Verilog, the Next Generation: Accellera's Systemverilog
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Systemverilog
SystemVerilog ● Industry's first unified HDVL (Hw Description and Verification language (IEEE 1800) ● Major extension of Verilog language (IEEE 1364) ● Targeted primarily at the chip implementation and verification flow ● Improve productivity in the design of large gate-count, IP- based, bus-intensive chips Sources and references 1. Accellera IEEE SystemVerilog page http://www.systemverilog.com/home.html 2. “Using SystemVerilog for FPGA design. A tutorial based on a simple bus system”, Doulos http://www.doulos.com/knowhow/sysverilog/FPGA/ 3. “SystemVerilog for Design groups”, Slides from Doulos training course 4. Various tutorials on SystemVerilog on Doulos website 5. “SystemVerilog for VHDL Users”, Tom Fitzpatrick, Synopsys Principal Technical Specialist, Date04 http://www.systemverilog.com/techpapers/date04_systemverilog.pdf 6. “SystemVerilog, a design and synthesis perspective”, K. Pieper, Synopsys R&D Manager, HDL Compilers 7. Wikipedia Extensions to Verilog ● Improvements for advanced design requirements – Data types – Higher abstraction (user defined types, struct, unions) – Interfaces ● Properties and assertions built in the language – Assertion Based Verification, Design for Verification ● New features for verification – Models and testbenches using object-oriented techniques (class) – Constrained random test generation – Transaction level modeling ● Direct Programming Interface with C/C++/SystemC – Link to system level simulations Data types: logic module counter (input logic clk, ● Nets and Variables reset, ● enable, Net type, -
Gotcha Again More Subtleties in the Verilog and Systemverilog Standards That Every Engineer Should Know
Gotcha Again More Subtleties in the Verilog and SystemVerilog Standards That Every Engineer Should Know Stuart Sutherland Sutherland HDL, Inc. [email protected] Don Mills LCDM Engineering [email protected] Chris Spear Synopsys, Inc. [email protected] ABSTRACT The definition of gotcha is: “A misfeature of....a programming language...that tends to breed bugs or mistakes because it is both enticingly easy to invoke and completely unexpected and/or unreasonable in its outcome. A classic gotcha in C is the fact that ‘if (a=b) {code;}’ is syntactically valid and sometimes even correct. It puts the value of b into a and then executes code if a is non-zero. What the programmer probably meant was ‘if (a==b) {code;}’, which executes code if a and b are equal.” (http://www.hyperdictionary.com/computing/gotcha). This paper documents 38 gotchas when using the Verilog and SystemVerilog languages. Some of these gotchas are obvious, and some are very subtle. The goal of this paper is to reveal many of the mysteries of Verilog and SystemVerilog, and help engineers understand the important underlying rules of the Verilog and SystemVerilog languages. The paper is a continuation of a paper entitled “Standard Gotchas: Subtleties in the Verilog and SystemVerilog Standards That Every Engineer Should Know” that was presented at the Boston 2006 SNUG conference [1]. SNUG San Jose 2007 1 More Gotchas in Verilog and SystemVerilog Table of Contents 1.0 Introduction ............................................................................................................................3 2.0 Design modeling gotchas .......................................................................................................4 2.1 Overlapped decision statements ................................................................................... 4 2.2 Inappropriate use of unique case statements ............................................................... -
Portable Stimulus: What's Coming in 1.1
Portable Stimulus: What’s Coming in 1.1 and What it Means For You Portable Stimulus Working Group PSS 1.1 Tutorial Agenda • What is PSS Introduction • Tom Fitzpatrick, • Abstract DMA model in PSS 1.0 Mentor, a Siemens Business Memory • The problem • Prabhat Gupta, AMD Allocation • New PSS concepts Higher-Level • The problem • Matan Vax, Scenarios • New constructs Cadence Design Systems • The problem • Karthick Gururaj, HSI Realization • New concepts and constructs Vayavya Labs System-Level • Portability • Hillel Miller, Synopsys Usage • Complex scenarios • Summary Special Thanks to: Conclusion • What’s next Dave Kelf, Breker Verification Systems Josh Rensch, Semifore 2 The Need for Verification Abstraction Test content authoring represents major proportion of development SIMULATION Disconnected cross-process methods Test Content • Block EMULATION • UVM tests laborious, error-prone • SoC FPGA PROTO • Hard to hit corner-cases with C tests • Post-Silicon • Disconnected diagnostic creation IP BLOCK SUBSYSTEM FULL SYSTEM Test portability, reuse, scaling, maintenance all problematic 3 Key Aspects of Portable Stimulus Capture pure Partial scenario Composable Formal Automated test Target multiple test intent description scenarios representation generation platforms of test space Separate test intent from implementation High-coverage test generation across the verification process with much less effort 4 PSS Improves Individual Verification Phases IP BLOCK SUB-SYSTEM FULL SYSTEM Create block-level (UVM) tests & Easily model system-level Generate -
Arm Cortex-M System Design Kit Technical Reference Manual
Arm® Cortex®-M System Design Kit Revision: r1p1 Technical Reference Manual Copyright © 2011, 2013, 2017 Arm Limited (or its affiliates). All rights reserved. ARM DDI 0479D (ID110617) Arm Cortex-M System Design Kit Technical Reference Manual Copyright © 2011, 2013, 2017 Arm Limited (or its affiliates). All rights reserved. Release Information The following changes have been made to this document: Change history Date Issue Confidentiality Change 14 March 2011 A Non-Confidential First release for r0p0 16 June 2011 B Non-Confidential Second release for r0p0 19 April 2013 C Non-Confidential First release for r1p0 31 October 2017 D Non-Confidential First release for r1p1 Proprietary Notice This document is protected by copyright and other related rights and the practice or implementation of the information contained in this document may be protected by one or more patents or pending patent applications. No part of this document may be reproduced in any form by any means without the express prior written permission of Arm. No license, express or implied, by estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated. Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use the information for the purposes of determining whether implementations infringe any third party patents. THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE DOCUMENT. -
Yikes! Why Is My Systemverilog Still So Slooooow?
DVCon-2019 San Jose, CA Voted Best Paper 1st Place World Class SystemVerilog & UVM Training Yikes! Why is My SystemVerilog Still So Slooooow? Cliff Cummings John Rose Adam Sherer Sunburst Design, Inc. Cadence Design Systems, Inc. Cadence Design System, Inc. [email protected] [email protected] [email protected] www.sunburst-design.com www.cadence.com www.cadence.com ABSTRACT This paper describes a few notable SystemVerilog coding styles and their impact on simulation performance. Benchmarks were run using the three major SystemVerilog simulation tools and those benchmarks are reported in the paper. Some of the most important coding styles discussed in this paper include UVM string processing and SystemVerilog randomization constraints. Some coding styles showed little or no impact on performance for some tools while the same coding styles showed large simulation performance impact. This paper is an update to a paper originally presented by Adam Sherer and his co-authors at DVCon in 2012. The benchmarking described in this paper is only for coding styles and not for performance differences between vendor tools. DVCon 2019 Table of Contents I. Introduction 4 Benchmarking Different Coding Styles 4 II. UVM is Software 5 III. SystemVerilog Semantics Support Syntax Skills 10 IV. Memory and Garbage Collection – Neither are Free 12 V. It is Best to Leave Sleeping Processes to Lie 14 VI. UVM Best Practices 17 VII. Verification Best Practices 21 VIII. Acknowledgment 25 References 25 Author & Contact Information 25 Page 2 Yikes! Why is -
Workshop on Post-Silicon Debug: Technologies, Methodologies, and Best Practices
Wisam Kadry – IBM Research, Haifa 7 June 2012 Workshop on Post-silicon Debug: Technologies, Methodologies, and Best Practices © 2012 IBM Corporation DAC 2012, Post-silicon Debug Workshop Thanks to Mr. Amir Nahir IBM Research – Haifa, Israel Received his BSc in computer science from Technion, IIT in 2005, and is currently pursuing his PhD there. He has been a research staff member at the IBM Research Labs in Haifa since 2006, and has spent most of his time leading the development of Threadmill – a post-silicon functional validation exerciser. Since the beginning of 2011, Amir manages the Post-Silicon Validation and Design Automation Group 2 © 2012 IBM Corporation DAC 2012, Post-silicon Debug Workshop Agenda Session I (09:00-10:30) Wisam Kadry - IBM Haifa Research Lab., Haifa, Israel Kevin Reick - IBM Corp., Austin, TX Subhasish Mitra - Stanford Univ., Stanford, CA David Erikson - Advanced Micro Devices, Fort Collins, CO Bradley Quinton - Tektronix, Inc., Vancouver, BC, Canada Break (10:30-11:00) Session II (11:00-12:30) Alan Hu - Univ. of British Columbia, Vancouver, BC, Canada Keshavan Tiruvallur - Intel Corp., Portland, OR Nagib Hakim - Intel Corp., Santa Clara, CA Valeria Bertacco - Univ. of Michigan, Ann Arbor, MI Sharad Kumar - Freescale Semiconductor, Inc., Noida, India Lunch (12:30-13:30) Panel (13:30-15:00) Moderator: Harry Foster - Mentor Graphics Corp., Plano, TX 3 © 2012 IBM Corporation DAC 2012, Post-silicon Debug Workshop More complex chips 4 © 2012 IBM Corporation DAC 2012, Post-silicon Debug Workshop Observe 5 © 2012 IBM -
A Syntax Rule Summary
A Syntax Rule Summary Below we present the syntax of PSL in Backus-Naur Form (BNF). A.1 Conventions The formal syntax described uses the following extended Backus-Naur Form (BNF). a. The initial character of each word in a nonterminal is capitalized. For ex- ample: PSL Statement A nonterminal is either a single word or multiple words separated by underscores. When a multiple word nonterminal containing underscores is referenced within the text (e.g., in a statement that describes the se- mantics of the corresponding syntax), the underscores are replaced with spaces. b. Boldface words are used to denote reserved keywords, operators, and punc- tuation marks as a required part of the syntax. For example: vunit ( ; c. The ::= operator separates the two parts of a BNF syntax definition. The syntax category appears to the left of this operator and the syntax de- scription appears to the right of the operator. For example, item (d) shows three options for a Vunit Type. d. A vertical bar separates alternative items (use one only) unless it appears in boldface, in which case it stands for itself. For example: From IEEE Std.1850-2005. Copyright 2005 IEEE. All rights reserved.* 176 Appendix A. Syntax Rule Summary Vunit Type ::= vunit | vprop | vmode e. Square brackets enclose optional items unless it appears in boldface, in which case it stands for itself. For example: Sequence Declaration ::= sequence Name [ ( Formal Parameter List ) ]DEFSYM Sequence ; indicates that ( Formal Parameter List ) is an optional syntax item for Sequence Declaration,whereas | Sequence [*[ Range ] ] indicates that (the outer) square brackets are part of the syntax, while Range is optional. -
JTAG Simulation VIP Datasheet
VIP Datasheet Simulation VIP for JTAG Provides JTAG and cJTAG support Overview Cadence® Simulation VIP is the world’s most widely used VIP for digital simulation. Hundreds of customers have used Cadence VIP to verify thousands of designs, from IP blocks to full systems on chip (SoCs). The Simulation VIP is ready-made for your environment, providing consistent results whether you are using Cadence Incisive®, Synopsys VCS®, or Mentor Questa® simulators. You have the freedom to build your testbench using any of these verification languages: SystemVerilog, e, Verilog, VHDL, or C/C++. Cadence Simulation VIP supports the Universal Verification Methodology (UVM) as well as legacy methodologies. The unique flexible architecture of Cadence VIP makes this possible. It includes a multi-language testbench interface with full access to the source code to make it easy to integrate VIP with your testbench. Optimized cores for simulation and simulation-acceleration allow you to choose the verification approach that best meets your objectives. Deliverables Specification Support People sometimes think of VIP as just a bus functional model The JTAG VIP supports the JTAG Protocol v1.c from 2001 as (BFM) that responds to interface traffic. But SoC verification defined in the JTAG Protocol Specification. requires much more than just a BFM. Cadence Simulation VIP components deliver: • State machine models incorporate the subtle features of Supported Design-Under-Test Configurations state machine behavior, such as support for multi-tiered, Master Slave Hub/Switch power-saving modes Full Stack Controller-only PHY-only • Pre-programmed assertions that are built into the VIP to continuously watch simulation traffic to check for protocol violations. -
Systemverilog for VHDL Users
SystemVerilog for VHDL Users Tom Fitzpatrick Principal Technical Specialist Synopsys, Inc. Agenda • Introduction • SystemVerilog Design Features • SystemVerilog Assertions • SystemVerilog Verification Features • Using SystemVerilog and VHDL Together 2 SystemVerilog Charter • Charter: Extend Verilog IEEE 2001 to higher abstraction levels for Architectural and Algorithmic Design , and Advanced Verification. Advanced Transaction-Level V g e verification capability Full Testbench lo h A r ri c sse ilo for semiformal and Language with e en g b rt formal methods. Coverage V t io es n The Assertion T IEEE Verilog Language Standard For Verilog A I r V 2001 P c e A Design h r e i il & c Abstraction: te o fa c g I r Direct C interface, tu e Interface r DP t a n Assertion API and l I semantics, abstract Coverage API data types, abstract operators and expressions 3 SystemVerilog: Verilog 1995 Event handling Basic datatypes (bit, int, reg, wire…) Verilog-95: 4 state logic Basic programming (for, if, while,..) Single language Hardware concurrency Gate level modelling for design & design entity modularization and timing testbench Switch level modeling and timing ASIC timing 4 SystemVerilog: VHDL Operator VHDL adds Packages Overloading higher level Dynamic Simple assertions pointers data types and Architecture memory configuration management User-defined types allocation records/ functionality enums Dynamic multi-D arrays structs hardware generation Automatic variables Signed numbers Strings Event handling Basic datatypes (bit, int, reg, wire…) 4 state logic Basic programming (for, if, while,..) Hardware concurrency Gate level modelling design entity modularization and timing Switch level modeling and timing ASIC timing 5 Semantic Concepts: C Associative Operator Overloading & Sparse arrays Packages pointers Further programming Dynamic Void type (do while, memory break, continue, allocation Unions records/ ++, --, +=. -
(DFT) Architecture and It's Verification Using Universal Verification Methodology
Rochester Institute of Technology RIT Scholar Works Theses 12-2019 Design of an Efficient Design forest T (DFT) Architecture and it's Verification Using Universal Verification Methodology Sushmitha Mavuram [email protected] Follow this and additional works at: https://scholarworks.rit.edu/theses Recommended Citation Mavuram, Sushmitha, "Design of an Efficient Design forest T (DFT) Architecture and it's Verification Using Universal Verification Methodology" (2019). Thesis. Rochester Institute of Technology. Accessed from This Master's Project is brought to you for free and open access by RIT Scholar Works. It has been accepted for inclusion in Theses by an authorized administrator of RIT Scholar Works. For more information, please contact [email protected]. DESIGN OF AN EFFICIENT DESIGN FOR TEST (DFT) ARCHITECTURE AND IT’S VERIFICATION USING UNIVERSAL VERIFICATION METHODOLOGY by Sushmitha Mavuram GRADUATE PAPER Submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in Computer Engineering Approved by: Mr. Mark A. Indovina, Graduate Research Advisor Senior Lecturer, Department of Electrical and Microelectronic Engineering Dr. Marcin Lukowiak, Committee Member Professor, Department of Computer Engineering Dr. Amlan Ganguly, Department Head Professor, Department of Computer Engineering DEPARTMENT OF COMPUTER ENGINEERING KATE GLEASON COLLEGE OF ENGINEERING ROCHESTER INSTITUTE OF TECHNOLOGY ROCHESTER,NEW YORK DECEMBER, 2019 I dedicate this work to my mother Surekha, my father Jithender and my friends, for their support and encouragement throughout my master’s program at Rochester Institute of Technology. Declaration I hereby declare that all the contents of this graduate project paper are original, except where specific references are made to the work of others. -
A Short Introduction to Verilog for Those Who Know VHDL
A short introduction to SystemVerilog For those who know VHDL We aim for synthesis 1 Verilog & SystemVerilog 1984 – Verilog invented, C-like syntax VHDL First standard – Verilog 95 Extra features – Verilog 2001 A super set - SystemVerilog www.vhdl.org/sv/SystemVerilog_3.1a. pdf 2 Verilog vs VHDL VHDL 2001 95 3 SystemVerilog 4 SystemVerilog constructs ● Flip-flop ● Register ● Adder ● Multiplier (signed, unsigned) ● Concatenation ● Priority decoder ● Memory (sync and async) Synch and Single Pulse reg x,y; // variable type (0,1,Z,X) wire button; // net type (0,1,Z,X) // SSP always @(posedge clk) // procedural block begin x <= stb; y <= x; end assign button = x & ~y; //continuous assignment stb x y button & 6 Is this the same thing? reg x,y; // variable type (0,1,Z,X) wire button; // net type (0,1,Z,X) // SSP always @(posedge clk) // procedural block begin x <= stb; end always @(posedge clk) // procedural block begin y <= x; end stb x y assign button = x & ~y; button & 7 One more thing // This is OK // This is not OK (synth) always @(posedge clk) // multiple assignment always @(posedge clk) begin x <= stb; begin if (rst) x <= stb; x <= 0; end end always @(posedge clk) // same as begin always @(posedge clk) if (rst) x <= 0; end begin if (rst) x <= 0; else x <= stb; end 8 SV: always_{comb, ff, latch} b // forgot else branch // a synthesis warning a 1 c always @(a or b) 0 if (b) c = a; // compilation warning always_comb if (b) c = a; // yes always_comb if (b) c = a; else c = d; 9 reg or wire in Verilog 1) always … a <= b & c; reg both wire both 2) assign a = b & c; both wire 3) wire both module 10 SV relaxes variable use A variable can receive a value from one of these : • any number of always/initial-blocks • one always_ff/always_comb-block • one continuous assignment • one module instance We can skip wire If you don’t like reg, use logic instead 11 Signed/unsigned Numbers in verilog (95) are unsigned. -
UPF 1.0, UPF 2.0, UPF 2.1, UPF 3.0, and Now UPF 3.1: the Big Q “Which Is the Right Standard for My Design”?
UPF 1.0, UPF 2.0, UPF 2.1, UPF 3.0, and now UPF 3.1: The big Q “Which is the Right Standard for My Design”? Madhur Bhargava, Mentor, A Siemens Business ([email protected]) 1 Agenda • Introduction • Evolution of UPF • Challenges in Migration • Backward Compatibility • What’s new in UPF 3.1 • Semantic difference b/w standards • UPF design Guidelines • Conclusion 2 Introduction • Power Management & Verification Complexity – Complex & energy aware chips – Maximize battery life – Requiring sophisticated power management • Power Gating, Multi Voltage, DVFS, Biasing • Affect design functionality • IPs using own power management posing integration challenges – Need for power verification • HDL not equipped, Power formats share burden • Unified Power Format – Define power management – Based on Tcl – Provide HDL Interface – Information Model to capture processed data 3 Evolution of UPF • UPF 1.0 was defined by Accellera • UPF 3.0 – Focused on adding power intent to HDL – Several new capabilities added – Relatively simple concepts and commands – Updated existing concepts, viz. power • UPF 2.0 defined by IEEE states – Backward compatible with UPF 1.0 • UPF 3.1 – latest standard – Supports IP development, refinement – New commands for simulation control • UPF 2.1 – Clarification of semantics – Clarifies and enhances UPF 2.0 features – Adds a few new capabilities UPF 3.1 UPF 3.0 UPF 2.1 UPF UPF 2.0 1.0 4 New Challenges • Five UPF standards – Compatibility, Differences & Migration challenges • Starting a new design: Which UPF version to choose