Very High-Pressure Orogenic Garnet Peridotites

Total Page:16

File Type:pdf, Size:1020Kb

Very High-Pressure Orogenic Garnet Peridotites Very high-pressure orogenic garnet peridotites J. G. Liou*, R. Y. Zhang, and W. G. Ernst Department of Geological and Environmental Sciences, Stanford University, Stanford, CA 94305 Edited by Russell J. Hemley, Carnegie Institution of Washington, Washington, DC, and approved January 4, 2007 (received for review August 23, 2006) Mantle-derived garnet peridotites are a minor component in many very high-pressure metamorphic terranes that formed during con- tinental subduction and collision. Some of these mantle rocks contain trace amounts of zircon and micrometer-sized inclusions. The constituent minerals exhibit pre- and postsubduction microstructures, including polymorphic transformation and mineral exsolution. Experimental, mineralogical, petrochemical, and geochronological characterizations using novel techniques with high spatial, temporal, and energy resolutions are resulting in unexpected discoveries of new phases, providing better constraints on deep mantle processes. ata on the composition of the These petrochemical findings lead to the index minerals coesite and/or dia- subcontinental lithospheric new challenges posed by critical tectonic mond at a minimum P Ͼ 2.7 GPa at mantle are essential for erect- questions: How were deep-seated (Ͼ200 T Ͼ 600°C (Fig. 1); such metamorphism ing realistic large-scale models km) mantle rocks transported to shallow is now well recognized in the geologic D depths? How were such peridotites in- of the Earth’s geochemical and tectonic community (25, 26). The discovery of evolution (1). Our knowledge of mantle corporated into subduction-zone oro- tracts of upper continental crust meta- composition and petrochemical pro- gens? How can we distinguish the morphosed under VHP conditions has cesses has been derived mainly from petrochemical/geochronological pro- revolutionized our understanding of col- studies of xenoliths and xenocrysts in cesses taking place in a mantle wedge lisional orogenic belts. The subduction kimberlites, mantle-derived volcanic setting from those affecting deeply sub- of sialic materials to mantle depths plays rocks, and experimental very high- ducted ultramafic rocks of the continen- a crucial role in crust–mantle interac- pressure (VHP) phase equilibria, and tal lithosphere? tions at convergent plate junctions. One from the interpretation of seismic tomo- In the spirit of synergy of 21st century of the most significant orogenic pro- graphic images. Recent studies of oro- science and technology, this article pre- cesses is the formation and subsequent genic peridotites provide additional sents an overview of VHP metamorphism exhumation of VHP rocks subducted to insights regarding upper mantle pro- of garnet peridotites and poses new chal- depths of 150 km or more. Several new cesses at convergent lithospheric plate lenges for petrochemical and experimental VHP terranes (Fig. 2) have recently boundaries. It was found that many oro- studies of mantle-derived orogenic perido- been identified on the basis of partially genic peridotites were derived from a tites. Specifically, we describe differences preserved trace index minerals (e.g., depleted, metasomatized mantle or in petrochemical features for mantle- coesite with or without diamond) in crustal cumulate, and later were wedge and subduction-zone processes strong containers such as zircon and/or subjected to subduction-zone VHP through examination of micrometer-sized garnet. metamorphism (e.g., refs. 2–6). Some minerals, exsolution textures, and poly- morphic transformations. A recent study peridotites preserve a record of ultra- In Situ VHP Metamorphism. The volumetri- of garnet nodules in the Western Gneiss deep origin revealed by mineral ex- cally predominant rocks of VHP ter- Region of the Norwegian Caledonides (6) solution and the persistence of VHP ranes are felsic gneisses and schists, indicates that the interpretation of conti- many of which lack obvious evidence polymorphs (6–14), and several perido- nental subduction depths Ͼ200 km for of mantle-depth metamorphism. Recent tites contain dense hydrous magnesian some VHP terranes may be incorrect, in- observations (27) indicate that not all silicates (DHMS) that are stable only at asmuch as the deep-mantle origin of the garnet peridotites and eclogites are mantle depths (15, 16). It was also peridotites occurred before emplacement fault-bounded, as was previously found that some garnet peridotites, and in the subduction zone. In the following thought; some such VHP rocks preserve their host continental crust, underwent discussion, except for a few specific exam- evidence that their contacts with coeval subduction-zone VHP metamor- ples, we focus mainly on our own pub- gneissic rocks have retained structural phism under pressure–temperature lished and unpublished research in the coherence throughout subduction, meta- (P–T) conditions characterized by low Dabie–Sulu terrane of east-central China. Յ morphism, and exhumation. Mineralogi- thermal gradients ( 5°C/km), based on cal indicators of VHP metamorphism sensitive high-resolution ion microprobe VHP Metamorphism have been found in a variety of wall (SHRIMP) U–Pb ages of zircon sepa- Physical Conditions of Metamorphism. Since rock lithologies, including gneisses, rates from both rock types (e.g., refs. the initial discoveries of coesite in su- 17–20). Furthermore, VHP experiments pracrustal rocks (23, 24), VHP meta- have revealed that numerous hydrous morphism has become synonymous with Author contributions: J.G.L. and R.Y.Z. designed research; phases and nominally anhydrous miner- that portion of eclogite-facies conditions J.G.L. and R.Y.Z. performed research; W.G.E. analyzed data; and J.G.L., R.Y.Z., and W.G.E. wrote the paper. als containing substantial amounts of within the P–T stability field of coesite. The authors declare no conflict of interest. H2O are stable under such conditions. Understanding VHP tectonics is viewed Therefore, cold subduction zones are as a significant undertaking of consider- This article is a PNAS Direct Submission. Abbreviations: DHMS, dense hydrous magnesian silicates; the principal sites of H2O recycling back able importance, as underscored by the P–T, pressure–temperature; REE, rare earth element; into the mantle (for reviews, see refs. 21 abundance of recent task groups, work- SHRIMP, sensitive high-resolution ion microprobe; TEM, and 22). Such findings have advanced shops, conference sessions, and books transmission electron microscopy; VHP, very high pressure. our knowledge of the thermal structure devoted to the subject. VHP metamor- *To whom correspondence should be addressed. E-mail: of subduction zones and of the recycling phism refers to the transformation of [email protected]. of volatiles into the mantle. crustal rocks to assemblages containing © 2007 by The National Academy of Sciences of the USA 9116–9121 ͉ PNAS ͉ May 29, 2007 ͉ vol. 104 ͉ no. 22 www.pnas.org͞cgi͞doi͞10.1073͞pnas.0607300104 Downloaded by guest on September 29, 2021 SPECIAL FEATURE: PERSPECTIVE 6.0 G 211± 4 Ma enrichments and a marked negative Eu Peridotite G anomaly (31, 32). Consequently, identifi- Eclogite Sulu (A) cation of mineral inclusions and charac- 5.0 zone 160 terization of REE patterns of zoned Dabie- zircons have been used in conjunction 4.0 Forbidden Diamond with ion microprobe U–Pb dating to 231± 4 Ma Graphite o 120 elucidate the P–T time paths for some 5 C/km G Dry EC e > 680 Ma VHP terranes (e.g., refs. 33 and 34). 3.0 Lw-EC G Coesit rtz (A) Qua 231±4 Ma New isotopic ages support the hypoth- Depth km 80 esis that Dabie–Sulu eclogites, garnet Pressure [GPa] Amp-EC Protolith age: > 680 Ma 2.0 Ep-EC S peridotites, and the surrounding wall Qtz-bearing inherited core rocks were subjected to coeval VHP BS S UHP metamorphic age: 231±4 Ma HGR metamorphism at 220–240 Ma. Meta- (A) 40 1.0 > 680 Ma Coe-bearing mantle Retrograde metamorphism: 211±4 Ma morphic overgrowths on zircons from EA AM GR GS Qtz-bearing rim eclogites and country rock gneisses and 210 ± 4 Ma (B) 0 Exhumation rate: > 5 km/Ma schists yield virtually identical U–Pb 200 400 600 800 1000 Triassic ages (e.g., refs. 19, 35, and 36), Temperature [ oC] demonstrating that all units were meta- morphosed at the same time. Zircon Fig. 1. P–T conditions of VHP mafic–ultramafic rocks. (Left) (A), P–T fields of VHP metamorphism, ‘‘forbidden-zone’’ (17), and stability of coesite and diamond; (B), P–T time paths for Dabie–Sulu eclogite separates from Dabie–Sulu VHP rocks and garnet peridotites. (Right) Zoned zircon domains with SHRIMP U–Pb ages for Sulu paragneiss. retain low-P mineral-bearing inherited cores, VHP mineral-bearing (e.g., coes- ite) mantles, and rims that contain quartzites, and marbles (27–30). De- to the P–T time path of a subduction low-P minerals such as quartz and pla- tailed studies of mineral compositions complex, inasmuch as this mineral is gioclase (37, 38). Ion microprobe U–Pb in Dabie felsic gneisses and schists show extremely stable and resistant over analyses of these zoned zircons have that they were metamorphosed together a wide range of conditions. During identified three discrete age groups, with intercalated coesite-bearing eclogite growth stages, individual zircon zonal shown schematically in Fig. 1: (i) the and garnet peridotite bodies under simi- domains may include and preserve in- latest Proterozoic protolith ages (Ͼ680 lar P–T conditions. clusions of minerals in equilibrium with Ma) in the inherited cores, (ii) a culmi- Evidence of mantle-depth meta- the matrix phase assemblage. For in- nating
Recommended publications
  • Podiform Chromite Deposits—Database and Grade and Tonnage Models
    Podiform Chromite Deposits—Database and Grade and Tonnage Models Scientific Investigations Report 2012–5157 U.S. Department of the Interior U.S. Geological Survey COVER View of the abandoned Chrome Concentrating Company mill, opened in 1917, near the No. 5 chromite mine in Del Puerto Canyon, Stanislaus County, California (USGS photograph by Dan Mosier, 1972). Insets show (upper right) specimen of massive chromite ore from the Pillikin mine, El Dorado County, California, and (lower left) specimen showing disseminated layers of chromite in dunite from the No. 5 mine, Stanislaus County, California (USGS photographs by Dan Mosier, 2012). Podiform Chromite Deposits—Database and Grade and Tonnage Models By Dan L. Mosier, Donald A. Singer, Barry C. Moring, and John P. Galloway Scientific Investigations Report 2012-5157 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior KEN SALAZAR, Secretary U.S. Geological Survey Marcia K. McNutt, Director U.S. Geological Survey, Reston, Virginia: 2012 This report and any updates to it are available online at: http://pubs.usgs.gov/sir/2012/5157/ For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit http://www.usgs.gov or call 1–888–ASK–USGS For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod To order this and other USGS information products, visit http://store.usgs.gov Suggested citation: Mosier, D.L., Singer, D.A., Moring, B.C., and Galloway, J.P., 2012, Podiform chromite deposits—database and grade and tonnage models: U.S.
    [Show full text]
  • Chromite Deposits of the North Elder Creek Area Tehama County, California
    UNITED STATES DEPARTMENT OF THE INTERIOR J. A. Krug, Secretary GEOLOGICAL SURVEY W. E. Wrather, Director Bulletin 945-G CHROMITE DEPOSITS OF THE NORTH ELDER CREEK AREA TEHAMA COUNTY, CALIFORNIA By G. A. RYNEARSON Strategic Minerals Investigations, 1944 (Pages 191-210) UNITED STATES GOVERNMENT PRINTING OFFICE WASHINGTON : 1946 CONTENTS Page Abstract................................................... 191 Introduction............................................... 192 History and production..................................... 192 Geology.................................................... 194 Franciscan formation................................... 194 Knoxville formation.................................... 195 Argillite and metavolcanic rocks................... 195 Shale and sandstone................................ 195 Peridotite and serpentine.............................. 195 Saxonite........................................... 196 Dunite............................................. 196 Wehrlite........................................... 196 Serpentine......................................... 196 Dike rocks............................................. 197 Alteration............................................. 197 Structure.............................................. 198 Ore bodies................................................. 199 Mineralogy............................................. 199 Character of ore....................................... 200 Localization........................................... 202 Origin................................................
    [Show full text]
  • High-Temperature Ultramafic Complexes in the North Norwegian Caledonides: I - Regional Setting and Field Relationships
    High-temperature ultramafic complexes in the North Norwegian Caledonides: I - Regional setting and field relationships M.C. BENNETT, S,R. EMBLIN, B, ROBINS & W.J.A. YEO Bennett, M.C., Emblin, S.R., Robins, B. & Yeo, W.J.A. 1986: High+emperature ultramafic complexes in the North Norwegian Caledonides: I - Regional setting and field relationships. Nor. geol. unders. Bull.405, r40. Four major (25-100 km¡) ultramafìc complexes were developed in the Sørøy Nappe during the second phase of Finnmarkian deformation in the North Norwegian Caledonides. They were emplaced into layered mafic intrusions and show broadly similar emplacement histories and petrographic variations suggesting a related petrogenesis. The Nordre Bumannsford, Melkvann and Kvalford group of ulramafic complexes developed in part by emplacement ofboth replacive and dilational ne-normative ultramafic sheets and dykes which progressively fragmented the layered olivine gabbro envelope. The earliest dykes and sheets are from a few cm to l00m wide and show highly inegular, nondilational contacls. They are dominantly coarse-grained, xenolithic olivine clinopyroxenite varying locally to dunite, poikilitic wehrlite, feldspat- hic olivine clinopyroxenite and olivine melagabbro. Iater dykes are from a few cm to 20 m wide and also lack chilled margins but show regular, dilational contact relationships. They include poikilitic wehrlite (commonly spatially associated with veins and patches of secondary wehrlite and dunite), olivine clinopyroxenite, olivinehornblende clinopyroxenite, hornblende peridotite and homblende melagabbro. Some members of the dyke suite exhibit mineral lamination, modal layering and cyclic units, and others contain mosaic-porphyroclastic spinel lher¿olite nodules. Variably foliated and metamorphosed olivine gabbro, ankaramite and picrite dykes with chilled maryins were emplaced during the latest stages in the evolution ofthe complexes.
    [Show full text]
  • Occurrence of Gabbro-Wehrlite Near Lochalsh, Ontario M
    OCCURRENCE OF GABBRO-WEHRLITE NEAR LOCHALSH, ONTARIO M. H. Fnonsnnc. MacassaMi.nes. Li.mited., Toromto, Ontar'i.o, Ansrnecr Gabbro-wehrlite consisting of more than80/6 dark constituents, but in excess of 1016 plagioclase, forms the marginal facies of a mela-olivine gabbro intrusion near Lochalsh, about 150 miles north of Sault Ste. Marie, Ontario. This exceptionally fresh rock is of in- terest as a link between the gabbro and peridotite clans. In his report on the iron deposits of the Missinaibi map area, E. Thompsonl mentioned the occurrenceof peridotite at the northwest end of Dog Lake, about 1$ miles southeast of the Canadian Pacific Railway station Lochalsh. The intrusive body is roughly elliptical in outline, with its major axis striking almost due east. It is slightly over one mile long and up to 1,500 ft. wide, forming a prominent ridge rising more than 300 ft. above the level of Dog Lake. Thompson describedthis remarkably fresh basic rock as consisting essentially of pyroxene and olivine, with lesser quantities of plagioclase and biotite, and some serpentine and hornblende as secondary products. The present writer investigated the occurrencereferred to by Thomp- son, in connection with a search for war-important minerals. Micro- scopic examination of a considerablenumber of samplestaken at various points of the intrusion revealed that its plagioclase content exceedsthe amount of leucocratic constituents allowed by most petrographers in rocks classedas peridotites. Actually the mass consistsof a core bearing from 20 to 45/s plagioclase,and a more melanocratic border zone aver- aging Iessthan20/s plagioclase.In no instance was the feldspar content Iessthan t0/6 of the total constituents.
    [Show full text]
  • Igneous Petrology EOSC 321 Laboratory 1: Ultramafic Plutonic and Volcanic Rocks
    1 Igneous petrology EOSC 321 Laboratory 1: Ultramafic plutonic and volcanic rocks Material Needed: a) Microscope, b) Glossary of rock names and textures (see Pages 24- 25 and 43 of Winter); c) Lab1 Manual printed off the course website; d) tables to aid determination of mineral modes in thin sections; e) classification triangles; f) a Manual on Optical Mineralogy (i.e. Minerals in Thin Section by Perkins and Henke) Microscopes: At the start of the lab period, you will be assigned a microscope and the combination to the microscope locker by your TA. You will have access to this microscope throughout the remainder of the course. The microscope will be shared with students from the other laboratories. Please keep the microscopes in working condition and, should a problem arise, let your TA know immediately so that repairs can be made. Lab Organization: Review optical properties of common rock-forming minerals so that you’re able to identify them. There is a box with reference thin sections for igneous rock- forming minerals that can be helpful in this respect. In the next two hours of the lab period you will examine reference thin sections of ultramafic rocks. Each thin section has a brief petrographic description to assist you in the identification of minerals, textures and rock classification. Please make sure you understand the reference petrographic descriptions and can find all of the minerals mentioned. You should also be able to understand why a rock is given a particular name. For these, you should recap how to assess mineral modes under a microscope, and how to plot these on rock classification triangles.
    [Show full text]
  • Translithospheric Mantle Diapirism: Geological Evidence and Numerical Modelling of the Kondyor Zoned Ultramafic Complex (Russian Fa R-E a S T )
    JOURNAL OF PETROLOGY VOLUME 50 NUMBER 2 PAGES 289^321 2009 doi:10.1093/petrology/egn083 Translithospheric Mantle Diapirism: Geological Evidence and Numerical Modelling of the Kondyor Zoned Ultramafic Complex (Russian Fa r-E a s t ) J.-P. BURG1*,J.-L.BODINIER2,T.GERYA1, R.-M. BEDINI2, F. BOU DI ER 2,J.-M.DAUTRIA2,V.PRIKHODKO3,A.EFIMOV4, E. PUPIER2 AND J.-L. BALANEC2 1EARTH SCIENCES DEPARTMENT, ETH ZENTRUM AND UNIV. ZU« RICH, SONNEGGSTRASSE 5, ZU« RICH, 8092, SWITZERLAND 2GE¤ OSCIENCES MONTPELLIER, UNIVERSITE¤ DE MONTPELLIER 2 & CNRS, CC 60, PLACE EUGE' NE BATAILLON, 340 95 MONTPELLIER CEDEX 05, FRANCE 3INSTITUTE OF TECTONICS AND GEOPHYSICS, RUSSIAN ACADEMY OF SCIENCES, 680063 KHABAROVSK, RUSSIA 4INSTITUTE OF GEOLOGY AND GEOCHEMISTRY, RUSSIAN ACADEMY OF SCIENCES, 620151 EKATERINBURG, RUSSIA RECEIVED MARCH 10, 2008; ACCEPTED DECEMBER 30, 2008 We report new structural, microstructural, petrological, and major- core metasomatic zone, with a decreasing melt fraction from core to and trace-element data on ultramafic rocks from the Kondyor zoned rim, and also suggest that solid-state deformation induced grain-size ultramafic complex in Far-East Russia. The ultramafic rocks are reduction towards the cooling border of the Kondyor massif. Based on subdivided into three subconcentric lithologies, from core to rim: (1) their geochemistry, the dunites are interpreted as mantle rocks a metasomatic domain where generally phlogopite-rich dykes perva- strongly affected by reaction with melts similar to the Jurassic^ sively intrude dunite; (2) a main dunite core; (3) a pyroxenite rim. Cretaceous Aldan Shield lamproites. Rim pyroxenites were formed The ultramafic rocks have nearly vertical contacts with the sur- by a melt-consuming peritectic reaction, implying the existence of at rounding Archaean basement (gneisses, quartzites and marbles) least a small, conductive thermal gradient around the dunite body and hornfelsed Riphean sediments.The hornfelsed sediments show a while the latter was still at near-solidus temperature conditions.
    [Show full text]
  • Eclogite Formation and the Rheology, Buoyancy, Seismicity, and H2O
    Eclogite Formationand the Rheology,Buoyancy, Seismicity,and H20 Contentof OceanicCrust BradleyR. Hacker1 Departmentof Geologicaland EnvironmentalSciences, Stanford University, Stanford, California A broad spectrumof variably altered igneous rocks with a wide range of grain sizes are compressedand heated over a wide range of pressure-temperaturepaths in subductionzones. Although experimentalkinetic data cannotbe extrapolatedto predict the rates of blueschistand eclogite formation in nature, textural data from rocks indicate that transformationbelow temperaturesof 150øCis minimal. Completetransformation of volcanicrocks occurs by •-250øC, but incompletetransformation of gabbroicrocks heatedto 800øC has been observed.There are important consequencesto the rapid transformation of volcanic rocks and the metastable persistenceof gabbroicrocks into the blueschistand eclogite stability fields. Fast seismic velocities shouldbe evident first in the upper oceaniccrust and may be substantiallyretarded in the lower oceaniccrust. The upper oceaniccrust will be denserthan asthenospherebefore the lower oceanic crust.Early in the processof eclogiteformation, volcanic rocks will be placedin deviatorictension and the underlyingcoarser grained rocks in compression;with furtherreaction, the stateof stressin gabbroicrocks will changefrom compressiveto tensile.Earthquakes at shallowdepths should be extensional in basalt and contractionalin gabbro, changing at deeper levels to extensional throughoutthe crust. INTRODUCTION This paper summarizes the rates and
    [Show full text]
  • Characteristics and Petrogenesis of Alaskan^Type Ultranaafic-Mafic Intrusions, Southeastern Alaska
    Characteristics and Petrogenesis of Alaskan^Type«/ J: Ultranaafic-Mafic Intrusions, Southeastern Alaska U.S. GEOLOGICAL SURVEY PROFESSIONAL PAPER 1564 AVAILABILITY OF BOOKS AND MAPS OF THE U.S. GEOLOGICAL SURVEY Instructions on ordering publications of the U.S. Geological Survey, along with prices of the last offerings, are given in the current- year issues of the monthly catalog "New Publications of the U.S. Geological Survey." Prices of available U.S. Geological Survey publications released prior to the current year are listed in the most recent annual "Price and Availability List." Publications that are listed in various U.S. Geological Survey catalogs (see back inside cover) but not listed in the most recent annual "Price and Availability List" are no longer available. Reports released through the NTIS may be obtained by writing to the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161; please include NTIS report number with inquiry. Order U.S. Geological Survey publications by mail or over the counter from the offices given below. BY MAIL OVER THE COUNTER Books Books and Maps Professional Papers, Bulletins, Water-Supply Papers, Tech­ Books and maps of the U.S. Geological Survey are available niques of Water-Resources Investigations, Circulars, publications over the counter at the following U.S. Geological Survey offices, of general interest (such as leaflets, pamphlets, booklets), single all of which are authorized agents of the Superintendent of Docu­ copies of Earthquakes & Volcanoes, Preliminary Determination of ments. Epicenters, and some miscellaneous reports, including some of the foregoing series that have gone out of print at the Superin­ • ANCHORAGE, Alaska-4230 University Dr., Rm.
    [Show full text]
  • Petrological, Geochemical and Isotopic Characteristics of the Collo Ultramafic Rocks (NE Algeria)
    Journal of African Earth Sciences 125 (2017) 59e72 Contents lists available at ScienceDirect Journal of African Earth Sciences journal homepage: www.elsevier.com/locate/jafrearsci Petrological, geochemical and isotopic characteristics of the Collo ultramafic rocks (NE Algeria) * Rabah Laouar a, c, , Adel Satouh b, Sihem Salmi-Laouar a, Nachida Abdallah c, Jean-Yves Cottin d, Olivier Bruguier e, Delphine Bosch e, Aziouz Ouabadi c, Adrian J. Boyce f, Anthony E. Fallick f a Departement de geologie, FST, Universite Badji Mokhtar Annaba, B.P. 12, 23000, Annaba, Algeria b Departement de Geologie, Universite Kasdi Merbah Ouargla, Algeria c Laboratoire de Geodynamique, Geologie de l’Ingenieur et Planetologie, F.S.T.G.A.T., USTHB, BP. 32, Bab Ezzouar, 16111, Algiers, Algeria d Univ-Lyon, UJM Saint Etienne, UMR 6524 “Magmas et Volcans”, 23 rue P. Michelin, 42023, Saint Etienne Cedex, France e Geosciences Montpellier, Universite de Montpellier, CNRS-UMR 5243, Place E. Bataillon, 34095, Montpellier Cedex 5, France f Isotope Geosciences Unit, SUERC, East Kilbride, Glasgow, G75 0QU, Scotland, United Kingdom article info abstract Article history: The ultramafic rocks of the Collo region in northeastern Algeria crop out as “stratified” masses that cut Received 27 June 2016 across older metamorphic formations of the Petite Kabylie basement. Based on petrological compositions Received in revised form and mineralogical observations, these rocks are mainly peridotites and serpentinites. The peridotites are 27 September 2016 identified as lherzolites, but dunites may occur rarely. The lherzolites are composed of olivine, ortho- Accepted 25 October 2016 pyroxene, clinopyroxene and chromian spinel. Their chemical composition shows high MgO (34.4 Available online 26 October 2016 e37.5 wt%), Cr (0.14e0.27 wt%), Ni (0.14e0.26 wt%) and Co (34e133 ppm) contents and low CaO and Al2O3 concentrations (0.02e2.2 wt% and 0.5 to 2.8 wt%, respectively).
    [Show full text]
  • Pressures and Temperatures Calculated from Chromium-Rich
    American Mineralogist, Volume 6l , pages 725-731, 1976 Pressuresand temperatures calculated from chromium-rich pyroxene compositions of megacrystsand peridotitexenoliths, Black Rock Summit.Nevada JlNr E.NrrlsoN Prrr U.S. GeologicalSuruey, Menlo Park, California 94025 Abstract Olivine-rich spinel-peridotitexenoliths from basanitoidflows and pyroclastics,Black Rock Summit, Nevada, contain peculiarly Cr-rich orthopyroxenes(average lVo CrzO') and low-Ca chromian clinopyroxenes( I 5- l87oCaO). Electron probe analyses,including a scan acrossan orthopyroxenite veinlike structure in one sample,reveal that there are significantcompositional variations within megacrystsand pyroxenesof peridotite xenoliths over distancesof only a few millimeters.These variations lead to large apparent gradients in pressureand temperature when calculatedby current methodsand plotted on the widely-usedP-T diagramsof Maccregor (1974) and Boyd (1973). The chemical variations in the scannedspecimen are systematicand thus are not due to analytical error, but probably are causedby metasomaticand other reactionsin the source areas of the ultramafic rocks. The presenceof these variations brings into question the assumptionsupon which current petrogeneticgrids are based,and strongly suggeststhat the interpretationof P-T curvesas fossil geothermsis premature. Introduction to ultramafic host rocks. The megacrysts have Clinopyroxene megacrystsand spinel-faciesper- rounded shapes,are rimmed by border zonesof in- idotite xenoliths collectedfrom Black Rock Summit, cipient melting, and are usually surrounded by host Nevada(Trask, 1969)are olivine-rich.Many contain lavas of alkalic basalt. These large crystals contain a distinctive bottle-green pyroxene that resembles strain lamellae,and zonesof granulation are concen- neither the apple-green(Cr-diopside) nor the black trated along the lamellae. (Al-augite) pyroxene-bearingspinel-facies peridotite xenoliths at the same location.
    [Show full text]
  • An Unusual Tasmanian Tertiary Basalt Sequence, Near Boat Harbour, Northwest Tasmania
    AUSTRALIAN MUSEUM SCIENTIFIC PUBLICATIONS Sutherland, F. L., D. F. Hendry, B. J. Barron, W. L. Matthews and J. D. Hollis, 1996. An unusual Tasmanian Tertiary basalt sequence, near Boat Harbour, northwest Tasmania. Records of the Australian Museum 48(2): 131–161. [18 September 1996]. doi:10.3853/j.0067-1975.48.1996.285 ISSN 0067-1975 Published by the Australian Museum, Sydney naturenature cultureculture discover discover AustralianAustralian Museum Museum science science is is freely freely accessible accessible online online at at www.australianmuseum.net.au/publications/www.australianmuseum.net.au/publications/ 66 CollegeCollege Street,Street, SydneySydney NSWNSW 2010,2010, AustraliaAustralia Records of the Australian Museum (1996) Vo!. 48: 131-161. ISSN 0067-1975 An Unusual Tasmanian Tertiary Basalt Sequence, Near Boat Harbour, Northwest Tasmania RL. SUTHERLAND,! D.R HENDRY,z* B.J. BARRON,1 W.L. MATTHEWS3 AND J.D. HOLLIS! I Division of Earth and Environmental Sciences, The Australian Museum, 6 College Street, Sydney NSW 2000, Australia Internet: [email protected] 2 Department of Geology and Geophysics, The University of Sydney NSW 2006, Australia 3 Department of Mines, PO Box 56, Rosny Park TAS 7018, Australia * Present address: 16 Sunnyside Street, Gladesville NSW 2111, Australia ABSTRACT. The mineralogy and petrology of basalts near Boat Harbour, NW Tasmania, are described as this sequence is unusual for Tasmanian Tertiary basalts. The rocks are more sodic and evolved basalts carry more prolific anorthoclase and zircon megacrysts than is normal in Tasmania. Older nephelinites and melilite-nephelinites (26-27 Ma) and younger nepheline hawaiites and mugearites (14-15 Ma) are present and fission track zircon ages (l3-14 Ma and 8-9 Ma) demonstrate that zircon was erupted during and after the evolved basalts.
    [Show full text]
  • Concretes Made of Magnesium–Silicate Rocks
    minerals Article Concretes Made of Magnesium–Silicate Rocks Lyudmila I. Khudyakova 1, Evgeniy V. Kislov 2,*, Irina Yu. Kotova 1 and Pavel L. Paleev 1 1 Baikal Institute of Nature Management, Siberian Branch, Russian Academy of Sciences, 670047 Ulan-Ude, Russia; [email protected] (L.I.K.); [email protected] (I.Y.K.); [email protected] (P.L.P.) 2 Geological Institute, Siberian Branch, Russian Academy of Sciences, 670047 Ulan-Ude, Russia * Correspondence: [email protected] Abstract: At present, there is a shortage of high-quality feedstock to produce widely used building materials—concretes. Depletion of natural resources and growing restrictions on their extraction, in connection with environmental protection, necessitate the search for an equivalent replacement for conventional raw materials. Magnesium–silicate rocks are a waste of the mining industry. We researched the possibility of using these rocks as coarse and fine aggregates in heavy concrete production. Following the requirements of the national standards, we studied the physical and mechanical characteristics of the obtained material. It was found that the strength of concrete, made of magnesium–silicate rock coarse aggregate, at the age of 28 days of hardening is within 28 MPa, while the strength of the control sample is 27.3 MPa. Replacing quartz sand with dunite sand also leads to an increase in concrete strength (~4%). Complete replacement of aggregates facilitates an increase in strength by 15–20% than the control sample. At the same time, the density of the obtained materials becomes higher. Concretes have a dense structure that affects their quality. Concrete water absorption is within 6%.
    [Show full text]