CHPM D1.2 App3

Total Page:16

File Type:pdf, Size:1020Kb

CHPM D1.2 App3 Report on data availability CHPM2030 Deliverable D1.2 Version: December 2016 This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement nº 654100. CHPM2030 DELIVERABLE D 1.2 REPORT ON DATA AVAILABILITY Summary: This report aims to provide a brief overview of four major ore districts in Europe, namely in SW England, southern Portugal, NW Romania and central and northern Sweden. It is completed with a survey of existing boreholes in the European countries, where temperatures at depth in access of 100oC are observed. The report includes descriptions of the geological settings, and on-going efforts in geophysics in seeing deeper and increasing resolution for detecting mineralized zones at depth, as well as attempting to estimate their geothermal potential. Authors: Gerhard Schwarz, geophysicist, Magnus Ripa, geologist, Bo Thunholm, hydrogeologist (Geological Survey of Sweden) Richard A Shaw, economic geologist, Keith Bateman, geochemist, Eimear Deady, economic geologist, Paul Lusty, economic geologist (British Geological Survey) Elsa Cristina Ramalho, geological engineer, João Xavier Matos, economic geologist, João Gameira Carvalho, geophysicist (Laboratório Nacional de Energia e Geologia) Diana Perșa, researcher, Ștefan Marincea, senior researcher, Albert Baltreș, senior researcher, Constantin Costea, senior researcher, Delia Dumitraș, senior researcher, Gabriel Preda, GIS editor Vanja Bisevac, geologist, Isabel Fernandez, geologist (European Federation of Geologists, Geologist) This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement nº 654100. CHPM2030 DELIVERABLE 1.2 Table of contents Extended summary ....................................................................................................................... 4 0 Preface ................................................................................................................................. 5 1 Introduction and outline of work............................................................................................. 6 1.1 Country specific issues .................................................................................................... 6 1.2 Goals ............................................................................................................................. 6 2 Previous research and available data ....................................................................................... 7 2.1 Geology and geophysics, including drilling ........................................................................ 8 2.2 Geometry and composition of ore deposits ...................................................................... 8 2.3 Structural evolution, deep-seated faults and fracture zones, their alignment ...................... 9 2.4 Hydraulic properties, deep fluid flow ............................................................................... 9 2.5 Fluid composition, brines, meteoric waters .................................................................... 12 2.6 Thermal properties and heat flow.................................................................................. 14 2.7 Current metallogenic models (2D- and 3D-) .................................................................... 15 3 Identifying target sites for future CHPM................................................................................. 16 3.1 Extending existing models to greater depth, integrating data down to 7 km ..................... 16 3.2 Knowledge gaps and limitations..................................................................................... 16 4 Discussion and concluding remarks ....................................................................................... 18 Acknowledgements ..................................................................................................................... 18 References ................................................................................................................................. 18 Other sources / Web links ............................................................................................................ 18 2/18 CHPM2030 DELIVERABLE 1.2 List of Figures Figure 1. Major ore deposits of Europe (after Weihed 2015), with the mining areas and their available data described in tasks 1.2.1 to 1.2.4 indicated (see appendices 1.2.1 to 1.2.4), i.e., in the Southwest of England, Southern Portugal, Northwestern Romania and Central and Northern Sweden .................... 7 Figure 2. Main ore deposits of Europe, with their major ore content and size (class A, B, C) indicated, according to the ProMine database (after Cassard et al. 2015). ........................................................ 9 Figure 3. Temperature distribution at 1000 m depth in Europe (Schellschmidt and Hurter 2002) ...... 13 Figure 4. Generalised heat flow density map of Europe, based on the Atlas of Geothermal Resources in Europe (after Hurter and Haenel 2002) ......................................................................................... 14 List of Tables Table 1. Summarizing data about some of the ore districts of Europe that are the base for the present report......................................................................................................................................... 10 Table 2. Summary of boreholes drilled in some of the European countries where temperature is above 100oC and mineralisations were identified (see even Appendix D1.5). ............................................. 11 List of Appendices: Availability of Data A1.2.1: Report on data availability: South West England A1.2.2: Report on data availability: Portugal, Iberian Pyrite Belt A1.2.3: Report on data availability: Romania A1.2.4: Report on data availability: Sweden A1.2.5: Report on data availability of drill holes: Europe integrated 3/18 CHPM2030 DELIVERABLE 1.2 Extended summary This report is a condensed compilation and evaluation of five reports on available data for the development of orebody enhanced geothermal systems, i.e., the CHPM technology at upper crustal depths in suitable ore districts of Europe. It will serve as a basis for research on a new type of facility for Combined Heat, Power and Metal extraction (CHPM). The five reports, written by individual working groups from the United Kingdom (UK), Portugal, Romania, Sweden and the European Federation of Geologists (EFG) are attached here in original form as appendices 1.2.1 to 1.2.5. They mainly comprise geological, geophysical and geochemical data on and descriptions of mineralized areas in these countries. The EFG report presents a European inventory of drill holes with temperatures in excess of 100°C, availability of data for these holes, and any metal enrichments having been encountered at depth. The target areas in the specified countries belong to three large metallogenic provinces in Europe: the Precambrian Fennoscandian Shield province, as for Sweden; the late Paleozoic Variscan province, as for SW England and southern Portugal; and the Mesozoic-Cenozoic Alpine province, as for NW Romania. In these provinces prospective zones suitable for the CHPM technology should be evaluated. Much is already known about the geology, mineralisation, fluids and the geothermal potential of the ore districts, discussed in this report. However, the knowledge often is restricted to the upper 1 000 m of the crust or less. Locally, where deep drilling has been performed, the conditions may be evaluated to greater depths. The availability of data has significant implications regarding the accuracy of modelled conditions in an enhanced geothermal system (EGS) at greater depths. Therefore, the structural information and the knowledge of the physical state of the upper crust need to be enlarged considerably in order to meet the goals of the CHPM project. 4/18 CHPM2030 DELIVERABLE 1.2 0 Preface This report describes what is already known about the geology, mineralisation, fluids and the geothermal potential of the areas of interest. It is one of the first deliverables of the CHPM2030 project - an EC-funded Horizon2020 project which aims to develop a novel and potentially disruptive technology that can help satisfy European needs for energy and critical metals in a single interlinked process. Working at the frontiers of geothermal resources development, minerals extraction and electro-metallurgy, the project aims to convert ultra-deep metallic mineralisations into orebody- enhanced geothermal systems (EGS). It will serve as a basis for the development of a new type of facility for Combined Heat, Power and Metal extraction (CHPM). The project will help providing new impetus to geothermal development in Europe by investigating previously unexplored pathways at low-TRL. This will be achieved by developing a roadmap in support of the pilot implementation of such system before 2025, and the full-scale commercial implementation before 2030. It will include detailed specifications of this new type of future EGS facility (CHPM). In the technology envisioned, the metal-bearing geological formation will be manipulated in a way that the co-production of thermal energy and metals will be possible. Four geographical areas have been chosen for assessment based on pre-existing data and potential for CHPM development in mineralised areas in the United Kingdom (UK), Portugal, Romania and Sweden. This report summarises information
Recommended publications
  • A Seismic Model for Moho and Crustal Structure in Europe, Greenland, and the North Atlantic Region☆
    Tectonophysics 609 (2013) 97–153 Contents lists available at ScienceDirect Tectonophysics journal homepage: www.elsevier.com/locate/tecto Review Article EUNAseis: A seismic model for Moho and crustal structure in Europe, Greenland, and the North Atlantic region☆ Irina M. Artemieva ⁎, Hans Thybo IGN, University of Copenhagen, Denmark article info abstract Article history: We present a new digital crustal model for Moho depth and crustal structure in Europe, Greenland, Iceland, Received 27 November 2012 Svalbard, European Arctic shelf, and the North Atlantic Ocean (72W–62E, 30N–84N). Our compilation is based Received in revised form 18 July 2013 on digitization of original seismic profiles and Receiver Functions from ca. 650 publications which provides a Accepted 4 August 2013 dense regional data coverage. Exclusion of non-seismic data allows application of the database to potential Available online 15 August 2013 field modeling. EUNAseis model includes Vp velocity and thickness of five crustal layers, including the sedimen- tary cover, and Pn velocity. For each parameter we discuss uncertainties associated with theoretical limitations, Keywords: Moho regional data quality, and interpolation. Crustal thickness By analyzing regional trends in crustal structure and links to tectonic evolution illustrated by a new tectonic map, Crystalline crust we conclude that: (1) Each tectonic setting shows significant variation in depth to Moho and crustal structure, Sedimentary cover essentially controlled by the age of latest tectono-thermal processes; (2) Published global averages of crustal pa- Pn velocity rameters are outside of observed ranges for any tectonic setting in Europe; (3) Variation of Vp with depth in the Crustal evolution sedimentary cover does not follow commonly accepted trends; (4) The thickness ratio between upper-middle (Vp b 6.8 km/s) and lower (Vp N 6.8 km/s) crystalline crust is indicative of crustal origin: oceanic, transitional, platform, or extended crust; (5) Continental rifting generally thins the upper-middle crust significantly without changing Vp.
    [Show full text]
  • Geol. Quart. 50 (1).Vp
    Geological Quarterly, 2006, 50 (1): 23–32 Lithospheric structure of the TESZ in Poland based on modern seismic experiments Aleksander GUTERCH and Marek GRAD Guterch A. and Grad M. (2006) — Lithospheric structure of the TESZ in Poland based on modern seismic experiments. Geol. Quart., 50 (1): 23–32. Warszawa. This paper presents the results of seismic investigations on the structure of the lithosphere in the area of the Trans-European Suture Zone (TESZ) in Poland that is located between the southwestern margin of the East European Craton (EEC) to the north-east, the West and Central European Palaeozoic Platform (PP) to the south-west and the Carpathians to the south. Based on results of the modern POLONAISE’97 and CELEBRATION 2000 projects, as well as older profiles, models are presented for the configuration and extent of different crustal types. In the investigated area, the EEC has a relatively uniform crustal thickness of 40 to 50 km with its three-layered crystalline crust displaying P-wave velocities of 6.1–6.4, 6.5–6.8 and 6.9–7.2 km/s in the upper, middle and lower parts, respectively. The Variscan consolidated crust is covered by 1–2 km thick sediments and consists of two layers with velocities of 5.6–6.3 and 6.5–6.65 km/s. In the Carpathians, sediments reaching to depths of some 20 km and are characterized by velocities of <5.6–5.8 km/s, whilst the underlying two-layered crystalline crust displays velocities of 6.0–6.2 and 6.5–6.9 km/s.
    [Show full text]
  • G, Abhandlungen Der Geologischen Bundesanstalt
    ABHANDLUNGEN DER GEOLOGISCHEN BUNDESANSTALT ,G, Abh. Geol. B.-A. I ISSN 0378-0864 ISBN 3-85316-004-2 Band 56f\ I S. 57-60 I Wien, August 1999 Geologie ohne Grenzen Redaktion: Festschrift 150 Jahre Geologische Bundesanstalt Harald Lobitzer & Pavol Grecula Research of the k.k. Geologische Reichsanstalt (Vienna, Austria) in Slovakia during the period 1850-1869 OTO MIKO*) Abstract As early as two decades after the establishment of the k.k. Geologische Reichsanstalt in Vienna the entire Austro Hungarian Empire was researched and the overview geologic map at 1:576 000 scale was published. The research was based on stratigraphic data supported by paleontologic findings, on study of rock-forming minerals, on investigation of mineral deposits, on topographic surveys and other methods. Those who made the best contributions to the knowledge of the geology of Slovakia during this early period of research were D. STUR, F. FOETTERLE, F. ANDRIAN, CM. PAUL, G. STÄCHE, F. HAUER, M.V. LIPOLD and H. WOLF. They and many other members of the "Vienna geolo­ gical school" laid the foundations of the modern Carpathian geology. Forschungsaktivitäten der Geologischen Reichsanstalt (Wien) in der Slowakei von 1850-1869 Zusammenfassung Bereits zwei Jahrzehnte nach der Gründung der k.k. Geologischen Reichsanstalt in Wien im Jahre 1849 war die erste geologische Aufnahme des gesamten Hoheitsgebietes der Österreichisch-Ungarischen Monarchie abgeschlossen und eine geologische Übersichtskarte im Maßstab 1:576 000 wurde veröffentlicht. Die Aufnahmsarbeiten konnten sich sowohl auf grundlegende biostratigraphische bzw. paläon­ tologische Studien stützen, als auch auf eine gründliche lithologische Bearbeitung sowie auf das Studium mineralischer Rohstoffvorkommen und topographischer Vermessungsarbeiten.
    [Show full text]
  • The Deepest Moho in the Western Carpathians and Its Respective Crustal Density Model (CEL12 Section)
    Contributions to Geophysics and Geodesy Vol. 48/3, 2018 (255–269) The deepest Moho in the Western Carpathians and its respective crustal density model (CEL12 section) Dominika GODOVA´1, Miroslav BIELIK1,2,BarboraSIMONOVˇ A´1 1 Department of Applied and Environmental Geophysics, Faculty of Natural Sciences, Comenius University, Mlynsk´a dolina, Ilkoviˇcova 6, 842 48 Bratislava, Slovak Republic; e-mail: [email protected] 2 Earth Science Institute, Slovak Academy of Sciences, D´ubravsk´a cesta 9, P. O. Box 106, 840 05 Bratislava, Slovak Republic; e-mail: [email protected] Abstract: The main aim of this study is to compile 2-D density model of the CELEBRA- TION 2000 profile CEL12, which is based on seismic refraction data. The profile CEL12 crosses the External Western Carpathians Flysch zone and is located in the southern part of Poland. The general feature of the resultant density model shows significant changes in the crustal thickness. The Moho depth changes in the interval from 31 km to 43 km. The interpreted 43 km crustal thickness over a 60 km section of the profile results in the discovery of an area, which represents the thickest crust in the entire West Carpathians. This area is situated ∼50 km north-east from the High Tatras in Poland. Key words: gravimetry, density modelling, seismic constraints, External Western Car- pathians Flysch zone, CELEBRATION, Bouguer gravity 1. Introduction The deep seated structure and dynamics of the Earth’s lithosphere is one of the worldwide current research topics. The use of geophysical meth- ods gives us advantage to expand our knowledge.
    [Show full text]
  • Neogene and Palaeogene Fill of the Slovak Part of the Dunajská Panva Basin Within the Region 1: 50,000 Podunajská Nížina Lowland – Podunajská Rovina Flat
    Slovak Geol. Mag., 18, 2 (2018), 23 – 30 2. Neogene and Palaeogene Fill of the Slovak Part of the Dunajská Panva Basin within the Region 1: 50,000 Podunajská Nížina Lowland – Podunajská Rovina Flat ALEXANDER NAGY, KLEMENT FORDINÁL, ADRIENA ZLINSKÁ & LADISLAV ŠIMON State Geological Institute of Dionýz Štúr, Mlynská dolina, Bratislava, Slovak Republic, [email protected] Abstract: Palaeogene and Middle Miocene sediments are 2.1 Introduction probably involved in the basal Cenozoic fi ll. We do not have any direct evidence, we conclude this from seismic profi les. From the structural-tectonic point of view, with an The oldest documented rocks are volcanic products of various exemption of a narrow part of the foothills of the Malé varieties of andesites of the Lower Badenian (Seravallian) age. Karpaty Mts. the area of the Danube Lowland-Danube The oldest documented rocks are volcanic products of various Flat region is an intra-arc basin, which consists of a system varieties of andesites of the Early Badenian (Langhian) age. of “smaller” sub-basins (Royden et al., 1983). The sub- Above them are sediments of marine facies in the form of pelitic basins underwent partially diff erent evolution during the and sandy sediments of the Badenian (Langhian-Serravallian) Miocene and Pliocene, as a result of which they diff er not age, which are overlain by the brackish deposits of the Sarmatian only in the overall thickness of their Neogene sedimentary (Serravallian) and Early Pannonian (Tortonian) ages of the same lithological composition. The end of the pre-Quaternary fi ll, but also in the chronostratigraphic sequence of the sedimentation period is represented by sand-clay deposits of the formations within individual sedimentary sequences, in continental environment with interlayers of coal clays to lignites representation, or absence of some complexes and their and in the upper parts with dominating gravel-sand deposits, lithological character and thickness (Kováč, 2000).
    [Show full text]
  • Plitvice Lakes National Park
    N° 34 November 2012 EuropeanEuropean GeologistGeologist Journal of the European Federation of Geologists Geoheritage - learning from the past to inform the future Not Just Software. RockWare. For Over 29 Years. RockWorks® RockWorks LogPlot® RockWare Utilities™ Training and 3D Data Management, Powerful, Flexible, Analysis and Visualization An Indispensible Collection Easy-to-Use Borehole and Consulting • Powerful measured- of Modeling, Analysis, and Well Log Software Display Tools Workshops, Custom Training section/borehole database • Dozens of templates and Consulting Services for for managing: • Point and multivariate available or design your the Geoscientist - Lithology mapping tools own in the drawing-style log designer window • Workshops held in Lugano, - Stratigraphy • Contour maps and three Switzerland or onsite dimensional surfaces - Hydrology •Tabbed data sheets • Training and consulting - Fractures • Section and Lease maps • Import/Export data from services available for (land grid data included) - Hydrochemistry LAS, Excel, RockWorks RockWorks, LogPlot, Surfer, (e.g. Contaminants) • Google EarthTM exports and ArcGIS • Paginated and continuous - Geophysics • Gridding and block logs at any vertical scale • Get individualized attention - and more modeling tools from a software AND • Create striplogs, cross- • Volumetrics • Export to a variety of industry expert formats sections, fence diagrams, • Pit optimization • Follow a standard course and block models format, or have us design • Piper and Stiff diagrams • Free viewer can be
    [Show full text]
  • Geochemistry and C, O, and Sr Isotope Composition Of
    Turkish Journal of Earth Sciences Turkish J Earth Sci (2016) 25: 513-537 http://journals.tubitak.gov.tr/earth/ © TÜBİTAK Research Article doi:10.3906/yer-1603-7 Geochemistry and C, O, and Sr isotope composition of the Föderata Group metacarbonates (southern Veporicum, Western Carpathians, Slovakia): constraints on the nature of protolith and its depositional environment 1, 2 2 Marek VĎAČNÝ *, Peter RUŽIČKA , Anna VOZÁROVÁ 1 Earth Science Institute of the Slovak Academy of Sciences, Geological Division, Bratislava, Slovakia 2 Department of Mineralogy and Petrology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia Received: 11.03.2016 Accepted/Published Online: 13.07.2016 Final Version: 01.12.2016 Abstract: Major, trace, and rare earth element as well as C, O, and Sr isotope geochemistry is used to provide new insights into the characteristics and depositional environment of the protolith of the Föderata Group metacarbonates in the southern Veporicum cover sequence (Western Carpathians, Slovakia). The metacarbonates are characterized by high LOI and CaO and by small contents of various insoluble components. Among the trace elements investigated, only As, Ba, Co, Cu, Hg, Nb, Ni, Pb, Rb, Sb, Sr, Th, U, Y, Zn, and Zr display concentrations beyond their detection limits. The metacarbonates are strongly depleted in Rb, Ba, Th, Nb, Hf, Zr, and Y and enriched in U and Sr relative to the UCC. Chondrite-normalized rare earth element patterns of the metacarbonates show a moderate to strong fractionation in light rare earth elements over heavy rare earth elements and distinct negative Ce and Eu anomalies. Variation plots reveal several geochemical interrelationships, among which SiO2 – Al2O3 – K2O – TiO2 – Ba – Nb – Rb – Zr are associated with the rock’s silicate fraction.
    [Show full text]
  • ICS Subcommission Annual Report 2010
    INTERNATIONAL UNION OF GEOLOGICAL SCIENCES INTERNATIONAL COMMISSION ON STRATIGRAPHY Chair Prof. Stanley FINNEY, Department of Geological Sciences, California State University at Long Beach, Long Beach, CA 90840, USA TEL: 1-562-985-8637 (office); FAX: 1-562-985-8638; E-mail: [email protected] Vice Chair Prof. Shanchi PENG, Nanjing Institute of Geology & Palaeontology, Chinese Academy of Sciences, 39 East Beijing St., Nanjing 210008, China TEL and FAX: 86-25-8328 2135; E-mail: [email protected] Secretary General Prof. Paul R. BOWN, Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT, UK TEL: 44-0-20-7504-2431 office; FAX 44-0-20-7388-7614; E-mail: [email protected] February 2011 Compiled ICS Subcommission Annual Reports for 2010 SUBCOMMISSION ON QUATERNARY STRATIGRAPHY ANNUAL REPORT 2010 1. TITLE OF CONSTITUENT BODY and NAME OF REPORTER Subcommission on Quaternary Stratigraphy (SQS) Philip GIBBARD Chairman, SQS Cambridge Quaternary, Department of Geography, University of Cambridge, Downing Street, CAMBRIDGE CB2 3EN, England. Tel: +44 (0)1223 333924; Fax: +44 (0)1223 333392, E-mail: [email protected] 2. OVERALL OBJECTIVES AND FIT WITHIN IUGS SCIENCE POLICY 1. Rationalisation of global chronostratigraphical classification. 2. Intercalibration of fossil biostratigraphies, integrated zonation and recognition of global datum points. 3. Definition of Subseries/Series boundaries and selection of global stratotype sections. 4. Correlation of Quaternary rock successions and events, including terrestrial to marine
    [Show full text]
  • Outline of the Geology of Slovakia (W. Carpathians)
    Mineralia Slovaca, Web ISSN 1338-3523, ISSN 0369-2086 51 (2019), 31 – 60, © Authors 2019. CC BY 4.0 Outline of the geology of Slovakia (W. Carpathians) JOZEF HÓK1, ONDREJ PELECH2, FRANTIŠEK TEŤÁK2, ZOLTÁN NÉMETH2 and ALEXANDER NAGY2 1Comenius University in Bratislava, Department of Geology and Paleontology, Faculty of Natural Sciences, Ilkovičova 6, SK-842 15 Bratislava, Slovakia; [email protected] 2 State Geological Institute of Dionýz Štúr, Mlynská dolina 1, SK-817 04 Bratislava, Slovakia Abstract: The paper provides an overview of the main Alpine and earlier Hercynian (Variscan) tectonic units, as well as superimposed Cenozoic “post-nappe stacking” formations. Simplified localization maps of mentioned tectonic units, lithostratigraphic tables with emphasis on typical lithostratigraphic members and models of the assumed paleogeographical positions are included. References have been selected with an intention to provide more detailed information on a particular issue, resp. tectonic unit. Paper follows dual division of principal tecto- nic zones into the External (EWECA) and Internal Western Carpathians (IWECA), which reflects different rock composition as well as different time and mechanisms of their structuralization. Key words: Western Carpathians, tectonics, lithostratigraphy, thrust belt • Dual division into External (EWECA) and Internal Western Carpatians (IWECA) is followed after ear- lier works • The main Alpine tectonic units in Slovakia are descri- bed in the order: EWECA - Outer Group of Nappes (Krosno and Magura nappe systems and Oravicum), IWECA - Lower Group of Nappes (Vahicum and Tat- ricum), Middle Group of Nappes (Veporicum, Fatri- Highlights cum and Hronicum), Upper Group of Nappes (Ge- mericum, Turnaicum, Meliaticum and Silicicum), as Graphical abstract well as the Zemplinicum with an exceptional status.
    [Show full text]
  • Joint Analysis of the Magnetic Field and Total Gradient Intensity in Central Europe Maurizio Milano 1, Maurizio Fedi 2, J
    Joint analysis of the magnetic field and Total Gradient Intensity in Central Europe Maurizio Milano 1, Maurizio Fedi 2, J. Derek Fairhead 3 5 1 Centro Interdipartimentale di Ricerca L.U.P.T. – Università degli Studi di Napoli Federico II. 2 Dipartimento di Scienze della Terra, dell’Ambiente e delle Risorse - Università degli Studi di Napoli Federico II. 3 School of Earth and Environment, University of Leeds, UK. Correspondence to: Maurizio Milano ([email protected]) 10 Abstract. In the European region, the magnetic field at satellite altitudes (~350 km) is mainly defined by a long-wavelength magnetic-low called here the Central Europe Magnetic Low (CEML), located to the southwest of the Trans European Suture Zone (TESZ). We studied this area by a joint analysis of the magnetic and total gradient (∇T) anomaly maps, for a range of different altitudes 15 of 5 km, 100 km and 350 km. Tests on synthetic models showed the usefulness of the joint analysis at various altitudes to identify reverse dipolar anomalies and to characterize areas in which magnetization is weak. By this way we identified areas where either reversely or normally magnetized sources are locally dominant. At a European scale these anomalies are sparse, with a low degree of coalescence effect. The ∇T map indeed presents generally small values within the CEML area, indicating that the Palaeozoic Platform is weakly magnetized. 20 At 350 km altitude, the TESZ effect is largely dominant: with intense ∇T highs above the East European Craton (EEC) and very small values above the Palaeozoic Platform, this again denoting a weakly magnetized crust.
    [Show full text]
  • Cooking Without Borders Easily Accessible and Beneficial to Society and Economic Growth
    Shaping the Earth A good scientific communicator must first understand its audience, their knowledge and beliefs, in order to adopt of Tomorrow an attractive approach to their communication strategy. A good communicator is someone who uses immediately Geology 33 Geological Survey organisations recognizable tools, adopts a simplified blend of the crucial from across Europe information without depleting the content of the main message and can avoid the danger of losing EuroGeoSurveys is a non-profit organisation of the Geological the audience’s interest by keeping with simple language Surveys of Europe, the national institutions responsible for that is easy to understand and accessible to all. geological inventory, monitoring, knowledge and research. When it comes to the field of geology, communication efforts at the table For 40 years the main objective of EuroGeoSurveys has been to would ideally engage the audience and develop their interest contribute to society’s welfare. We turn geoscientific information through field expeditions or demonstrations, giving people into European wide knowledge, technologies and services that are the opportunity to identify with geological phenomena Cooking without borders easily accessible and beneficial to society and economic growth. on site while discovering connections to their daily life. In doing so, this enables the public to feel an integral and Our principal purpose is to provide public Earth science fundamental connection to the wonderful world that is under knowledge to support the EU’s competitiveness, social well-being, their feet - the Earth. In following these basic principles environmental management and international commitments. geologists will be able to effectively communicate to the entire world that geology is a science that will contribute In our day-to-day activities, we promote the contribution of to the building of a better world of tomorrow.
    [Show full text]
  • CHPM2030 D1.2 Review of Data Availability
    Report on data availability CHPM2030 Deliverable D1.2 Version: December 2016 This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement nº 654100. Author contact Gerhard Schwarz Geological Survey of Sweden Box 670 751 28 Uppsala Sweden Email: [email protected] Published by the CHPM2030 project, 2016 University of Miskolc H-3515 Miskolc-Egyetemváros Hungary Email: [email protected] CHPM2030 DELIVERABLE D 1.2 REPORT ON DATA AVAILABILITY Summary: This report aims to provide a brief overview of four major ore districts in Europe, namely in SW England, southern Portugal, NW Romania and central and northern Sweden. It is completed with a survey of existing boreholes in the European countries, where temperatures at depth in access of 100oC are observed. The report includes descriptions of the geological settings, and on-going efforts in geophysics in seeing deeper and increasing resolution for detecting mineralized zones at depth, as well as attempting to estimate their geothermal potential. Authors: Gerhard Schwarz, geophysicist, Magnus Ripa, geologist, Bo Thunholm, hydrogeologist (Geological Survey of Sweden) Richard A Shaw, economic geologist, Keith Bateman, geochemist, Eimear Deady, economic geologist, Paul Lusty, economic geologist (British Geological Survey) Elsa Cristina Ramalho, geological engineer, João Xavier Matos, economic geologist, João Gameira Carvalho, geophysicist (Laboratório Nacional de Energia e Geologia) Diana Perșa, researcher, Ștefan Marincea, senior researcher, Albert Baltreș, senior researcher, Constantin Costea, senior researcher, Delia Dumitraș, senior researcher, Gabriel Preda, GIS editor Vanja Bisevac, geologist, Isabel Fernandez, geologist (European Federation of Geologists, Geologist) This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement nº 654100.
    [Show full text]