theorem of Hartman and Nirenberg [HN] says that, up to a proper motion of E"+', all isometric immersions of E" into E"+ ' have the form id X c: E"-1 xEUr'x E2 (0.1) where c: E1 ->E2 is a unit speed plane curve and the factors in the product are orthogonal. A proof of the Hartman-Nirenberg result also appears in [N,]. The major step in proving the theorem is showing that the relative nullity foliation, which is spanned by those tangent directions in which a local unit normal field is parallel, has complete leaves. These leaves yield the E"_1 factors in (0.1). The one-dimensional complement of the relative nullity foliation gives rise to the curve c. This paper studies isometric immersions of L" into Ln+1, where L" denotes the «-dimensional Lorentz (or Minkowski) space. Its chief goal is the classifi- cation, up to a proper motion of L"+1, of all such immersions.
    [Show full text]
  • Embeddings of Integral Quadratic Forms Rick Miranda Colorado State
    Embeddings of Integral Quadratic Forms Rick Miranda Colorado State University David R. Morrison University of California, Santa Barbara Copyright c 2009, Rick Miranda and David R. Morrison Preface The authors ran a seminar on Integral Quadratic Forms at the Institute for Advanced Study in the Spring of 1982, and worked on a book-length manuscript reporting on the topic throughout the 1980’s and early 1990’s. Some new results which are proved in the manuscript were announced in two brief papers in the Proceedings of the Japan Academy of Sciences in 1985 and 1986. We are making this preliminary version of the manuscript available at this time in the hope that it will be useful. Still to do before the manuscript is in final form: final editing of some portions, completion of the bibliography, and the addition of a chapter on the application to K3 surfaces. Rick Miranda David R. Morrison Fort Collins and Santa Barbara November, 2009 iii Contents Preface iii Chapter I. Quadratic Forms and Orthogonal Groups 1 1. Symmetric Bilinear Forms 1 2. Quadratic Forms 2 3. Quadratic Modules 4 4. Torsion Forms over Integral Domains 7 5. Orthogonality and Splitting 9 6. Homomorphisms 11 7. Examples 13 8. Change of Rings 22 9. Isometries 25 10. The Spinor Norm 29 11. Sign Structures and Orientations 31 Chapter II. Quadratic Forms over Integral Domains 35 1. Torsion Modules over a Principal Ideal Domain 35 2. The Functors ρk 37 3. The Discriminant of a Torsion Bilinear Form 40 4. The Discriminant of a Torsion Quadratic Form 45 5.
    [Show full text]
  • Arxiv:1503.02914V1 [Math.DG]
    M¨obius and Laguerre geometry of Dupin Hypersurfaces Tongzhu Li1, Jie Qing2, Changping Wang3 1 Department of Mathematics, Beijing Institute of Technology, Beijing,100081,China, E-mail:[email protected]. 2 Department of Mathematics, University of California, Santa Cruz, CA, 95064, U.S.A., E-mail:[email protected]. 3 College of Mathematics and Computer Science, Fujian Normal University, Fuzhou, 350108, China, E-mail:[email protected] Abstract In this paper we show that a Dupin hypersurface with constant M¨obius curvatures is M¨obius equivalent to either an isoparametric hypersurface in the sphere or a cone over an isoparametric hypersurface in a sphere. We also show that a Dupin hypersurface with constant Laguerre curvatures is Laguerre equivalent to a flat Laguerre isoparametric hy- persurface. These results solve the major issues related to the conjectures of Cecil et al on the classification of Dupin hypersurfaces. 2000 Mathematics Subject Classification: 53A30, 53C40; arXiv:1503.02914v1 [math.DG] 10 Mar 2015 Key words: Dupin hypersurfaces, M¨obius curvatures, Laguerre curvatures, Codazzi tensors, Isoparametric tensors, . 1 Introduction Let M n be an immersed hypersurface in Euclidean space Rn+1. A curvature surface of M n is a smooth connected submanifold S such that for each point p S, the tangent space T S ∈ p is equal to a principal space of the shape operator of M n at p. The hypersurface M n is A called Dupin hypersurface if, along each curvature surface, the associated principal curvature is constant. The Dupin hypersurface M n is called proper Dupin if the number r of distinct 1 principal curvatures is constant on M n.
    [Show full text]
  • Introduction to Clifford's Geometric Algebra
    SICE Journal of Control, Measurement, and System Integration, Vol. 4, No. 1, pp. 001–011, January 2011 Introduction to Clifford’s Geometric Algebra ∗ Eckhard HITZER Abstract : Geometric algebra was initiated by W.K. Clifford over 130 years ago. It unifies all branchesof physics, and has found rich applications in robotics, signal processing, ray tracing, virtual reality, computer vision, vector field processing, tracking, geographic information systems and neural computing. This tutorial explains the basics of geometric algebra, with concrete examples of the plane, of 3D space, of spacetime, and the popular conformal model. Geometric algebras are ideal to represent geometric transformations in the general framework of Clifford groups (also called versor or Lipschitz groups). Geometric (algebra based) calculus allows, e.g., to optimize learning algorithms of Clifford neurons, etc. Key Words: Hypercomplex algebra, hypercomplex analysis, geometry, science, engineering. 1. Introduction unique associative and multilinear algebra with this property. W.K. Clifford (1845-1879), a young English Goldsmid pro- Thus if we wish to generalize methods from algebra, analysis, ff fessor of applied mathematics at the University College of Lon- calculus, di erential geometry (etc.) of real numbers, complex don, published in 1878 in the American Journal of Mathemat- numbers, and quaternion algebra to vector spaces and multivec- ics Pure and Applied a nine page long paper on Applications of tor spaces (which include additional elements representing 2D Grassmann’s Extensive Algebra. In this paper, the young ge- up to nD subspaces, i.e. plane elements up to hypervolume el- ff nius Clifford, standing on the shoulders of two giants of alge- ements), the study of Cli ord algebras becomes unavoidable.
    [Show full text]
  • Arxiv:1802.05507V1 [Math.DG]
    SURFACES IN LAGUERRE GEOMETRY EMILIO MUSSO AND LORENZO NICOLODI Abstract. This exposition gives an introduction to the theory of surfaces in Laguerre geometry and surveys some results, mostly obtained by the au- thors, about three important classes of surfaces in Laguerre geometry, namely L-isothermic, L-minimal, and generalized L-minimal surfaces. The quadric model of Lie sphere geometry is adopted for Laguerre geometry and the method of moving frames is used throughout. As an example, the Cartan–K¨ahler theo- rem for exterior differential systems is applied to study the Cauchy problem for the Pfaffian differential system of L-minimal surfaces. This is an elaboration of the talks given by the authors at IMPAN, Warsaw, in September 2016. The objective was to illustrate, by the subject of Laguerre surface geometry, some of the topics presented in a series of lectures held at IMPAN by G. R. Jensen on Lie sphere geometry and by B. McKay on exterior differential systems. 1. Introduction Laguerre geometry is a classical sphere geometry that has its origins in the work of E. Laguerre in the mid 19th century and that had been extensively studied in the 1920s by Blaschke and Thomsen [6, 7]. The study of surfaces in Laguerre geometry is currently still an active area of research [2, 37, 38, 42, 43, 44, 47, 49, 53, 54, 55] and several classical topics in Laguerre geometry, such as Laguerre minimal surfaces and Laguerre isothermic surfaces and their transformation theory, have recently received much attention in the theory of integrable systems [46, 47, 57, 60, 62], in discrete differential geometry, and in the applications to geometric computing and architectural geometry [8, 9, 10, 58, 59, 61].
    [Show full text]
  • Zeros of Conformal Fields in Any Metric Signature
    Zeros of conformal fields in any metric signature Andrzej Derdzinski Department of Mathematics, The Ohio State University, Columbus, OH 43210, USA E-mail: [email protected] Abstract. The connected components of the zero set of any conformal vector field, in a pseudo-Riemannian manifold of arbitrary signature, are shown to be totally umbilical conifold varieties, that is, smooth submanifolds except possibly for some quadric singularities. The singularities occur only when the metric is indefinite, including the Lorentzian case. This generalizes an analogous result for Riemannian manifolds, due to Belgun, Moroianu and Ornea (2010). AMS classification scheme numbers: 53B30 1. Introduction A vector field v on a pseudo-Riemannian manifold (M; g) of dimension n ≥ 2 is called conformal if, for some function φ : M ! IR, $vg = φg; that is; in coordinates; vj;k + vk;j = φgjk : (1) One then obviously has div v = nφ/2. The class of conformal vector fields on (M; g) includes Killing fields v, characterized by (1) with φ = 0. Kobayashi [15] showed that, for any Killing vector field v on a Riemannian manifold (M; g), the connected components of the zero set of v are mutually isolated totally geodesic submanifolds of even codimensions. Assuming compactness of M, Blair [5] established an analogue of Kobayashi's theorem for conformal vector fields, in which the word `geodesic' is replaced by `umbilical' and the codimension clause is relaxed for one-point connected components. Very recently, Belgun, Moroianu and Ornea [4] proved that Blair's conclusion is valid in the noncompact case as well. The last result is also a direct consequence of a theorem of Frances [12] stating that a conformal field on a Riemannian manifold is linearizable at any zero z unless some neighborhood of z is conformally flat.
    [Show full text]
  • For This Course: Oa...J Pedoe, Daniel
    ./ Math 151 Lie Geometry Spring 1992 ~ for this course: oA...J Pedoe, Daniel. A course of geometry for colleges and universities [by] D. pedoe. London, Cambridge University Press, 1970. UCSD S & E QA445 .P43 Emphasis on representational geometry and inversive geometry. Easy reading. Near to the approach used in the course. Ch. IV. The representation of circle by points in space of three dimensions. Ch. VI. Mappings of the inversive plane. Ch. VIII. The projective geometry of n dimensions. Ch. IX. The projective generation of conics and quadrics. Relevant articles i ,( 1/ (/' ,{ '" Behnke, Heinrich, 1898- Fundamentals of mathematics / edited by H. Behnke ... [et al.]; translated by S. H. Gould. Cambridge, Mass. : MIT Press, [1974]. UCSD Central QA37.2 .B413 and UCSD S & E QA37.2 .B413 Many interesting articles on various geometries. Easy general reading. Geometries of circled and Lie geometry discussed in: . Ch. 12. Erlanger program and higher geometry. Kunle and Fladt. ~Ch. 13. Group Theory and Geometry. F~enthal and Steiner Classical references Blaschke, W.H. Vorlesungen tiber Differentialgeometrie, III Differentialgeometrie der Kreise und Kugeln, Springer Verlag, Berlin, 1929. Very difficult reading. Not available at UCSD. Coolidge, Julian Lowell, 1873-1954. A treatise on the circle and the sphere. Chelsea Pub. Co., Bronx, N.Y., 1971. UCSD S & E QA484 .C65 1971 Classic 1916 treatise on circles and spheres. Very difficult reading. It is best to translate ideas to modern setting and then provide one's own proofs Lie, Sophus, 1842-1899. Geometrie der Beruhrungstransformationen. Dargestellt von Sophus Lie und Georg Scheffers. Leipzig, B.G. Teubner, 1896. UCSD S & E QA385 .L66 Lie, Sophus, 1842-1899.
    [Show full text]
  • WIT: a Symbolic System for Computations in IT and EG (Programmed in Pure Python) 13-17/01/2020
    WIT: A symbolic system for computations in IT and EG (programmed in pure Python) 13-17/01/2020 S. Xamb´o UPC/BSC · IMUVA & N. Sayols & J.M. Miret S. Xamb´o (UPC/BSC · IMUVA) UIT+WIT & N. Sayols & J.M. Miret 1 / 108 Abstract WIT: Un sistema simb´olicoprogramado en Python para c´alculosde teor´ıade intersecciones y geometr´ıaenumerativa En este curso se entrelazan cuatro temas principales que aparecer´an, en proporciones variables, en cada una de las sesiones: (1) Repertorio de problemas de geometr´ıaenumerativa y el papel de la geometr´ıaalgebraica en el enfoque de su resoluci´on. (2) Anillos de intersecci´onde variedades algebraicas proyectivas lisas. Clases de Chern y su interpretaci´ongeom´etrica.Descripci´onexpl´ıcita de algunos anillos de intersecci´onparadigm´aticos. (3) Enfoque computacional: Su inter´esy valor, principales sistemas existentes. WIT (filosof´ıa,estructura, potencial). Muestra de ejemplos tratados con WIT. (4) Perspectiva hist´orica:Galer´ıade h´eroes, hitos m´assignificativos, textos y contextos, quo imus? S. Xamb´o (UPC/BSC · IMUVA) UIT+WIT & N. Sayols & J.M. Miret 2 / 108 Index Heroes of today Dedication Foreword Apollonius problem Solution with Lie's circle geometry On plane curves Counting rational points on curves S. Xamb´o (UPC/BSC · IMUVA) UIT+WIT & N. Sayols & J.M. Miret 3 / 108 S. Xamb´o (UPC/BSC · IMUVA) UIT+WIT & N. Sayols & J.M. Miret 4 / 108 Apollonius from Perga (-262 { -190), Ren´e Descartes (1596-1650), Etienne´ B´ezout (1730-1783), Jean-Victor Poncelet (1788-1867), Jakob Steiner (1796-1863), Julius Pl¨ucker (1801-1868), Victor Puiseux (1820-1883), Hieronymus Zeuthen (1839-1920), Sophus Lie (1842-1899), Hermann Schubert (1848-1911), Felix Klein (1849-1925), Helmut Hasse (1898-1979), Andr´e Weil (1906-1998), Max Deuring (1907-1984), Jean-Pierre Serre (1926-), Alexander Grothendieck (1928-2014), William Fulton (1939-), Pierre Deligne (1944-), Israel Vainsencher (1948-), Stein A.
    [Show full text]
  • Notes on Geometry and Spacetime Version 2.7, November 2009
    Notes on Geometry and Spacetime Version 2.7, November 2009 David B. Malament Department of Logic and Philosophy of Science University of California, Irvine [email protected] Contents 1 Preface 2 2 Preliminary Mathematics 2 2.1 Vector Spaces . 3 2.2 Affine Spaces . 6 2.3 Metric Affine Spaces . 15 2.4 Euclidean Geometry . 21 3 Minkowskian Geometry and Its Physical Significance 28 3.1 Minkowskian Geometry { Formal Development . 28 3.2 Minkowskian Geometry { Physical Interpretation . 39 3.3 Uniqueness Result for Minkowskian Angular Measure . 51 3.4 Uniqueness Results for the Relative Simultaneity Relation . 56 4 From Minkowskian Geometry to Hyperbolic Plane Geometry 64 4.1 Tarski's Axioms for first-order Euclidean and Hyperbolic Plane Geometry . 64 4.2 The Hyperboloid Model of Hyperbolic Plane Geometry . 69 These notes have not yet been fully de-bugged. Please read them with caution. (Corrections will be much appreciated.) 1 1 Preface The notes that follow bring together a somewhat unusual collection of topics. In section 3, I discuss the foundations of \special relativity". I emphasize the invariant, \geometrical approach" to the theory, and spend a fair bit of time on one special topic: the status of the relative simultaneity relation within the theory. At issue is whether the standard relation, the one picked out by Einstein's \definition" of simultaneity, is conventional in character, or is rather in some significant sense forced on us. Section 2 is preparatory. When the time comes, I take \Minkowski space- time" to be a four-dimensional affine space endowed with a Lorentzian inner product.
    [Show full text]
  • Topological Vector Spaces
    Topological Vector Spaces Maria Infusino University of Konstanz Winter Semester 2015/2016 Contents 1 Preliminaries3 1.1 Topological spaces ......................... 3 1.1.1 The notion of topological space.............. 3 1.1.2 Comparison of topologies ................. 6 1.1.3 Reminder of some simple topological concepts...... 8 1.1.4 Mappings between topological spaces........... 11 1.1.5 Hausdorff spaces...................... 13 1.2 Linear mappings between vector spaces ............. 14 2 Topological Vector Spaces 17 2.1 Definition and main properties of a topological vector space . 17 2.2 Hausdorff topological vector spaces................ 24 2.3 Quotient topological vector spaces ................ 25 2.4 Continuous linear mappings between t.v.s............. 29 2.5 Completeness for t.v.s........................ 31 1 3 Finite dimensional topological vector spaces 43 3.1 Finite dimensional Hausdorff t.v.s................. 43 3.2 Connection between local compactness and finite dimensionality 46 4 Locally convex topological vector spaces 49 4.1 Definition by neighbourhoods................... 49 4.2 Connection to seminorms ..................... 54 4.3 Hausdorff locally convex t.v.s................... 64 4.4 The finest locally convex topology ................ 67 4.5 Direct limit topology on a countable dimensional t.v.s. 69 4.6 Continuity of linear mappings on locally convex spaces . 71 5 The Hahn-Banach Theorem and its applications 73 5.1 The Hahn-Banach Theorem.................... 73 5.2 Applications of Hahn-Banach theorem.............. 77 5.2.1 Separation of convex subsets of a real t.v.s. 78 5.2.2 Multivariate real moment problem............ 80 Chapter 1 Preliminaries 1.1 Topological spaces 1.1.1 The notion of topological space The topology on a set X is usually defined by specifying its open subsets of X.
    [Show full text]
  • Lecture Notes on General Relativity Columbia University
    Lecture Notes on General Relativity Columbia University January 16, 2013 Contents 1 Special Relativity 4 1.1 Newtonian Physics . .4 1.2 The Birth of Special Relativity . .6 3+1 1.3 The Minkowski Spacetime R ..........................7 1.3.1 Causality Theory . .7 1.3.2 Inertial Observers, Frames of Reference and Isometies . 11 1.3.3 General and Special Covariance . 14 1.3.4 Relativistic Mechanics . 15 1.4 Conformal Structure . 16 1.4.1 The Double Null Foliation . 16 1.4.2 The Penrose Diagram . 18 1.5 Electromagnetism and Maxwell Equations . 23 2 Lorentzian Geometry 25 2.1 Causality I . 25 2.2 Null Geometry . 32 2.3 Global Hyperbolicity . 38 2.4 Causality II . 40 3 Introduction to General Relativity 42 3.1 Equivalence Principle . 42 3.2 The Einstein Equations . 43 3.3 The Cauchy Problem . 43 3.4 Gravitational Redshift and Time Dilation . 46 3.5 Applications . 47 4 Null Structure Equations 49 4.1 The Double Null Foliation . 49 4.2 Connection Coefficients . 54 4.3 Curvature Components . 56 4.4 The Algebra Calculus of S-Tensor Fields . 59 4.5 Null Structure Equations . 61 4.6 The Characteristic Initial Value Problem . 69 1 5 Applications to Null Hypersurfaces 73 5.1 Jacobi Fields and Tidal Forces . 73 5.2 Focal Points . 76 5.3 Causality III . 77 5.4 Trapped Surfaces . 79 5.5 Penrose Incompleteness Theorem . 81 5.6 Killing Horizons . 84 6 Christodoulou's Memory Effect 90 6.1 The Null Infinity I+ ................................ 90 6.2 Tracing gravitational waves . 93 6.3 Peeling and Asymptotic Quantities .
    [Show full text]