Satellite Geodesy
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Geodesy in the 21St Century
Eos, Vol. 90, No. 18, 5 May 2009 VOLUME 90 NUMBER 18 5 MAY 2009 EOS, TRANSACTIONS, AMERICAN GEOPHYSICAL UNION PAGES 153–164 geophysical discoveries, the basic under- Geodesy in the 21st Century standing of earthquake mechanics known as the “elastic rebound theory” [Reid, 1910], PAGES 153–155 Geodesy and the Space Era was established by analyzing geodetic mea- surements before and after the 1906 San From flat Earth, to round Earth, to a rough Geodesy, like many scientific fields, is Francisco earthquakes. and oblate Earth, people’s understanding of technology driven. Over the centuries, it In 1957, the Soviet Union launched the the shape of our planet and its landscapes has developed as an engineering discipline artificial satellite Sputnik, ushering the world has changed dramatically over the course because of its practical applications. By the into the space era. During the first 5 decades of history. These advances in geodesy— early 1900s, scientists and cartographers of the space era, space geodetic technolo- the study of Earth’s size, shape, orientation, began to use triangulation and leveling mea- gies developed rapidly. The idea behind and gravitational field, and the variations surements to record surface deformation space geodetic measurements is simple: Dis- of these quantities over time—developed associated with earthquakes and volcanoes. tance or phase measurements conducted because of humans’ curiosity about the For example, one of the most important between Earth’s surface and objects in Earth and because of geodesy’s application to navigation, surveying, and mapping, all of which were very practical areas that ben- efited society. -
State Plane Coordinate System
Wisconsin Coordinate Reference Systems Second Edition Published 2009 by the State Cartographer’s Office Wisconsin Coordinate Reference Systems Second Edition Wisconsin State Cartographer’s Offi ce — Madison, WI Copyright © 2015 Board of Regents of the University of Wisconsin System About the State Cartographer’s Offi ce Operating from the University of Wisconsin-Madison campus since 1974, the State Cartographer’s Offi ce (SCO) provides direct assistance to the state’s professional mapping, surveying, and GIS/ LIS communities through print and Web publications, presentations, and educational workshops. Our staff work closely with regional and national professional organizations on a wide range of initia- tives that promote and support geospatial information technologies and standards. Additionally, we serve as liaisons between the many private and public organizations that produce geospatial data in Wisconsin. State Cartographer’s Offi ce 384 Science Hall 550 North Park St. Madison, WI 53706 E-mail: [email protected] Phone: (608) 262-3065 Web: www.sco.wisc.edu Disclaimer The contents of the Wisconsin Coordinate Reference Systems (2nd edition) handbook are made available by the Wisconsin State Cartographer’s offi ce at the University of Wisconsin-Madison (Uni- versity) for the convenience of the reader. This handbook is provided on an “as is” basis without any warranties of any kind. While every possible effort has been made to ensure the accuracy of information contained in this handbook, the University assumes no responsibilities for any damages or other liability whatsoever (including any consequential damages) resulting from your selection or use of the contents provided in this handbook. Revisions Wisconsin Coordinate Reference Systems (2nd edition) is a digital publication, and as such, we occasionally make minor revisions to this document. -
Solar Radiation Pressure Models for Beidou-3 I2-S Satellite: Comparison and Augmentation
remote sensing Article Solar Radiation Pressure Models for BeiDou-3 I2-S Satellite: Comparison and Augmentation Chen Wang 1, Jing Guo 1,2 ID , Qile Zhao 1,3,* and Jingnan Liu 1,3 1 GNSS Research Center, Wuhan University, 129 Luoyu Road, Wuhan 430079, China; [email protected] (C.W.); [email protected] (J.G.); [email protected] (J.L.) 2 School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK 3 Collaborative Innovation Center of Geospatial Technology, Wuhan University, 129 Luoyu Road, Wuhan 430079, China * Correspondence: [email protected]; Tel.: +86-027-6877-7227 Received: 22 December 2017; Accepted: 15 January 2018; Published: 16 January 2018 Abstract: As one of the most essential modeling aspects for precise orbit determination, solar radiation pressure (SRP) is the largest non-gravitational force acting on a navigation satellite. This study focuses on SRP modeling of the BeiDou-3 experimental satellite I2-S (PRN C32), for which an obvious modeling deficiency that is related to SRP was formerly identified. The satellite laser ranging (SLR) validation demonstrated that the orbit of BeiDou-3 I2-S determined with empirical 5-parameter Extended CODE (Center for Orbit Determination in Europe) Orbit Model (ECOM1) has the sun elongation angle (# angle) dependent systematic error, as well as a bias of approximately −16.9 cm. Similar performance has been identified for European Galileo and Japanese QZSS Michibiki satellite as well, and can be reduced with the extended ECOM model (ECOM2), or by using the a priori SRP model to augment ECOM1. In this study, the performances of the widely used SRP models for GNSS (Global Navigation Satellite System) satellites, i.e., ECOM1, ECOM2, and adjustable box-wing model have been compared and analyzed for BeiDou-3 I2-S satellite. -
Part V: the Global Positioning System ______
PART V: THE GLOBAL POSITIONING SYSTEM ______________________________________________________________________________ 5.1 Background The Global Positioning System (GPS) is a satellite based, passive, three dimensional navigational system operated and maintained by the Department of Defense (DOD) having the primary purpose of supporting tactical and strategic military operations. Like many systems initially designed for military purposes, GPS has been found to be an indispensable tool for many civilian applications, not the least of which are surveying and mapping uses. There are currently three general modes that GPS users have adopted: absolute, differential and relative. Absolute GPS can best be described by a single user occupying a single point with a single receiver. Typically a lower grade receiver using only the coarse acquisition code generated by the satellites is used and errors can approach the 100m range. While absolute GPS will not support typical MDOT survey requirements it may be very useful in reconnaissance work. Differential GPS or DGPS employs a base receiver transmitting differential corrections to a roving receiver. It, too, only makes use of the coarse acquisition code. Accuracies are typically in the sub- meter range. DGPS may be of use in certain mapping applications such as topographic or hydrographic surveys. DGPS should not be confused with Real Time Kinematic or RTK GPS surveying. Relative GPS surveying employs multiple receivers simultaneously observing multiple points and makes use of carrier phase measurements. Relative positioning is less concerned with the absolute positions of the occupied points than with the relative vector (dX, dY, dZ) between them. 5.2 GPS Segments The Global Positioning System is made of three segments: the Space Segment, the Control Segment and the User Segment. -
Geodetic Position Computations
GEODETIC POSITION COMPUTATIONS E. J. KRAKIWSKY D. B. THOMSON February 1974 TECHNICALLECTURE NOTES REPORT NO.NO. 21739 PREFACE In order to make our extensive series of lecture notes more readily available, we have scanned the old master copies and produced electronic versions in Portable Document Format. The quality of the images varies depending on the quality of the originals. The images have not been converted to searchable text. GEODETIC POSITION COMPUTATIONS E.J. Krakiwsky D.B. Thomson Department of Geodesy and Geomatics Engineering University of New Brunswick P.O. Box 4400 Fredericton. N .B. Canada E3B5A3 February 197 4 Latest Reprinting December 1995 PREFACE The purpose of these notes is to give the theory and use of some methods of computing the geodetic positions of points on a reference ellipsoid and on the terrain. Justification for the first three sections o{ these lecture notes, which are concerned with the classical problem of "cCDputation of geodetic positions on the surface of an ellipsoid" is not easy to come by. It can onl.y be stated that the attempt has been to produce a self contained package , cont8.i.ning the complete development of same representative methods that exist in the literature. The last section is an introduction to three dimensional computation methods , and is offered as an alternative to the classical approach. Several problems, and their respective solutions, are presented. The approach t~en herein is to perform complete derivations, thus stqing awrq f'rcm the practice of giving a list of for11111lae to use in the solution of' a problem. -
GPS and the Search for Axions
GPS and the Search for Axions A. Nicolaidis1 Theoretical Physics Department Aristotle University of Thessaloniki, Greece Abstract: GPS, an excellent tool for geodesy, may serve also particle physics. In the presence of Earth’s magnetic field, a GPS photon may be transformed into an axion. The proposed experimental setup involves the transmission of a GPS signal from a satellite to another satellite, both in low orbit around the Earth. To increase the accuracy of the experiment, we evaluate the influence of Earth’s gravitational field on the whole quantum phenomenon. There is a significant advantage in our proposal. While the geomagnetic field B is low, the magnetized length L is very large, resulting into a scale (BL)2 orders of magnitude higher than existing or proposed reaches. The transformation of the GPS photons into axion particles will result in a dimming of the photons and even to a “light shining through the Earth” phenomenon. 1 Email: [email protected] 1 Introduction Quantum Chromodynamics (QCD) describes the strong interactions among quarks and gluons and offers definite predictions at the high energy-perturbative domain. At low energies the non-linear nature of the theory introduces a non-trivial vacuum which violates the CP symmetry. The CP violating term is parameterized by θ and experimental bounds indicate that θ ≤ 10–10. The smallness of θ is known as the strong CP problem. An elegant solution has been offered by Peccei – Quinn [1]. A global U(1)PQ symmetry is introduced, the spontaneous breaking of which provides the cancellation of the θ – term. As a byproduct, we obtain the axion field, the Nambu-Goldstone boson of the broken U(1)PQ symmetry. -
World Geodetic System 1984
World Geodetic System 1984 Responsible Organization: National Geospatial-Intelligence Agency Abbreviated Frame Name: WGS 84 Associated TRS: WGS 84 Coverage of Frame: Global Type of Frame: 3-Dimensional Last Version: WGS 84 (G1674) Reference Epoch: 2005.0 Brief Description: WGS 84 is an Earth-centered, Earth-fixed terrestrial reference system and geodetic datum. WGS 84 is based on a consistent set of constants and model parameters that describe the Earth's size, shape, and gravity and geomagnetic fields. WGS 84 is the standard U.S. Department of Defense definition of a global reference system for geospatial information and is the reference system for the Global Positioning System (GPS). It is compatible with the International Terrestrial Reference System (ITRS). Definition of Frame • Origin: Earth’s center of mass being defined for the whole Earth including oceans and atmosphere • Axes: o Z-Axis = The direction of the IERS Reference Pole (IRP). This direction corresponds to the direction of the BIH Conventional Terrestrial Pole (CTP) (epoch 1984.0) with an uncertainty of 0.005″ o X-Axis = Intersection of the IERS Reference Meridian (IRM) and the plane passing through the origin and normal to the Z-axis. The IRM is coincident with the BIH Zero Meridian (epoch 1984.0) with an uncertainty of 0.005″ o Y-Axis = Completes a right-handed, Earth-Centered Earth-Fixed (ECEF) orthogonal coordinate system • Scale: Its scale is that of the local Earth frame, in the meaning of a relativistic theory of gravitation. Aligns with ITRS • Orientation: Given by the Bureau International de l’Heure (BIH) orientation of 1984.0 • Time Evolution: Its time evolution in orientation will create no residual global rotation with regards to the crust Coordinate System: Cartesian Coordinates (X, Y, Z). -
Geodetic Control
FGDC-STD-014.4-2008 Geographic Information Framework Data Content Standard Part 4: Geodetic Control May 2008 Federal Geographic Data Committee Established by Office of Management and Budget Circular A-16, the Federal Geographic Data Committee (FGDC) promotes the coordinated development, use, sharing, and dissemination of geographic data. The FGDC is composed of representatives from the Departments of Agriculture, Commerce, Defense, Education, Energy, Health and Human Services, Homeland Security, Housing and Urban Development, the Interior, Justice, Labor, State, and Transportation, the Treasury, and Veteran Affairs; the Environmental Protection Agency; the Federal Communications Commission; the General Services Administration; the Library of Congress; the National Aeronautics and Space Administration; the National Archives and Records Administration; the National Science Foundation; the Nuclear Regulatory Commission; the Office of Personnel Management; the Small Business Administration; the Smithsonian Institution; the Social Security Administration; the Tennessee Valley Authority; and the U.S. Agency for International Development. Additional Federal agencies participate on FGDC subcommittees and working groups. The Department of the Interior chairs the committee. FGDC subcommittees work on issues related to data categories coordinated under the circular. Subcommittees establish and implement standards for data content, quality, and transfer; encourage the exchange of information and the transfer of data; and organize the collection of -
Coordinate Systems in Geodesy
COORDINATE SYSTEMS IN GEODESY E. J. KRAKIWSKY D. E. WELLS May 1971 TECHNICALLECTURE NOTES REPORT NO.NO. 21716 COORDINATE SYSTElVIS IN GEODESY E.J. Krakiwsky D.E. \Vells Department of Geodesy and Geomatics Engineering University of New Brunswick P.O. Box 4400 Fredericton, N .B. Canada E3B 5A3 May 1971 Latest Reprinting January 1998 PREFACE In order to make our extensive series of lecture notes more readily available, we have scanned the old master copies and produced electronic versions in Portable Document Format. The quality of the images varies depending on the quality of the originals. The images have not been converted to searchable text. TABLE OF CONTENTS page LIST OF ILLUSTRATIONS iv LIST OF TABLES . vi l. INTRODUCTION l 1.1 Poles~ Planes and -~es 4 1.2 Universal and Sidereal Time 6 1.3 Coordinate Systems in Geodesy . 7 2. TERRESTRIAL COORDINATE SYSTEMS 9 2.1 Terrestrial Geocentric Systems • . 9 2.1.1 Polar Motion and Irregular Rotation of the Earth • . • • . • • • • . 10 2.1.2 Average and Instantaneous Terrestrial Systems • 12 2.1. 3 Geodetic Systems • • • • • • • • • • . 1 17 2.2 Relationship between Cartesian and Curvilinear Coordinates • • • • • • • . • • 19 2.2.1 Cartesian and Curvilinear Coordinates of a Point on the Reference Ellipsoid • • • • • 19 2.2.2 The Position Vector in Terms of the Geodetic Latitude • • • • • • • • • • • • • • • • • • • 22 2.2.3 Th~ Position Vector in Terms of the Geocentric and Reduced Latitudes . • • • • • • • • • • • 27 2.2.4 Relationships between Geodetic, Geocentric and Reduced Latitudes • . • • • • • • • • • • 28 2.2.5 The Position Vector of a Point Above the Reference Ellipsoid . • • . • • • • • • . .• 28 2.2.6 Transformation from Average Terrestrial Cartesian to Geodetic Coordinates • 31 2.3 Geodetic Datums 33 2.3.1 Datum Position Parameters . -
Satellite Geodesy: Foundations, Methods and Applications, Second Edition
Satellite Geodesy: Foundations, Methods and Applications, Second Edition By Günter Seeber, 589 pages, 281 figures, 64 tables, ISBN: 3-11-017549-5, published by Walter de Gruyter GmbH & Co., Berlin, 2003 The first edition of this book came out in 1993, when it made an enormous contribution to the field. It brought together in one volume a vast amount Günter Seeber of information scattered throughout the geodetic literature on satellite mis Satellite Geodesy sions, observables, mathematical models and applications. In the inter 2nd Edition vening ten years the field has devel oped at an astonishing rate, and the new edition has been completely revised to take this into account. Apart from a review of the historical development of the field, the book is divided into three main sections. The first part is a general introduction to the fundamentals of the subject: refer ence frames; time systems; signal propagation; Keplerian models of satel de Gruyter lite motion; orbit perturbations; orbit determination; orbit types and constel lations. The second section, which contributes to the fields of terrestrial comprises the major part of the book, and marine physical and geometrical is a detailed description of the principal geodesy, navigation and geodynamics. techniques falling under the umbrella of satellite geodesy. Those covered The book is written in an accessible are: optical techniques; Doppler posi style, particularly given the technical tioning; Global Navigation Satellite nature of the content, and is therefore Systems (GNSS, incorporating GPS, useful to a wide community of readers. GLONASS and GALILEO), Satellite Every topic has extensive and up to Laser Ranging (SLR), satellite altime date references allowing for further try, gravity field missions, Very Long investigation where necessary. -
Multi-GNSS Kinematic Precise Point Positioning: Some Results in South Korea
JPNT 6(1), 35-41 (2017) Journal of Positioning, https://doi.org/10.11003/JPNT.2017.6.1.35 JPNT Navigation, and Timing Multi-GNSS Kinematic Precise Point Positioning: Some Results in South Korea Byung-Kyu Choi1†, Chang-Hyun Cho1, Sang Jeong Lee2 1Space Geodesy Group, Korea Astronomy and Space Science Institute, Daejeon 305-348, Korea 2Department of Electronics Engineering, Chungnam National University, Daejeon 305-764, Korea ABSTRACT Precise Point Positioning (PPP) method is based on dual-frequency data of Global Navigation Satellite Systems (GNSS). The recent multi-constellations GNSS (multi-GNSS) enable us to bring great opportunities for enhanced precise positioning, navigation, and timing. In the paper, the multi-GNSS PPP with a combination of four systems (GPS, GLONASS, Galileo, and BeiDou) is analyzed to evaluate the improvement on positioning accuracy and convergence time. GNSS observations obtained from DAEJ reference station in South Korea are processed with both the multi-GNSS PPP and the GPS-only PPP. The performance of multi-GNSS PPP is not dramatically improved when compared to that of GPS only PPP. Its performance could be affected by the orbit errors of BeiDou geostationary satellites. However, multi-GNSS PPP can significantly improve the convergence speed of GPS-only PPP in terms of position accuracy. Keywords: PPP, multi-GNSS, Positioning accuracy, convergence speed 1. INTRODUCTION Positioning System (GPS) has been modernized steadily and Russia has also operated the GLObal NAvigation Satellite Precise Point Positioning (PPP) using the Global Navigation System (GLONASS) stably since 2012. Furthermore, the EU Satellite System (GNSS) can determine positioning of users has launched the 12th Galileo satellite recently indicating from several millimeters to a few centimeters (cm) if dual- the global satellite navigation system is now entering a final frequency observation data are employed (Zumberge et al. -
Geodesy: Trends and Prospects
Geodesy: Trends and Prospects Practktll and Scientific Values of Geodesy 25 clearly observable with the new long-baseline interferom We recommend that the United States support three long etry (LBI) and laser-ranging techniques. For example, the baseline-radio-interferometry stations and approximately 1960 Chilean earthquake (magnitude 8.3) has been calcu six laser ranging stations at fvced locations as part ofa new lated (Smith, 1977) to give a change in polar motion corre international service for determining UT and polar motion sponding to a 65-crn offset in the axis about which the pole on a continuing basis with suff~eient accuracy to meet cur moves, if the coseismic fault plane motion derived by Kana rent geodynamics needs. rnori and Cipar (1974) is used, and a possible additional 87 -ern offset due to the preseismic motion for which they The reasons for recommending support for these particu have presented evidence. lar numbers of stations are discussed in Section 4.2. It Seismologists generally believe that the "seismic mo should be noted that most of these stations also will fulfill ment" corresponding to the coseismic motion can be de other important scientific or applied objectives and that a rived accurately from observed long-period seismic-wave number of them are already available or will be soon. amplitudes. However, motions occurring over periods of minutes, days, or even several months before and after the quake are difficult to determine in other ways. Thus 3.3 OCEAN DYNAMICS changes in polar motion over a period of several months around the time of the quake can give a check on the total The geoid is considered to be the equipotential surface that fault displacement, which complements the information would enclose the ocean waters if all external forces were available from resurveys of the surface area surrounding the removed and the waters were to become still.