APPENDICES

APPENDIX A

THE METHOD OF CURVILINEAR COORDINATES

In Appendix A the kinematics of point in curvilinear coordinates is consid- ered. The formulas obtained are extended to the motion of any of mechanical systems. The theory, given in the Appendix, is widely used in studying the base material of the monograph.

§ 1. The curvilinear coordinates of point. Reciprocal bases

Suppose, the position of the point M in three-dimensional space is defined by the radius-vector r = r(q1,q2,q3), i. e. the Cartesian coordinates of point 1 2 3 x1,x2,x3 are uniquely represented via the quantities q ,q ,q :

1 2 3 xk = Fk(q ,q ,q ) ,k=1, 2, 3 . (A.1)

If ∂x1 ∂x1 ∂x1 ∂q1 ∂q2 ∂q3 D(x ,x ,x ) ∂x ∂x ∂x 1 2 3 = 2 2 2 =0 , 1 2 3 1 2 3 D(q ,q ,q ) ∂q ∂q ∂q ∂x ∂x ∂x 3 3 3 ∂q1 ∂q2 ∂q3 then system of equations (A.1) is solvable for q1,q2,q3:

σ σ q = f (x1,x2,x3) ,σ=1, 2, 3 , (A.2) and the quantities q1,q2,q3 are called the curvilinear coordinates of point in space. From relations (A.2) it follows directly that, equating any curvilinear co- σ ordinate q to the constant quantity Cσ, we obtain the equation of coordinate surface σ f (x1,x2,x3)=Cσ ,σ=1, 2, 3 . The crossing of two coordinate surfaces gives a coordinate line, along which one coordinate is varied only. For example, the crossing of the coordinate 1 1 2 2 surfaces q = f (x1,x2,x3)=C1 and q = f (x1,x2,x3)=C2 gives a coordinate line, which the coordinate q3 varies along (Fig. A. 1).

213 214 Appendix A

Fig. A. 1

The crossing of the coordinate lines q1,q2,q3 is the point M. If through this point we construct the tangents to the coordinate lines in ascending order of the quantities q1,q2,q3,thenweobtainthe axes of curvilinear coordinates, which can make up as orthogonal (for example, the axes of spherical or cylin- drical coordinates) as nonorthogonal systems. For the motion to be given in curvilinear coordinates it is necessary that the quantities q1,q2,q3 are given as time functions: qσ = qσ(t) ,σ= 1, 3 . (A.3) These functions are called equations of motion of point. Taking into account that the radius-vector r = r(q1,q2,q3) of the point M is a differentiable function, we obtain

3 ∂r dr = dqσ . ∂qσ σ=1 Denoting ∂r e = ,σ= 1, 3 , (A.4) σ ∂qσ we have 3 σ dr = eσdq . (A.5) σ=1 σ Note that |∂r/∂q | = |eσ| = Hσ,whereHσ are scale factors Lam´e.Using formulas (A.4), we obtain ∂x 2 ∂x 2 ∂x 2 H = 1 + 2 + 3 ,σ= 1, 3 . (A.6) σ ∂qσ ∂qσ ∂qσ

Formula (A.5) gives a decomposition of the vector dr using the axes of the σ curvilinear system of coordinates {q } with the basis {eσ}. The quantities Appendix A 215 dqσ from relations (A.5) are called contravariant components of the vector dr. A set of the vectors {eσ} is called a natural or fundamental basis of the curvilinear system of coordinates {qσ} at the point M. The tangential planes to the coordinate surfaces at the point M are called coordinate planes. They pass through the corresponding vectors of basis. For 3 example, the tangential plane to the surface q = C3 passes through the vectors e1 and e2. Denote by eτ a certain vector collinear to a vector of normal to the coor- τ dinate surface q = Cτ at the point M. Obviously, the system of all vectors {eτ } also makes up a certain basis. For the definition of that the basis {eτ } isuniqueweneed

τ τ 1 ,σ= τ, e · eσ = δ = (A.7) σ 0 ,σ= τ.

τ Here δσ are the Kronecker symbols. The basis {eτ } is called a reciprocal or dual basis relative to the funda- mental one. The reciprocal basis can also be introduced by using the gradient operation (see the next section). Note that for any fundamental basis there exists a unique reciprocal ba- sis and if the fundamental basis is orthonormal, then the reciprocal basis coincides with the fundamental one.

§ 2. The relation between a reciprocal basis and gradients of scalar functions

We assume that we have the certain function f(x1,x2,x3) in Cartesian coordinates of a point and this function can be represented in the curvilinear coordinates: f(q1,q2,q3). The differential of this function in Cartesian coordinates is as follows

3 ∂f df = dxk (A.8) ∂xk k=1 and in curvilinear coordinates

3 ∂f df = dqσ . (A.9) ∂qσ σ=1 The gradient of the function f is the vector

3 ∂f grad f = ik . ∂xk k=1 216 Appendix A

If we introduce Hamiltonian operator nabla 3 ∂ ∇ = ik , (A.10) ∂xk k=1 then the gradient of the function ftakes the form grad f = ∇f. 3 Taking into account that dr = k=1 dxkik, relation (A.8) can be repre- sented as the scalar product df = ∇f · dr . (A.11) The question arises how in place of the formulae (A.10), which is valid for Cartesian coordinates, to find a relation for the vector ∇ in curvilinear coordinates in such a way that the derivative df can be represented in the form (A.11) with dr in the form (A.5)? Substituting relation (A.5) into (A.11) and comparing with (A.9), we obtain the relation ∂f ∇f · e = . (A.12) σ ∂qσ It is easily checked that relation (A.12) is valid if 3 ∂f ∇f = eτ . (A.13) ∂qτ τ=1 Representation (A.13) is convenient to obtain the vectors of reciprocal basis. Really, using the concrete coordinate surface of the form (A.2) and taking into account relation (A.13), we have 3 ∂fσ ∇f σ =gradf σ = eτ = eσ . ∂qτ τ=1

§ 3. Covariant and contravariant components of vector

To the curvilinear system of coordinates qσ,σ=1, 2, 3, correspond both σ the fundamental basis eσ = ∂r/∂q ,σ=1, 2, 3, and the reciprocal basis eτ = ∇f τ ,τ =1, 2, 3. Any of the vectors a can be decomposed into as fundamental as reciprocal bases, i. e. can be represented in the form 3 3 σ τ a = a eσ , a = aτ e . (A.14) σ=1 τ=1 σ Here a are contravariant components of the vector a and aτ are covariant components of the vector a in the basis {eτ }. Further, we make use of the rule of dummy index, summation of repeated indices in the corresponding limits is implied. Then from formulas (A.14) and (A.7) we obtain · σ τ · σ τ σ σ · τ · τ a e = a eτ e = a δτ = a , a eσ = aτ e eσ = aτ δσ = aσ . Appendix A 217

Thus, we find the simple formulas to obtain the components of the arbitrary vector a decomposed into considered bases, respectively:

σ σ a = a · e ,aσ = a · eσ . (A.15)

Relations (A.14) and (A.15) yield the rules of raising an index and missing an index:

σ σ τ σ τσ τ τ a = a · e = aτ e · e = g aτ ,aσ = a · eσ = a eτ · eσ = gτσa . (A.16)

Here gστ = gτσ = eσ · eτ , σ, τ =1, 2, 3, are elements of basic metric form or basicmetrictensorand gστ = gτσ = eσ · eτ , σ, τ =1, 2, 3, are components of complementary metric form or complementary metric tensor. Applying the metric tensor, it is not difficult to obtain the transition formulas from the fundamental basis to the reciprocal one and vice versa:

τ τ σ σ τ στ eσ =(eσ · eτ )e = gστ e , e =(e · e )eτ = g eτ .

Note that if two vectors, represented in the same bases, are multiplied scalarly by each other, then the obtained relation turns out rather lengthy (nine addends): σ τ στ a · b = gστ a b = g aσbτ . If the vectors are decomposed into the different bases, then the scalar product involves only three addends: · σ · τ σ τ σ σ a b = a bτ eσ e = a bτ δσ = a bσ = aσb . From the chain of relations · | || | | | aσ = a eσ = a eσ cos ϕ = eσ preσ a , τ · τ | || τ | | τ | a = a e = a e cos ψ = e preτ a we obtain the formulas for computing the projections of the vector a on the vectors of fundamental and reciprocal bases:

τ aσ a pr a = , pr τ a = . (A.17) eσ e τ |eσ| |e |

§ 4. Covariant and contravariant components of velocity vector

Let now the motion of the point M be considered in the curvilinear sys- tem of coordinates, in which case equations of motion (A.3) are known. By definition, the velocity is given by the vector v = dr/dt and therefore we have dr ∂r v = = q˙σ =˙qσe . dt ∂qσ σ 218 Appendix A

At the same time the velocity vector in fundamental basis can be represented σ as v = v eσ. Then, comparing with the previous formula, we obtain the following representations for the contravariant components of velocity vector:

vσ =˙qσ ,σ=1, 2, 3 . (A.18)

For the orthogonal fundamental basis {eσ} the relation for the modulus of velocity vector has the form σ 2 1 2 2 2 3 2 v = |v| = (v eσ) = (H1q˙ ) +(H2q˙ ) +(H3q˙ ) , (A.19) where, as we have shown earlier, Hσ are scale factors. According to formulas (A.16) and (A.18) the covariant components of velocity vector are the following

τ τ vσ = gστ v = gστ q˙ ,σ=1, 2, 3 . (A.20)

Consider another possible representation of the components vσ. For this purpose it is convenient to introduce the function v2 T = , (A.21) 1 2 which can be regarded as the kinetic energy of point with unit mass, what is marked by index "1". Function (A.21) can be rewritten as 1 1 1 T = v · v = q˙σe · q˙τ e = g q˙σq˙τ . (A.22) 1 2 2 σ τ 2 στ By relation (A.22), formula (A.20) can be represented now in the form ∂T v = 1 . (A.23) σ ∂q˙σ

As will be shown below, the function T1, given by formula (A.21), plays an important role in computing the covariant components of acceleration vector of point.

§5.Christoffelsymbols

In § 1 we introduce the vectors of fundamental basis ∂r e = ,σ=1, 2, 3 , σ ∂qσ which show the changes of radius-vector of point versus the changes of gener- alized coordinates. Let us study now the effect of coordinates qτ ,τ=1, 2, 3, on the vector eσ,σ=1, 2, 3. For this purpose we consider the derivatives ∂e σ ,σ,τ=1, 2, 3 . (A.24) ∂qτ Appendix A 219

Since the vector can be represented in one of the forms of (A.14), where the covariant and contravariant components are computed by formulas (A.15), for the sought vectors we obtain ∂e ∂e ∂e ∂e σ = σ · e eρ , σ = σ · eρ e , ∂qτ ∂qτ ρ ∂qτ ∂qτ ρ ρ, σ, τ =1, 2, 3 .

The covariant and contravariant components of vectors (A.24) in the above relation are called the Christoffel symbols of the first and second kinds and ρ are denoted by Γρ,στ and Γστ , respectively. Thus, we have ∂e ∂e Γ = σ · e , Γρ = σ · eρ . ρ,στ ∂qτ ρ στ ∂qτ Finally, the previous relations take the form: ∂e ∂e σ =Γ eρ , σ =Γρ e , ∂qτ ρ,στ ∂qτ στ ρ ρ, σ, τ =1, 2, 3 .

Obviously, by formulas (A.16) the Christoffel symbols are related as

ρ ρπ π Γ = g Γπ,στ , Γρ,στ = gρπΓ , στ στ (A.25) π,ρ,σ,τ =1, 2, 3 .

Represent the Christoffel symbols of the first kind via the elements of basic metric tensor. Assuming that the mixed second derivatives are continuous in the coordinates of radius-vector of point, we obtain the chain of relations

∂e ∂2r ∂2r ∂e σ = = = τ . ∂qτ ∂qσ∂qτ ∂qτ ∂qσ ∂qσ Applying this formula twice, we can perform the following transformations: ∂e 1 ∂e ∂e Γ = σ · e = σ · e + τ · e = ρ,στ ∂qτ ρ 2 ∂qτ ρ ∂qσ ρ 1 ∂(e · e ) ∂(e · e ) ∂e ∂e = σ ρ + τ ρ − ρ · e − ρ · e = 2 ∂qτ ∂qσ ∂qτ σ ∂qσ τ 1 ∂(e · e ) ∂(e · e ) ∂e ∂e = σ ρ + τ ρ − τ · e − σ · e . 2 ∂qτ ∂qσ ∂qρ σ ∂qρ τ

This implies the formula for computing the Christoffel coefficients of the first kind: 1 ∂g ∂g ∂g Γ = ρσ + ρτ − στ . (A.26) ρ,στ 2 ∂qτ ∂qσ ∂qρ 220 Appendix A

The Christoffel coefficients of the second kind can be determined, in turn, by formulas (A.25).

§ 6. Covariant and contravariant components of acceleration vector. TheLagrangeoperator

Represent the acceleration vector in the following way: dv d de w = = (vρe )=v ˙ρe + vρ ρ . dt dt ρ ρ dt We have de (q) ∂e ρ = ρ q˙σ , dt ∂qσ and therefore this formula can be represented as ∂e w =˙vρe + vρvσ ρ . (A.27) ρ ∂qσ Multiplying scalarly the above relation by the vectors eπ,weobtainthe contravariant components of acceleration vector:

π π π ρ σ w =¨q +Γρσq˙ q˙ .

Multiplying scalarly (A.27) by the vectors eπ, we obtain the covariant com- ponents of acceleration vector:

ρ ρ σ wπ = gπρq¨ +Γπ,ρσq˙ q˙ . (A.28)

Now we proceed to the obtaining of the second representation of covariant components of acceleration. We write the acceleration vector as: dv d deτ w = = (v eτ )=v ˙ eτ + v . dt dt τ τ τ dt However, since deτ (q) ∂eτ = q˙σ , dt ∂qσ this formula takes the form ∂eτ w =˙v eτ + v vσ . τ τ ∂qσ

Multiplying scalarly this relation on the vectors eρ, we obtain ∂eτ w =˙v + v vσ · e . (A.29) ρ ρ τ ∂qσ ρ Appendix A 221

Consider the last scalar product in formula (A.29). By the property of the vectors of reciprocal bases (A.7), we have

τ · τ e eρ = δρ = const .

Then ∂(eτ · e ) ρ =0. ∂qσ Henceweobtain ∂eτ ∂e · e = − ρ · eτ = −Γτ . ∂qσ ρ ∂qσ ρσ It follows that formula (A.29) can be rewritten as

− τ σ wρ =˙vρ Γρσvτ v . (A.30)

However, by the rule of raising an index (A.16) we have

π τ vτ = gτπv , Γπ,ρσ = gπτ Γρσ .

Therefore formula (A.30) becomes

π σ wρ =˙vρ − Γπ,ρσv v . (A.31)

Relations (A.26) give 1 ∂g ∂g ∂g Γ vπvσ = πρ + πσ − ρσ vπvσ . π,ρσ 2 ∂qσ ∂qρ ∂qπ

If in the right-hand side of this relation in the first double sum we interchange the summation indices π and σ, then this sum coincides with the last double sum, given with the minus sign. In this case, collecting terms, we obtain 1 ∂g ∂T Γ vπvσ = πσ vπvσ = 1 , (A.32) π,ρσ 2 ∂qρ ∂qρ where T1 is a function, introduced by formula (A.21). Recall that according to (A.23) the covariant components of velocity vector are also represented by this function. Therefore we have d ∂T v˙ = 1 . (A.33) ρ dt ∂q˙ρ

Using relations (A.32) and (A.33), from formula (A.31) we find the fi- nal second representation of a covariant component of acceleration vector of point, namely d ∂T ∂T w = 1 − 1 . (A.34) ρ dt ∂q˙ρ ∂qρ 222 Appendix A

Fig. A. 2

Introducing the Lagrange operator d ∂ ∂ L = − , ρ dt ∂q˙ρ ∂qρ we rewrite representation (A.34) as

wρ = Lρ(T1) .

The projections of acceleration on the vectors of fundamental basis can be found by formulas (A.17):

Lρ(T1) preρ w = . Hρ

§ 7. The case of cylindrical system of coordinates

As an example of application of the found formulas we consider the cylin- drical system of coordinates q1 = ρ, q2 = ψ, q3 = z (Fig. A. 2). The Carte- sian coordinates of point x, y, z are represented via the cylindrical coordinates in the following way:

x = ρ cos ψ, y= ρ sin ψ, z= z. (A.35)

To the constant values of the generalized coordinates

ρ = C1 ,ψ= C2 ,z= C3 correspond the coordinate surfaces, passing through the point M(C1,C2,C3) (Fig. A. 2): a vertical cylinder of radius ρ; a vertical plane, which makes the Appendix A 223 angle ψ with the plane Oxz; a horizontal plane, raised off Oxy by z.The crossing of these coordinate surfaces at the point M gives the coordinate lines: the horizontal straight line O1M, the vertical straight line NM,and the circle of radius ρ centered at the point O1. The vectors of fundamental basis, which in accordance with formulas (A.4) and (A.35) have the form

∂r e = e = =cosψi +sinψj , 1 ρ ∂ρ ∂r e = e = = −ρ sin ψi + ρ cos ψj , (A.36) 2 ψ ∂ψ ∂r e = e = = k , 3 z ∂z are directed along the tangents to the coordinate curves in ascending order of the corresponding curvilinear coordinates. These vectors, as is shown in Fig. A. 2, make up an orthogonal but unnor- malized system since by formulas (A.6) and (A.35) we have

Hρ =1,Hψ = ρ, , Hz =1. (A.37)

The orthogonality of fundamental basis can also be established analytically. Really, formulas (A.36) imply that

e1 · e2 = −ρ cos ψ sin ψ + ρ sin ψ cos ψ =0,

e1 · e3 =0, e2 · e3 =0.

The reciprocal basis eρ,eψ,ez coincides in directions with the fundamental one and has the lengths 1 |eρ| =1, |eψ| = , |ez| =1. ρ The found bases permit us to construct the matrix of basic metric tensor ⎛ ⎞ 100 ⎝ 2 ⎠ (gστ )= 0 ρ 0 , (A.38) 001 and the matrix of complementary metric tensor ⎛ ⎞ 100 (gστ )=⎝01/ρ2 0⎠ . (A.39) 001

It is easily seen that the product of matrix (A.38) by matrix (A.39) is the unit matrix. For the computation of the Christoffel symbols of the first kind 224 Appendix A we make use of formula (A.26). Since in matrix (A.38) the variable element 2 is g22 = gρρ = ρ only, then the only nonzero symbols are the following

Γ2,21 =Γ2,12 = −Γ1,22 = ρ. (A.40)

The Christoffel symbols of the second kind can be computed now by formulas (A.25), using the elements of matrix (A.39). Formulas (A.18) and (A.19) give

v1 = vρ =˙ρ, v2 = vψ = ψ,˙ v3 = vz =˙z, v = |v| = ρ˙2 +(ρψ˙)2 +˙z2 , (A.41) therefore 1 T = (˙ρ2 +(ρψ˙)2 +˙z2) . (A.42) 1 2 If contravariant components of velocity (A.41) are known, the covariant com- ponents can be obtained by formulas (A.20):

τ 1 v1 = g1τ v = v =˙ρ, τ 2 2 2 ˙ v2 = g2τ v = ρ v = ρ ψ, (A.43) τ 3 v3 = g3τ v = v =˙z.

The covariant components of accelerations can be found by means of rep- resentations (A.28). Since for the cylindrical system of coordinates the nonze- ro Christoffel symbols of the first kind are the symbols, given by formulas (A.40) only, we have

σ σ τ 1 2 2 ˙ 2 w1 = g1σq¨ +Γ1,στ q˙ q˙ =¨q +Γ1,22q˙ q˙ =¨ρ − ρψ , σ σ τ 2 2 1 2 2 1 2 ¨ ˙ w2 = g2σq¨ +Γ2,στ q˙ q˙ = ρ q¨ +Γ2,12q˙ q˙ +Γ2,21q˙ q˙ = ρ ψ +2ρψρ,˙ σ σ τ 3 w3 = g3σq¨ +Γ3,στ q˙ q˙ =¨q =¨z. (A.44) Note that it is rather convenient to determine the covariant components of velocity and acceleration, applying the functions T1. Really, using formu- las (A.23) with provision for (A.42) we can compute at once the covariant components of velocity (A.43) obtained above:

∂T v = v = 1 =˙ρ, 1 ρ ∂ρ˙ ∂T1 2 ˙ v2 = vψ = = ρ ψ, ∂ψ˙ ∂T v = v = 1 =˙z, 3 z ∂z˙ Appendix A 225 and by formulas (A.34) the covariant components of acceleration, which co- incide with relations (A.44):

d ∂T ∂T d w = w = 1 − 1 = ρ˙ − ρψ˙ 2 =¨ρ − ρψ˙ 2 , 1 ρ dt ∂ρ˙ ∂ρ dt d ∂T1 ∂T1 d 2 ˙ 2 ¨ ˙ w2 = wψ = − = (ρ ψ)=ρ ψ +2ρψρ,˙ dt ∂ψ˙ ∂ψ dt d ∂T ∂T w = w = 1 − 1 =¨z. 3 z dt ∂z˙ ∂z The projections of velocity and acceleration are obtained by formulas (A.17), taking into account lengths (A.37) of the vectors of fundamental basis:

v v ˙ v preρ =˙ρ, preψ = ρψ, prez =˙z, w − ˙ 2 w ¨ ˙ w preρ =¨ρ ρψ , preψ = ρψ +2ψρ,˙ prez =¨z.

§ 8. Covariant components of acceleration vector for nonstationary basis

Consider now a more general case when the radius-vector r depends not only on q =(q1,q2,q3) but on time t, i. e. it is the function of the form r = r(t, q). In particular, this is possible in the case when the curvilinear co- ordinates qσ give the position of points relative to the system of coordinates Ox1x2x3, which has a given motion relative to the stationary (absolute) sys- σ tem of coordinates O1ξ1ξ2ξ3. In this case even for the fixed values of q the radius-vector r varies in time in virtue of the translational motion of system Ox1x2x3. The absolute velocity v is computed by formula ∂r ∂r v = r˙ = + q˙σ . (A.45) ∂t ∂qσ

Introducing, for short, the notation q0 = t (therefore q˙0 =1), we can express velocity (A.45) in the following way:

∂r v = q˙α ,α= 0, 3 . (A.46) ∂qα We emphasize that such a representation is introduced only for short and therefore we do not need to consider the problem in four-dimensional space. The coordinate vectors are, as before, only the vectors ∂r e (t, q)= ,σ= 1, 3 . σ ∂qσ 226 Appendix A

Thus, the nonstationary basis varies not only with the change from point to point but at each point in a time. Compute a covariant component of the acceleration w: dv ∂r d ∂r d ∂r w = w · e = · = v · − v · . (A.47) π π dt ∂qπ dt ∂qπ dt ∂qπ

Differentiating first relation (A.45) with respect to q˙π and then with respect to qπ (π =1, 2, 3),wehave

∂v ∂r ∂v ∂2r ∂2r d ∂r = , = + q˙σ = . ∂q˙π ∂qπ ∂qπ ∂t∂qπ ∂qσ∂qπ dt ∂qπ

It follows that the addends, entering into relation (A.47), take the form

∂r ∂v 1 ∂v2 ∂T v · = v · = = 1 , ∂qπ ∂q˙π 2 ∂q˙π ∂q˙π d ∂r ∂v 1 ∂v2 ∂T v · = v · = = 1 . dt ∂qπ ∂qπ 2 ∂qπ ∂qπ

Finally, for wπ we obtain

d ∂T ∂T v2 w = 1 − 1 ,T= ,π= 1, 3 . (A.48) π dt ∂q˙π ∂qπ 1 2

Thus, Lagrange’s form of representation of the covariant component wπ does not change also in the case of nonstationary basis. According to representation (A.46) the kinetic energy T1 of a point with unitmassisasfollows v2 1 ∂r ∂r 1 T = = · q˙αq˙β = g q˙αq˙β ,α,β= 0, 3 . (A.49) 1 2 2 ∂qα ∂qβ 2 αβ

If in relation (A.49) we discriminate the addends, involving explicitly ∂r/∂q0 = ∂r/∂t,thenwehave

(2) (1) (0) T1 = T1 + T1 + T1 , 1 ∂r ∂r 1 T (2) = · q˙ρq˙σ = g q˙ρq˙σ , 1 2 ∂qρ ∂qσ 2 ρσ (A.50) (1) ∂r · ∂r σ σ T1 = σ q˙ = g0σq˙ , ∂t ∂q 1 ∂r 1 T (0) = = g . 1 2 ∂t 2 00

Note that in formulas (A.50) the metric coefficients are the quantities gρσ, (2) ρ, σ = 1, 3, entering into the relation T1 only. Appendix A 227

By formulas (A.48), (A.49) the covariant components of acceleration vec- tor in expanded form are the following

ρ α β wπ = gπρq¨ +Γπ,αβq˙ q˙ ,π,ρ= 1, 3 ,α,β= 0, 3 . (A.51) This formula is the extension of the first representation of covariant compo- nent of acceleration (A.28) to the case of nonstationary basis. We emphasize that like the previous remark, in formula (A.51) the Christoffel symbols ourselves are only the following ∂e Γ = ρ · e , π,ρ,σ = 1, 3 , π,ρσ ∂qσ π and by the use of the vector e0 = ∂r/∂t, the quantities Γπ,ρ0, Γπ,00 denote only the functions ∂e ∂2r Γ = ρ · e = · e , π,ρ0 ∂t π ∂qρ∂t π ∂e ∂2r Γ = 0 · e = · e , π,00 ∂t π ∂t2 π π,ρ = 1, 3 . They are introduced here for brevity of notation and allow us to obtain in the case of nonstationary basis the formulas similar to those in the stationary case.

§ 9. Covariant components of a derivative of vector

In Chapter IV the relations for the covariant components of derivatives of vector are used. We obtain here the corresponding formulas for the vector a of arbitrary physical structure. Recall that in § 6 of this Appendix they already have been obtained as a result of the differentiation of velocity vector. Consider the representation of the vector a in reciprocal basis:

τ a = aτ e . Find the vector b, which is a derivative of the vector a: deτ b = a˙ =˙a eτ + a . τ τ dt Since we have deτ (t, q) ∂eτ = q˙α , dt ∂qα the previous formula takes the form ∂eτ b =˙a eτ + a q˙α . τ τ ∂qα 228 Appendix A

Multiplying this relation scalarly by the vectors eρ,weget ∂eτ b =˙a + a q˙α · e . ρ ρ τ ∂qα ρ Arguing as in § 6, we find ∂eτ · e = −Γτ , ∂qα ρ ρα and therefore finally we have

− τ α bρ =˙aρ Γραaτ q˙ . (A.52)

The particular case of this formula is relation (A.30). Formula (A.52) is often used in Chapter IV. Note that in Chapter IV it is also obtained more general formulas. The formulas, found above, can be used to describe motion of represen- tation point in the curvilinear coordinates q =(q1, ...,qs).Inthiscasethe indices π,ρ,σ,τ are varied from 1 to s =3N and for nonstationary system, α and β from 0 to s =3N. In Chapter IV, using a tangent space, the formulas of this Appendix are extended to mechanical systems, consisting of not only the mass points but the rigid and elastic bodies. In this case the covariant and contravariant com- ponents of the velocity vectors v and the acceleration vectors w of mechanical system, as well as for one point, are represented by the following function T 1 T = = g q˙αq˙β ,α,β= 0,s, 1 M 2 αβ where M is a mass of total system and T is its kinetic energy. APPENDIX B

STABILITY AND BIFURCATION OF STEADY MOTIONS OF NONHOLONOMIC SYSTEMS

Appendix B contain a brief survey of the works, devoted to questions of the existence, stability, and branching of a steady motion of conservative non- holonomic systems. This Appendix is the plenary report of A. V. Karapetyan with the same title, which was spoken in the International science conference on mechanics "The third Polyakhov readings" (St.Petersburg, February 4-6, 2003).

In studying the questions of existence, stability, and branching of steady motions of conservative nonholonomic systems two approaches [97, 98, 101, 333, 334] are usually applied. In the general case when steady motions of conservative nonholonomic systems correspond to the symmetries, to which the linear first integrals do not correspond (unlike the conservative holonomic systems), the methods of Lyapunov–Malkin and Andronov–Hopf (see [91, 94, 97, 99. 1985, 101, 333]) are used. These methods are based on the analysis of equations of perturbed motion and on the characteristic equation of the linearized equations of perturbed motion. The latter has always zero roots, the number of which is not so less as the dimension of a family of steady motions, which unperturbed steady motion belongs to. If the number of zero roots is equal to the above-mentioned dimension and the rest of roots have negative real parts, then the unperturbed motion is stable, in which case any perturbed motion sufficiently close to the unperturbed one tends asymptot- ically to a steady motion of the considered family but, generally speaking, not unperturbed motion (according to the Lyapunov–Malkin theory). On the boundary of domain of stability (in the space of parameters of problem) the characteristic equation has either zero root, either a pair of pure imaginary roots. In the first case another families of steady motions are branched off unperturbed steady motion and in the second case the families of periodic motions (the Andronov–Hopf bifurcation occurs). The described approach to the study of steady motions of conservative nonholonomic systems is also applied in the case when the nonholonomic con- straints have a so-called "dissipative" effect [94, 99. 1981, 1985]. The second approach to the study of questions of existence, stability, and branching of steady motions of nonholonomic systems is based on the modified theory of Routh–Salvadori, Poincar´e–Chetaev, and Smale (see [97, 98, 99. 1983, 100. 1994, 2000, 101, 333, 334]). It can be applied to the cases when to the sym- metries of system correspond not only steady motions but also the linear first integrals. Consider this case in more detail. At first we consider the case when the linear integrals, corresponding to the symmetries of system, are given in explicit form.

229 230 Appendix B

Let 1 H = H (v, r)= (A (r) v · v)+(a (r) · v)+a (r)=h (B.1) 2 be a total mechanical energy of system and

K = K (v; r)=BT (r) v + b (r)=k =const (B.2) be a k-dimensional vector of linear integrals (the sign "T" means a transpo- sition). Here v is an n-dimensional vector of quasivelocities (in particular, of im- pulses or generalized velocities), r ∈ M is an m-dimensional vector of de- termining coordinates such that the n × n-matrix A (r) of positive definite quadratic form, the n-dimensional vector a (r), and the scalar function a (r), entering together into a total mechanical energy, and also the n × k-matrix B (r) and the k-dimensional vector b (r) of the coefficients of the first inte- grals depend on these coordinates. Denote by M a configuration space of the system dim M  n. According to the Routh theory, on the fixed levels of the first integrals K = k to the critical points of the functions H correspond steady motions, in which case to the minimum points correspond stable steady motions. Taking into account a structure of function (B.1) and the first integrals (B.2), the problem of obtaining the critical points of this function on the fixed levels of these integrals can be solved in two stages. At the first stage we determine a single minimum of the function H on the fixed levels k of the first integrals K =constwith respect to the variables v (in this case the variables r are regarded as parameters): min H = H vk(r); r , v K=k 1 H v (r); r = a(r)+ C(r)c · c − k 2 k k − −1 · A (r)a(r) a(r) = Wk(r) , (B.3)

T ck = ck(r)=k − b(r)+B (r)A(r)a(r) , −1 C(r)= BT(r)A−1(r)B(r) ,

−1 −1 vk(r)=A (r)B(r)C(r)ck − A (r)a(r) .

Here and below we assume that rankB (r)=k, ∀ r ∈ M, i. e. the integrals are independent of a whole configuration space. The function Wk (r) is called an effective potential, which depends, obviously, on the variables r ∈ M and the parameters k ∈ Rk. Then the problem of study of steady motions of system is reduced to the problem of the analysis of effective potential. Appendix B 231

Theorem 1. If the effective potential takes a nondegenerate stationary value at the point r0 ∈ M, then the relation

r = r0, v = v0 = vk (r0) describes a steady motion. The point r0, at which the effective potential has a stationary value, de- pends on the constants k of the first integrals. This means that the points r0 (k), which are stationary in configuration space, make up k-parametric k families in the space k ∈ R , r ∈ M . The same families in the space k n k ∈ R , r ∈ M , v ∈ R make up the points r = r0 (k), v = v0 = vk (r0), which are stationary in the phase space, i. e. make up steady motions. Even for the fixed values of the constants k, the effective potential Wk (r) can take stationary values not only at the point r0 but, generally speaking, at the certain another points r1, r2, .... These points also depend on the ∗ constants k. In the general case for certain values of k the families r0 (k), ∗ r1 (k), r2 (k), ...canhavecommonpoints.Suchvaluesofk are called bifur- cational by Poincar´e. Obviously, the corresponding steady motions r = r0 (k), v = v0 = vk (r0) have common points if and only if the families r0 (k), r1 (k), r2 (k), ... have common points (see (B.3)). In addition, by construction of effective potential, for indices we have the following relation

2 2 ind δ H (v0, r0) |(2) = ind δ Wk (r0) .

The latter permits us to simplify substantially the construction of the bifur- cational diagrams of Poincar´e–Chetaev and to restrict ourself by constructing the families r0 (k) ∪ r1 (k) ∪ r2 (k) ∪ ... in the space {k, r} only. Consider the set k Σh,k = h ∈ R, k ∈ R : h = hs (k) ,s=0, 1, 2, ... (B.4) of the space {h, k},where

h = hs (k)=H (vk (r);r); r = rs (k) ,s=0, 1, 2, ... .

Set (B.4) is called bifurcational by Smale: in this set we have the crossplot- tings of topological types of domains, of motions in configuration space, which are defined by the relation Wk (r)  h, r ∈ M. Theorem 2. If the effective potential takes locally a strictly minimal sta- 0 0 tionary value for the fixed values k of the constants k at the point r0 k , 0 0 then r = r0 k , v = v0 k is a stable steady motion. Theorem 3. If the index of the second variation of effective potential is 0 0 0 odd at the point r0 k , then r = r0 k , v = v0 k is an unstable steady motion. Theorems 1 – 3 follow from the Routh–Salvadori theory [97, 98, 334] and correspond to the special form of the first integrals (B.1), (B.2). 232 Appendix B

Remark. If for the certain r0 ∈ M we have rankB (r)

Suppose, γα = γα (r, p) is an m-dimensional vector, composed of the elements of the α-th row of the matrix Γ,whereα = 1,k.If Dγ T Dγ α = α ,α= 1,k, Dr Dr then the system of km equations in partial derivatives ∂p = Γ (r, p) ∂r is completely integrable and has the family of solutions p = Φ (r) k,which depends on the k arbitrary constants k, and the determinant of the k × k- matrix Φ (r) is not equal to zero. The latter means that system (B.5) except for generalized integral of energy (B.6) allows the k linear integrals

K = Φ−1 (r) p = k =const. (B.7) Appendix B 233

Though the explicit form of these integrals is unknown the general theory of Routh–Salvadori permits us to assert that the stationary values of integral (B.6) on fixed levels of integrals (B.7) correspond to the steady motions

r = r0, r˙ = 0, p = p0 (B.8) of system (B.5), in which case the locally strictly minimal values correspond to the stable steady motions. Obviously, steady motions (B.8) make up a k-parametric family since the k + m constants r0 and p0 in (B.8) satisfy the system of m equations DW = 0 . (B.9) Dr The function H has a minimum on steady motion (B.8) under conditions (B.7) if the function W under these conditions has a minimum at the point (r0, p0). The latter occurs if all the eigenvalues of the matrix

D2W (B.10) Dr2 are positive at the point (r0, p0). If the determinant of matrix (B.10) is neg- ative at the point (r0, p0), then steady motion (B.8) is unstable. Obviously, to generate equations (B.9) and matrix (B.10) it is not required to know an explicit form of the first integrals (B.7). The existence and structure of these integrals permit us to make use of the Routh–Salvadori theory and to affirm reasonably that steady motion (B.8) is stable for all positive eigenvalues of matrix (B.10), which is symmetric under the condition that the matrices

Dγ α ,α= 1,k, Dr are symmetric. However for the bifurcational diagrams of Poincar´e–Chetaev and Smale to be constructed it is necessary to know the solution of sys- tem (B.7)–(B.9) in the form of r = r0 (k) and the quantities h = h (k)= W (r0 (k) , p0 (k)), respectively, i. e. it is necessary to obtain the first integrals (B.7) in explicit form (though in terms of special functions, not necessarily in terms of the elementary ones as in the problem on the motion of dynamically symmetric ball on absolutely roughened plane). In the problem on the motion of circular disk on absolutely roughened plane these first integrals are known in the form of hypergeometric Gaussian series. This makes it possible [127. 1999, 2001] to study completely the problem on a steady rolling of disk on horizontal plane. APPENDIX C

THE CONSTRUCTION OF APPROXIMATE SOLUTIONS FOR EQUATIONS OF NONLINEAR OSCILLATIONS WITH THE USAGE OF THE GAUSS PRINCIPLE

The Gauss principle is applied to the construction of approximate solu- tions of equations of nonlinear oscillations, in particular, of the solution by the Bubnov–Galerkin method.

If the motion of mechanical system is incompletely defined, then it is rational to construct the equations, which permit us to determine completely this motion, using Gauss’ principle represented in the form δZ =0, (C.1) where the function Z is given by formula (3.8) of Chapter IV. Two accents of the symbol δ are used to emphasize that the second time derivatives of generalized coordinates are varied only. We make use of this principle to find the approximate solutions of the nonlinear equation mx¨ = F (t, x, x˙) , (C.2) where m is a mass of mass point, x is its coordinate in the case of linear motion, F is a projection of the force acting on the point. Suppose, we seek the motion of mass point in the interval [0,τ] in the form n ν x(t)= aν f (t) , (C.3) ν=1 ν where f (t) are linearly independent functions, aν are the sought parameters. The function x(t), given in the form (C.3), does not satisfy, generally speaking, differential equation (C.2) and therefore, substituting it into this equation, we obtain mx¨ − F (t, x, x˙)=R, (C.4) where R is a residual. From the mechanical point of view this residual is regarded as a force, under which the motion of point exactly satisfies the law (C.3). We shall assume that the motion in the form (C.3) is incompletely given in the sense that the parameters aν are not known. In order to find these parameters, it is necessary that the average value of the square force R in the interval [0,τ] is minimal by virtue of the varying of the accelerations only (as in the Gauss principle) i. e. the following relation τ 2 δ mx¨ − F (t, x, x˙) dt =0

0

235 236 Appendix C

is satisfied. In other words, we shall seek the coefficients aν under the as- sumption that the error of mean square on the interval [0,τ] is minimum. Taking into account that in the Gauss principle the accelerations are varied only, we have τ mx¨ − F (t, x, x˙) δxdt¨ =0.

0 Substituting relation (C.3) into this equation, we obtain

τ n n n n ν ν ν ν δaν m aν f¨ − F t, aν f , aν f˙ f¨ dt =0. (C.5) ν=1 0 ν=1 ν=1 ν=1

The quantities δaν are arbitrary and independent. Therefore from equation (C.5) it follows that

τ n n n ν ν ν ν m aν f¨ − F t, aν f , aν f˙ f¨ dt =0,ν= 1,n. (C.6) 0 ν=1 ν=1 ν=1 The conditions, under which this system of algebraic equations has solu- tions different from zero, depend on the form of as the function F (t, x, x˙),as the functions f ν (t), ν = 1,n. The quantity R, introduced by formula (C.4), was regarded above as a force. Now we regard it as an error, which occurs for the function x(t),given in the form (C.3), to be satisfied equation (C.2). According to this approach the system of algebraic equations (C.6) with respect to the parameters aν becomes a system, which under certain assumptions permit us to find a partial approximate solution of equations (C.2) in the form (C.3). We apply now this method to determine the approximate periodic so- lutions of equation (C.2). For the sake of simplicity, we seek the periodic solutions in the form

x(t)=a1 cos ωt + a2 sin ωt . (C.7) Then system (C.6), in which the time τ is assumed to be equal to the period 2π/ω, can be represented in the following way:

2π/ω 2 − mω (a1 cos ωt + a2 sin ωt)− 0 −F (t, a1 cos ωt + a2 sin ωt , −a1ω sin ωt + a2ω cos ωt) cos ωtdt =0, (C.8) 2π/ω 2 − mω (a1 cos ωt + a2 sin ωt)− 0 −F (t, a1 cos ωt + a2 sin ωt , −a1ω sin ωt + a2ω cos ωt) sin ωtdt =0. Appendix C 237

Equations (C.8) are used to construct approximately the solution of equation (C.2) in the form (C.7) by the Bubnov–Galerkin method. They are usually deduced from the fundamental equation of dynamics. Recall that, as is shown for Example VI. 3 considered in § 4 of Chapter VI, the clarification of the methods of Ritz and Bubnov–Galerkin by means of the integral variational principles, can be found in the work of G. Yu. Dzhanelidze and A. I. Lur’e [56]. The above method for obtaining the approximate solutions of equations (C.2) can easily be extended to the case of arbitrary mechanical system with s degrees of freedom. In this case the Gauss principle (C.1) is used in integral form, i. e. we assume that

τ (MW − Y)δWdt =0. (C.9)

0 Recall that we have d ∂T ∂T MW − Y = − − Q eσ ,δW = δq¨σe . dt ∂q˙σ ∂qσ σ σ

Here T is a kinetic energy of system, Qσ is a generalized force, corresponding σ σ to the generalized coordinate q , eσ and e are the vectors of fundamental and reciprocal bases, respectively. Therefore equation (C.9) can be rewritten as τ d ∂T ∂T − − Q δq¨σdt =0. dt ∂q˙σ ∂qσ σ 0 It follows that the functions qσ(t),givenas

n σ σ ν q (t)= aν f (t) ,σ= 1,s, (C.10) ν=1 can be regarded as an approximate solution of Lagrange’s equations if the σ parameters aν satisfy the following equations

τ d ∂T ∂T − − Q f¨ν dt =0,σ= 1,s, ν = 1,n. (C.11) dt ∂q˙σ ∂qσ σ 0

Here the functions qσ(t) are assumed to be given in the form (C.10). The applying of formulas (C.11) to the solution of nonlinear system of differential equations, which describes the steady-state oscillations of a certain electromechanical system, using the Bubnov–Galerkin method, can be found in the work [262]. APPENDIX D

THE MOTION OF NONHOLONOMIC SYSTEM WITH OUT REACTIONS OF NONHOLONOMIC CONSTRAINTS

In Appendix D the motion of nonholonomic systems in the case when the reactions of constraints are lacking is considered. By the Mei Fengxiang terminology such a motion is called a free motion of nonholonomic system. The free motion of the Chaplygin sledge is studied. A realizing of the free motion of nonholonomic systems acted by external forces is discussed.

§ 1. Existence conditions for "free motion" of nonholonomic system

The motion of nonholonomic system is defined by forces, constraints, and the initial data. In the work of Mei Fengxiang [362. 1994] the notion of free motion of nonholonomic system, which is regarded as a motion under zero values of reactions of nonholonomic constraints, is introduced. In this work, in particular, the free motion of the Chaplygin sledge is considered. In the work [362] existence conditions for a free motion of nonholonomic system are given. Below we obtain these conditions. The motion of mechanical system with the ideal nonholonomic constraints

ϕκ(t, q, q˙)=0,q=(q1, ... ,qs) , κ = 1,k, (D.1) is described by Lagrange’s equations of the first kind in curvilinear coordi- nates d ∂T ∂T − = Q + R ,σ= 1,s. (D.2) dt ∂q˙σ ∂qσ σ σ Here the generalized reactions of nonholonomic constraints take the form ∂ϕκ R =Λκ ,σ= 1,s, κ = 1,k. σ ∂q˙σ

Equations (D.2) can be written by using the Christoffel symbols of the first kind κ τ α β ∂ϕ M(g q¨ +Γ q˙ q˙ )=Q +Λκ , στ σ,αβ σ ∂q˙σ σ, τ = 1,s, α,β = 0,s, q0 = t, q˙0 =1. This system can be solved as the algebraic system with respect to q¨τ , τ = 1,s: κ τ Δστ ∂ϕ α β q¨ = Q +Λκ − MΓ q˙ q˙ . (D.3) Δ σ ∂q˙σ σ,αβ

239 240 Appendix D

Here Δ is a determinant of the matrix (Mgστ ), Δστ is an algebraic comple- ment with (σ, τ ) number. We differentiate equations of constraints (D.1) with respect to time

dϕκ ∂ϕκ ∂ϕκ ∂ϕκ ≡ + q˙τ + q¨τ =0, κ = 1,k, τ = 1,s, (D.4) dt ∂t ∂qτ ∂q˙τ and substitute solutions (D.3) into formulas (D.4). Then we obtain κ κ κ κ ∂ϕ ∂ϕ τ Δστ ∂ϕ ∂ϕ α β + q˙ + Qσ +Λκ − MΓσ,αβ q˙ q˙ =0, ∂t ∂qτ Δ ∂q˙τ ∂q˙σ (D.5) κ = 1,k, σ,τ = 1,s, α,β = 0,s.

The Lagrange multipliers Λκ, κ = 1,k, can be determined from this system if the corresponding determinant is not equal to zero. Assuming Λκ =0, κ = 1,k, from relations (D.5) we obtain necessary and sufficient conditions for the existence of free motion of nonholonomic system. In the case when the constraints are stationary and the kinetic energy is independent of time they have the form ∂ϕκ Δ ∂ϕκ q˙τ + στ Q − MΓ q˙ρq˙τ =0, ∂qτ Δ ∂q˙τ σ σ,ρτ κ = 1,k, ρ,σ,τ = 1,s.

Just these conditions under (7) number are given in the work [362]. If in place of Lagrange’s equations of the first kind we take Maggi’s equa- tions σ d ∂T − ∂T − ∂q˙ σ σ Qσ λ =0,λ= 1,l, σ = 1,s, (D.6) dt ∂q˙ ∂q ∂v∗ then in the second group of equations for a free motion of nonholonomic system we have zeros: σ d ∂T − ∂T − ∂q˙ κ σ σ Qσ l+κ =0, = 1,k, σ = 1,s. (D.7) dt ∂q˙ ∂q ∂v∗

§ 2. Free motion of the Chaplygin sledge

Consider the case when the center of mass of the Chaplygin sledge is situated above a runner. Let x, y be coordinates of the center of mass C of sledge in a horizontal plane and θ be an angle of its rotation. Then the kinetic energy of system is as follows M J T = (˙x2 +˙y2)+ θ˙2 , 2 2 Appendix D 241 where M is a mass of sledge, J is a moment of inertia of sledge about the vertical axis, passing through the center of mass. On the motion of sledge it is imposed the nonholonomic constraint

ϕ ≡ x˙ sin θ − y˙ cos θ =0. (D.8)

Denote q1 = x, q2 = θ, q3 = y and introduce the quasivelocities

1 2 3 v∗ =˙x, v∗ = θ,˙ v∗ =˙x sin θ − y˙ cos θ.

This implies that

v3 x˙ = v1 , θ˙ = v2 , y˙ = v1 tg θ − ∗ . ∗ ∗ ∗ cos θ We generate the Maggi’s equations:

Mx¨ − Qx +(My¨ − Qy)tgθ =0,

Jθ¨ − Qθ =0, (D.9) 1 (My¨ − Q ) − =Λ, y cos θ where Qx,Qy,Qθ are generalized exterior forces. Condition (D.7) takes the form 1 (My¨ − Q ) − =0. (D.10) y cos θ Differentiating equation of constraint (D.8) in time, we obtain

x¨ − y¨ctg θ = −θ˙(˙x ctg θ +˙y) . (D.11)

Consider the motion of the Chaplygin sledge under the conditions

Qx = Qy = Qθ =0. (D.12)

Then the first equation of system (D.9) is as follows

x¨ = −y¨tg θ. (D.13)

Substituting (D.13) into relation (D.11), we have

y¨ = θ˙(˙x +˙y tg θ)cos2 θ.

Now we represent condition (D.10) (assuming Qy =0)as

θ˙(˙x +˙y tg θ)cosθ =0. (D.14) 242 Appendix D

Taking into account the equation of constraints y˙ =˙x tg θ and assuming that cos θ =0 , equation (D.14) becomes

θ˙x˙ =0. (D.15)

We notice that the obtained condition (D.15) of a free motion of the Chaplygin sledge imposes a restriction on the choice of initial data. Really, if ˙ ˙ x˙ t=0 =˙x0 , y˙ t=0 =˙y0 , θ t=0 = θ0 , then, according to formula (D.15), the following relation ˙ θ0x˙ 0 =0 (D.16) is satisfied. Restriction (D.16) allows the following choice of initial data: ˙ x˙ 0 =0, θ0 =0 . (D.17)

Since nonholonomic constraint (D.8) are satisfied, this implies the initial con- dition for y˙: y˙0 =0. (D.18) To the initial data (D.17), (D.18) corresponds a motion such that the center of mass of sledge rests and the sledge uniformly rotates round it. In this case the force, preventing the displacement of sledge in transverse direction relative to a runner, is lacking and we say that with initial data (D.17), (D.18) the sledge moves (rotates) to be free. Condition (D.16) allows another choice of the initial data: ˙ θ0 =0, x˙ 0 =0 , y˙0 =0 , x˙ 0 sin θ0 − y˙0 cos θ0 =0.

In this case the center of mass of sledge has a linear and uniform motion along the initial orientation of runner and the sledge does not rotate. Condition (D.16) also allows the following obvious choice of the initial data: ˙ x˙ 0 =˙y0 = θ0 =0. This corresponds to the rest of sledge if the exterior forces are lacking. If the equation of constraint is obtained under condition (D.14), then in place of relations (D.15) we have

θ˙y˙ =0. (D.19)

The investigation of possible motions under condition (D.19) leads to the same three free motions of the Chaplygin sledge. Thus, if conditions (D.12) and (D.16) are satisfied, then the Chaplygin sledge moves free in the above-mentioned sense. If not the sledge has a stan- dard motion proper for nonholonomic system. In this case we need to find a Appendix D 243 reaction of constraint in order to check wether this nonholonomic constraint is nonretaining.

§ 3. The possibility of free motion of nonholonomic system under active forces

By nonholonomic constraints (D.1) the law of system motion in L–space and in K–space can be represented, respectively, as

K K K MWL = YL + RL ,MW = Y + R . (D.20)

In the case of ideal constraints RL =0and in studying a free motion of nonholonomic system we have, in addition, RK =0. Therefore equations (D.20) take the form

K K MWL = YL ,MW = Y . (D.21)

Equations (D.21) imply that in the case of free motion the component WK of the vector of acceleration of system W is the function of variables t, q, q˙, given in the following way

YK (t, q, q˙) WK = . (D.22) M On the other hand, as is shown in § 1 of Chapter IV, the vector-function WK (t, q, q˙) is uniquely defined by equations of constraint (D.1). Then the force YK (t, q, q˙), entering into relation (D.22), can be called the control force K Ycontrol, under which the incomplete program of motion, given in the form (D.1), is realized. Thus, by formulas (D.21) a free motion of nonholonomic system can be regarded as a motion such that the active force Y has a com- ponent, belonging to L–space only, and the control force Ycontrol belonging to K–space only. Applying this approach to a free motion of nonholonomic system we obtain that in accordance with the theory of constrained motion K K control∇ κ the control force Ycontrol = Ycontrol has the form Ycontrol =Λκ ϕ . control Here Λκ is a generalized control force, under which the constraint with κ number is realized. Note that the same approach is usedused in Chapter III to solve the problem of flight dynamics on the directing of a mass point on a target by the curve of pursuit. The concept of study of free motion of nonholonomic systems, developed in the work of Mei Fengxiang [362. 1994], can also be of another practical importance. For example, in the treatise [226] it is considered a controllable motion of nonholonomic systems. The control is chosen from the condition that the nonholonomic system has a given program motion. In this case the control forces also provide generation of forces equal to the corresponding re- actions of nonholonomic constraints. Under these control forces the reactions 244 Appendix D of nonholonomic constraints are equal to zero and therefore by the terminol- ogy of the work [362. 1994] such a controllable motion is a free motion of nonholonomic system. In the book [226] the possibility of small deviations of the obtained generalized coordinates and velocities from the required ones is taken into account. This is gone along with the occurrence of small reactions of nonholonomic constraints, which are regarded in the considered problem as disturbances. Finally, the original problem is reduced to the conditional problem of adaptive control with unknown disturbances. The algorithms of control and also the estimation of so far as a program motion of system is realized for a given accuracy of stabilization are given. APPENDIX E

THE TURNING MOVEMENT OF A AS A NONHOLONOMIC PROBLEM WITH NONRETAINING CONSTRAINTS

The turning movement of a car with its possible sideslip is considered as a nonholonomic problem with nonretaining constraints. The four possible types of the car motion are studied.

§ 1. General remarks

The complete theory of the motion of a car with deformable wheels is developed by N. A. Fufaev and detailed in his book [130]. The treatise by V. F. Zhuravlev and N. A. Fufaev [72] is devoted to mechanics of systems with nonretaining constraints. In this treatise the Boltzmann–Hamel equations are used for studying the motion of nonholonomic systems, and the possibility of restoring nonholonomic constraints is investigated on the basis of behaviour of solution curves in the common space of generalized coordinates and quasive- locities. In this Appendix E the Maggi equations, which make it possible to easily determine the generalized reaction forces of nonholonomic constraints, are applied; the beginning and stop of wheels sideslip being determined by these constraint forces. We now return to examples II. 4 and II. 5 considered in Chapter II. Pay attention that the Boltzmann-Hamel and Maggi equations are formed there for the realized constraints (4.16). In this case the turning of a car is studied, saying figuratively, under the "dynamic control when the turning moment ˙ L1(t), resisting moment L2(θ), and restoring moment L3(θ) are applied to the rotating front axle (see Fig. II. 4). This scheme required introducing four generalized coordinates ϕ, θ, ξC ,ηC , that was reasonable from the methodical point of view, for in this case we get an example, in which with two con- straints (4.16) we have to obtain two Boltzmann-Hamel’s equations or two Maggi’s equations. This mathematical model can be of interest in studying the motion of wheeled robot vehicles, development of which is given much attention at present (see, for ex., works by V. N. Belotelov, V. I. Kalyonova, A. V. Karapetyan, A. I. Kobrin, A. V. Lenskii, Yu. G. Martynenko, V. M. Morozov, D. E. Okhotsimskii, M. A. Salmina [146-148, 423]). Let us go to the "kinematic control under which the turn of the front axle is determined by a driver as a certain time function θ = θ(t).Insuch a scheme a turning car has three degrees of freedom. In this case, we shall consider nonholonomic constraints

1 ˙ ϕ ≡−ξC sin ϕ +˙ηC cos ϕ − l2ϕ˙ =0, (E.1) 2 ˙ ϕ ≡−ξC sin(ϕ + θ)+η ˙C cos(ϕ + θ)+l1ϕ˙ cos θ =0, (E.2)

245 246 Appendix E which should be satisfied by the car motion, as nonretaining. The active forces F1(t) and F2(t) have the same meaning as in examples II. 4 and II. 5, of Chapter II.

§ 2. The turning movement of a car with retaining (bilateral) constraints

We shall study the car motion in the horizontal plane with respect to the fixed system of coordinates Oξηζ (see Fig. E. 1). We shall set the position of a car by generalized coordinates q1 = ϕ (the angle between the longitudinal 2 3 Cx-axis of the car and the Oξ-axis ), q = ξC ,q = ηC (the coordinates of point C). The angle θ is equal to the angle between the front axle and a perpendicular to the Cx-axis . It is a given time function:

θ = θ(t) .

Two nonholonmic constraints (E.1) and (E.2), expressing the absence of side slipping of the front and rear axles of the car are imposed on the car motion. The kinetic energy of the system consists of the kinetic energies of the car body and front axle and is calculated according to the formula:

∗ ˙ 2 2 ∗ 2 ˙2 ˙ ˙ 2T =M (ξC +˙ηC )+J ϕ˙ +J2θ +2J2ϕ˙θ +2M2l1ϕ˙(−ξC sin ϕ +˙ηC cos ϕ) , ∗ ∗ 2 M = M1 + M2,J= J1 + J2 + M2l1 . (E.3) Using the expression for virtual elementary work

δA = Qϕδϕ + QξC δξC + QηC δηC , we shall find the generalized forces acting on the car, as was done in ex- amples II. 4, II. 5, Chapter II. For the rear drive car we obtain the following

Fig. E. 1 Appendix E 247 expressions: Q1 ≡ Qϕ =0, ≡ − ˙ Q2 QξC = F1(t)cosϕ F2(vC )ξC /vC , Q ≡ Q = F (t)sinϕ − F (v )˙η /v , (E.4) 3 ηC 1 2 C C C 2 2 vC = ξ˙C +˙ηC . In order to form the Maggi equations describing the vehicle motion we introduce new nonholonomic variables by to the formulas:

1 2 ˙ v∗ =˙ϕ, v∗ = −l2ϕ˙ − ξC sin ϕ +˙ηC cos ϕ, 3 ˙ v∗ = l1ϕ˙ cos θ − ξC sin(ϕ + θ)+η ˙C cos(ϕ + θ) , and write the reverse transformation

1 1 2 2 1 2 2 2 3 q˙ ≡ ϕ˙ = v∗ , q˙ ≡ ξ˙C = β v∗ + β v∗ + β v∗ , 1 2 3 (E.5) 3 ≡ 3 1 3 2 3 3 q˙ η˙C = β1 v∗ + β2 v∗ + β3 v∗, where l cos ϕ cos θ + l cos(ϕ + θ) β2 = 1 2 , 1 sin θ 2 cos(ϕ + θ) 2 −cos ϕ β2 = ,β3 = , sin θ sin θ (E.6) l sin ϕ cos θ + l sin(ϕ + θ) β3 = 1 2 , 1 sin θ sin(ϕ + θ) sin ϕ β3 = ,β3 = − . 2 sin θ 3 sin θ The first group of the Maggi equations in this case consists of a single equation

1 2 3 − ∂q˙ − ∂q˙ − ∂q˙ (MW1 Q1) 1 +(MW2 Q2) 1 +(MW3 Q3) 1 =0. (E.7) ∂v∗ ∂v∗ ∂v∗

The expressions MWσ may be calculated using kinetic energy by the formulas d ∂T ∂T MW = − ,σ= 1, 3 . σ dt ∂q˙σ ∂qσ Finally, using expressions (E.3), (E.4), (E.5), (E.6), we represent the equation of motion (E.7) in the following expanded form: ∗ ¨ ¨ J ϕ¨ + J2θ + M2l1(−ξC sin ϕ +¨ηC cos ϕ)+ 2 ∗ ¨ − 2 − ˙ +β1 (M ξC M2l1(¨ϕ sin ϕ +˙ϕ cos ϕ) F1(t)cosϕ + F2(vC )ξC /vC )+ 3 ∗ − 2 − +β1 (M η¨C + M2l1(¨ϕ cos ϕ ϕ˙ sin ϕ) F1(t)sinϕ + F2(vC )˙ηC /vC )=0. (E.8) The equations of constraints (E.1) and (E.2) should be added to this equation. 248 Appendix E

If the initial conditions and analytic representation of the functions F1(t), F2(vC ) are given, then after numerical integrating the nonlinear system of differential equations (E.1), (E.2), (E.8) we shall find the law of the car mo- tion: ϕ = ϕ(t),ξC = ξC (t),ηC = ηC (t). (E.9) Now we can determine the generalized reaction forces. The second group of Maggi’s equations will be written as follows:

1 2 3 − ∂q˙ − ∂q˙ − ∂q˙ Λ1 =(MW1 Q1) 2 +(MW2 Q2) 2 +(MW3 Q3) 2 , ∂v∗ ∂v∗ ∂v∗

1 2 3 − ∂q˙ − ∂q˙ − ∂q˙ Λ2 =(MW1 Q1) 3 +(MW2 Q2) 3 +(MW3 Q3) 3 , ∂v∗ ∂v∗ ∂v∗ or in the extended form for the rear drive vehicle: 2 ∗ ¨ − 2 − ˙ Λ1 = β2 (M ξC M2l1(¨ϕ sin ϕ +˙ϕ cos ϕ) F1(t)cosϕ + F2(vC )ξC /vC )+ 3 ∗ − 2 − +β2 (M η¨C + M2l1(¨ϕ cos ϕ ϕ˙ sin ϕ) F1(t)sinϕ+(E.10)

+F2(vC )˙ηC /vC ) , 2 ∗ ¨ − 2 − ˙ Λ2 = β3 (M ξC M2l1(¨ϕ sin ϕ +˙ϕ cos ϕ) F1(t)cosϕ + F2(vC )ξC /vC )+ 3 ∗ − 2 − +β3 (M η¨C + M2l1(¨ϕ cos ϕ ϕ˙ sin ϕ) F1(t)sinϕ+(E.11)

+F2(vC )˙ηC /vC ) . After inserting expressions (E.9) into these formulas we find the law of varying the generalized reaction forces

Λi =Λi(t),i=1, 2 . These functions allow us to investigate the possibility of realizing the non- holonomic constraints (E.1), (E.2). If the reaction forces appear to exceed the forces provided by Coulomb’s frictional forces, then these constraints will not be realized and the vehicle will begin to slip along the axles to which the wheels are fastened. In order to write the conditions of the beginning of side slipping of the wheels in the analytical form, it is necessary to establish the relation between the determined generalized reactions Λ1, Λ2 and reaction forces RB, RA applied to the wheels from the road (see Fig. E. 1). This is a question of principal importance, so let us consider the relation between the generalized reaction force Λ of the nonholonomic constraint and the reaction force R for the following quite general case. Assume that the equation of the nonholonomic constraint sets the condition of the fact that for the plane motion the velocity v of a point of mechanical system along the direction of the unit vector n is equal to zero, i. e. assume that constraint equation written in vectorial form is as follows: ϕn = v · n =0. Appendix E 249

This equation in a scalar form appears as

n ϕ =˙xnx +˙yny =0.

If the constraint is ideal, then the reaction force R can be represented as

R = Rxi + Ryj = ∂ϕn ∂ϕn =Λ i + j =Λn , ∂x˙ ∂y˙ where i and j are unit vectors in x− and y− directions. Hence, the generalized reaction force Λ is equal to the projection of the constraint reaction force R onto the direction of vector n. It is clear that this representation of the vector R in the form Λn can be extended also to the constraints (E.1), (E.2). Writing these constraints in the vector form 1 ϕ = vB · j =0, (E.12) 2 ϕ = vA · j1 = vA · (−i sin θ + j cos θ)=0, (E.13) where j1 is the unit vector of the ordinate axis of the movable frame Ax1y1 of the car front axle, we obtain

RB =Λ1j , (E.14)

RA =Λ2(−i sin θ + j cos θ) . (E.15) Remark that if the constraints (E.12) and (E.13) are violated, then nonze- ro values of ϕ1 and ϕ2 are equal to projections of velocities of the points B and A onto the vectors j and j1, correspondingly. In this case the resulting friction forces applied to the wheels may be represented as

fr − fr 1 RB = Λ1 sign(ϕ )j , fr − fr 2 − RA = Λ2 sign(ϕ )( i sin θ + j cos θ) .

fr fr Finding the positive quantities Λ1 and Λ2 will be reported below.

§ 3. The turning movement of a rear-drive car with nonretaining constraints

General remarks. Let us return to the question considered in the pre- vioius paragraphs. Note that the Maggi equation (E.8) was obtained for the satisfied constraints (E.1), (E.2), i. e. when these nonholonomic constraints were retaining (bilateral). Let us study the vehicle motion in the case when the constraints (E.1), (E.2) may be nonretaining, i. e. when side slipping of the front or rear wheels 250 Appendix E

(or both front and rear wheels simultaneously) begins. The dynamic condi- tions of realizing the kinematic constraints (E.1), (E.2) is the requirement that the forces of interaction between the wheels and the road should not ex- ceed the corresponding Coulomb’s friction forces. For the driven front wheels in accordance with formula (E.15) this is expressed by inequality:

| | fr Λ2

fr where F2 ,k2 are the frictional force and the coefficient of friction between front wheels and the road, respectively, N2 is the normal pressure of the front axle. When considering the rear driving wheels it is necessary to take into account that the value of this wheels-road interaction force FB is determined by the vector sum of the driving force F1 and side reaction force RB given by formula (E.14) (see Fig. E. 2). To provide the absence of side slipping of the rear axle, the following condition should be satisfied (the introduced notation is analogous to the notation used for the front axle): 2 2 fr FB = (F1) +(Λ1)

According to Fig. E. 2 this means that the end of the force vector FB should fr not go beyond the circle of radius F1 . Otherwise the road will not be able to develop such reaction value |Λ1| that is required for realization of the nonholonomic constraint (E.1). Thus, this constraint becomes nonretaining, the side velocity component of driven wheels appears, and Coulomb’s friction fr force F1 starts acting to them from the road. This Coulomb’s friction force fr F1 arises from simultaneous action of the driving force F1 and side friction fr force Λ1 ,sothat 2 ≡ fr 2 ≡ 2 2 fr 2 (FB) (F1 ) (k1N1) =(F1) +(Λ1 ) . (E.18)

Fig. E. 2 Appendix E 251

Note that at the beginning of side slipping the driver sets

F1 =0.

Possible types of the car motion. We shall explain possible different types of motion of the mechanical model of a car. In Fig. E. 3 in the phase space of variables qσ, q˙σ,σ = 1, 3, we see the representation of two hypersur- faces. The first one corresponds to the constraint given by equation (E.12), and the second one corresponds to the constraint given by equation (E.13). In an explicit form these constraints are presented by formulas (E.1), (E.2). For simultaneous realization of nonholonomic constraints (E.1) and (E.2) the point of the phase space should be located in the line of intersection of these hypersurfaces. This corresponds to the I-st type of the car motion fr (bold curve I in Fig. E. 3). If the first constraint is violated (FB = F1 ) and the second constraint is satisfied, then the representation point is located at the hypersurface ϕ2 =0(II-nd type of motion). If the second constraint is violated, but the first constraint is fulfilled ϕ1 =0, then the representation point belongs to hypersurface ϕ1 =0(III-rd type of motion). In the case if both constraints are violated, the representation point does not belong to hypersurfaces, as this takes place the vehicle moves in the presence of side friction forces acting on the front and rear axles (IV-th type of motion). From any type of motion the representation point can change to any other type of motion. For example, in the I-st type of motion, if inequality (E.17) is not satisfied , the vehicle becomes released of the constraint (E.1). If in this case inequality (E.16) is still satisfied, then constraint (E.2) keeps on working, thus, the representation point can move only over the hypersurface ϕ2 =0(the car changes to the II-nd type of motion). Here two cases of possible restoring the I-st type of motion should be distinguished. In some area G1 the solution curves go through the curve I, without stop-

Fig. E. 3 252 Appendix E ping there (see Fig. E. 3). This instantaneous realization of the constraint (E.1) corresponds to the stop of side motion of the rear axle in one direction and change of the same axle to the side motion in the reverse direction. In contrast to this the behaviour of solution curves within the area G2 charac- terizes restoration of the constraint ϕ1 =0and change from the II-nd type of motion to the I-st one. Without preliminary studies of behaviour of solution curves in the com- mon space of generalized coordinates and quasivelocities [72], it is possible 1 to find out in which area G1 or G2 the equation ϕ =0turned out to be satisfied, in the following manner. By the values of phase variables, such that the constraint (E.1) is fulfilled, let us calculate the reaction Λ1 by the for- mula (E.10). If for the obtained value of Λ1 the inequality (E.17) is satisfied, then the constraint ϕ1 =0becomes retaining (bilateral) (the solution curve is within the area G2), otherwise this constraint is not restored (the solution curve is within the area G1). In investigating the II-nd type of motion it is necessary also to ensure that inequality (E.16) is satisfied, for if it is violated the vehicle will change to the IV-th type of motion. If constraint (E.1) is restored and constraint (E.2) is violated at the same time, then the III-rd type of motion will occur. Note that for the sake of simplicity, it was assumed in the foregoing that the static and dynamic coefficicients of Coulomb’s friction force are equal to each other. The difference of these quantities could be taken into account in a similar way as it has been done in § 4 of Chapter I, when studying accelerated motion of a car with the possible slipping of its driving wheels. Let us write out the equations of motion for the turning car four types of motion cosidered. I-st type of motion. For this motion both constraints (E.1) и (E.2) are fulfilled : ϕ1 =0,ϕ2 =0. Maggi’s equation for a rear-wheel drive vehicle takes the form (E.8), which should be integrated together with the equations of constraints (E.1) and (E.2). Having obtained the law of motion

ϕ = ϕ(t) ,ξC = ξC (t) ,ηC = ηC (t) , the generalized reactions can be found from (E.6), (E.10), (E.11)

Λ1 =Λ1(t) , Λ2 =Λ2(t) . By these values, fulfillment of inequelities (E.16) and (E.17) is being checked. When one of them is violated, the vehicle changes to the II-nd or III-rd type of motion, and when both of them are violated simultaneously it changes to the IV-th type. II-nd type of motion. For this type of motion only the second constraint is fulfilled: ϕ1 =0 ,ϕ2 =0. Appendix E 253

The rear axle of the vehicle executes lateral motion, therefore the lateral fr frictional force Λ1 , calculated by formula (E.18) is applied to it. As this takes place, if ϕ1 > 0, then according to formula (E.12) the rear wheels sideslip in the positive direction of the y-axis. Therefore, the lateral frictional force is opposed to the y-axis, and if ϕ1 < 0, it is aligned with the y-axis (see Fig. E. 1). Let us obtain Maggi’s equations in the presence of one constraint (E.2). Letusgotoquasivelocitiesbyformulas: 1 2 v∗ =˙ϕ, v∗ = ξ˙C , 3 ˙ v∗ = −ξC sin(ϕ + θ)+η ˙C cos(ϕ + θ)+l1ϕ˙ cos θ. Let us find the inverse transformation: 1 ˙ 2 3 1 3 2 3 3 ϕ˙ = v∗ , ξC = v∗ , η˙C = β1 v∗ + β2 v∗ + β3 v∗ , where 3 − 3 3 β1 = l1 cos θ/ cos(ϕ + θ) ,β2 =tg(ϕ + θ) ,β3 =1/ cos(ϕ + θ) . (E.19) Now we may get two Maggi’s equations for the rear-wheel drive vehicle ∗ ¨ −¨ − fr 1 J ϕ¨ + J2θ + M2l1( ξC sin ϕ +¨ηC cos ϕ) Λ1 sign(ϕ )l2+ 3 ∗ − 2 − +β1 (M η¨C + M2l1(¨ϕ cos ϕ ϕ˙ sin ϕ) − fr 1 F1(t)sinϕ + F2(vC )˙ηC /vC +Λ1 sign(ϕ )cosϕ)=0, ∗ ¨ 2 ˙ M ξC − M2l1(¨ϕ sin ϕ +˙ϕ cos ϕ) − F1(t)cosϕ + F2(vC )ξC /vC − − fr 1 3 ∗ − 2 − Λ1 sign(ϕ )sinϕ + β2 (M η¨C + M2l1(¨ϕ cos ϕ ϕ˙ sin ϕ) F1(t)sinϕ+ fr 1 +F2(vC )˙ηC /vC +Λ1 sign(ϕ )cosϕ)=0. (E.20) From the second group of Maggi’s equations there remains one equation for determination of the generalized reaction Λ2. For the vehicle with driving rear wheels it is as follows: 3 ∗ 2 Λ2 = β (M η¨C + M2l1(¨ϕ cos ϕ − ϕ˙ sin ϕ) − F1(t)sinϕ+ 3 (E.21) fr 1 +F2(vC )˙ηC /vC +Λ1 sign(ϕ )cosϕ) . The equations of motion (E.20) are integrated together with the constraint equation (E.2). If the dynamic condition (E.16) for the constraint (E.2) to be realized holds for the obtained value of Λ2, then the II-nd type of motion continues. If the condition (E.16) is violated, then the vehicle will change to IV-th type of motion. In the course of checking inequality (E.16) it is necessary to keep watch- ing if the constraint ϕ1 =0begins to hold. If this constraint is realized under certain obtained values of t, qσ, q˙σ,σ = 1, 3, and if inequality (E.17) 254 Appendix E

holds for the value Λ1 calculated by formula (E.10), then the constraint ϕ1 =0is restored, the rear axle ceases to execute lateral motion and the car changes to the I-st type of motion. If inequality (E.17) is not fulfilled for the value Λ1 calculated by formula (E.10), then the car keeps the II-nd type of motion (rear axle begins lateral motion in the opposite direction). Theoretically the car may change from the II-nd type of motion to the III-rd one: for this purpose, at a certain time instant inequality (E.16) must cease to hold and simultaneously the constraint ϕ1 =0must be restored. III-rd type of motion. This motion is studied in a similar way to the II-nd type. Now the following should be fulfilled: ϕ1 =0,ϕ2 =0 . Due to side slipping of the front axle of the car this front axle is acted upon by the side friction force fr Λ2 = k2N2 . (E.22) In order to form Maggi’s equations for this nonholonomic problem with one constraint (E.1) let us change to quasivelocities by using the formulas: 1 2 v∗ =˙ϕ, v∗ = ξ˙C , 3 ˙ v∗ = −ξC sin ϕ +˙ηC cos ϕ − l2ϕ.˙ This corresponds to the reverse transformation: 1 ˙ 2 3 1 3 2 3 3 ϕ˙ = v∗ , ξC = v∗ , η˙C = β1 v∗ + β2 v∗ + β3 v∗ , where 3 3 3 β1 = l2/ cos ϕ, β2 =tgϕ, β3 =1/ cos ϕ. (E.23) Two Maggi equations for the car with driving rear wheels have the form: ∗ ¨ −¨ fr 2 J ϕ¨ + J2θ + M2l1( ξC sin ϕ +¨ηC cos ϕ)+Λ2 sign(ϕ )l1 cos θ+ 3 ∗ − 2 − +β1 (M η¨C + M2l1(¨ϕ cos ϕ ϕ˙ sin ϕ) − fr 2 F1(t)sinϕ + F2(vC )˙ηC /vC +Λ2 sign(ϕ )cos(ϕ + θ)) = 0 , (E.24) ∗ ¨ 2 ˙ M ξC − M2l1(¨ϕ sin ϕ +˙ϕ cos ϕ) − F1(t)cosϕ + F2(vC )ξC /vC − − fr 2 3 ∗ − 2 − Λ2 sign(ϕ )sin(ϕ + θ)+β2 (M η¨C + M2l1(¨ϕ cos ϕ ϕ˙ sin ϕ) − fr 2 F1(t)sinϕ + F2(vC )˙ηC /vC +Λ2 sign(ϕ )cos(ϕ + θ)) = 0 .

The generalized reaction Λ1 is expressed as 3 ∗ − 2 − Λ1 = β3 (M η¨C + M2l1(¨ϕ cos ϕ ϕ˙ sin ϕ) F1(t)sinϕ+(E.25) fr 2 +F2(vC )˙ηC /vC +Λ2 sign(ϕ )cos(ϕ + θ)) . Appendix E 255

The equations of motion (E.24) are integrated together with the constraint equation (E.1). If the dynamic condition (E.17) for realizing the constraint (E.1) is satisfied for the value of Λ1 obtained by formula (E.25), then the III-rd type of motion continues. If the condition (E.17) is violated, then the car changes to the IV-th type of motion. In the course of checking inequality (E.17) it is necessary to keep watching if the constraint ϕ2 =0begins to be realized. If this constraint is realized under certain calculated values t, qσ, q˙σ,σ = 1, 3, then these values of the variables should be substituted in formula (E.11). If for the obtained Λ2 the inequality (E.16) is satisfied, then the constraint ϕ2 =0is restored, the front axles ceases to execute lateral motion, and the car changes to the I-st type of motion. If for the calculated value of Λ2 inequality (E.16) is not satisfied, then the car continues the III-rd type of motion (the front axle begins lateral motion in the opposite direction). Theoretically the III-rd type of motion can change to the II-nd one: for this purpose, at a certain instant inequality (E.17) must cease to hold, and at the same time the constraint ϕ2 =0must be restored. IV-th type of motion. For such motion the following must take place:

ϕ1 =0 ,ϕ2 =0 .

This means that the car moves as a holonomic system when its wheels are fr fr acted upon by side frictional forces Λ1 and Λ2 set by formulas (E.18) and (E.22). The motion of the rear wheel-drive car is determined by the following Lagrange equations of the second kind: ∗ ¨ ¨ J ϕ¨ + J2θ + M2l1(−ξC sin ϕ +¨ηC cos ϕ)− − fr 1 fr 2 Λ1 sign(ϕ )l2 +Λ2 sign(ϕ )l1 cos θ =0, ∗ ¨ 2 ˙ M ξC − M2l1(¨ϕ sin ϕ +˙ϕ cos ϕ) − F1(t)cosϕ + F2(vC )ξC /vC − − fr 1 − fr 2 Λ1 sign(ϕ )sinϕ Λ2 sign(ϕ )sin(ϕ + θ)=0, (E.26) ∗ 2 M η¨C + M2l1(¨ϕ cos ϕ − ϕ˙ sin ϕ) − F1(t)sinϕ + F2(vC )˙ηC /vC + fr 1 fr 2 +Λ1 sign(ϕ )cosϕ +Λ2 sign(ϕ )cos(ϕ + θ)=0. In course of calculation of motion by equations (E.26) it is necessary to keep watching if either function ϕ1 or ϕ2 vanishes, or both functions ϕ1 and ϕ2 do so for the current values of

t, qσ , q˙σ ,σ= 1, 3 . (E.27)

1 If ϕ =0holds for the values (E.27), then Λ1 should be calculated for these values of variables by formula (E.25). If for this value of Λ1 inequality (E.17) is satisfied, then the car changes to the III-rd type of motion, otherwise it keeps the motion of the IV-th type. 256 Appendix E

If it turns out that ϕ2 =0for the values (E.27), then for these values of variables Λ2 should be calculated by formula (E.21). If the inequality (E.16) is satisfied for this value of Λ2, then the car changes to the II-nd type of motion, otherwise it keeps the motion of the IV-th type. If it turns out that for the values (E.27) the both functions ϕ1 and ϕ2 vanish simultaneously, then Λ1 and Λ2 should be found from formulas (E.10), (E.11). If both inequalities (E.16) and (E.17) are fulfilled for these values, then the car changes to the I-st type of motion. If only inequality (E.16) is satisfied, then the II-nd type of motion begins. If only inequality (E.17) is fulfilled, then from this point on the car will execute the III-rd type of motion.

§ 4. Equations of motion of a turning front-drive car with non-retaining constraints

Consider a motion of a front-drive car. All necessary changes in the equa- tions of motion are caused by the fact that the application point of the force F1(t) changes. Now the force is applied to the point A and aligned with the axis Ax1 (see Fig. E. 1). So, for a front-drive car the expressions of generalized forces appear as

Q1 ≡ Qϕ = l1F1(t)sinθ, ≡ − ˙ Q2 QξC = F1(t)cos(ϕ + θ) F2(vC )ξC /vC , Q ≡ Q = F (t)sin(ϕ + θ) − F (v )˙η /v , 3 ηC 1 2 C C C 2 2 vC = ξ˙C +˙ηC .

Below we present the equations of motion for the four types of motion. I-st type of motion. The car motion without slipping. In this case the Maggi equations have the form ∗ ¨ ¨ J ϕ¨ + J2θ + M2l1(−ξC sin ϕ +¨ηC cos ϕ) − l1F1(t)sinθ 2 ∗ ¨ − 2 − +β1 (M ξC M2l1(¨ϕ sin ϕ +˙ϕ cos ϕ) F1(t)cos(ϕ + θ) ˙ 3 ∗ − 2 − +F2(vC )ξC /vC )+β1 (M η¨C + M2l1(¨ϕ cos ϕ ϕ˙ sin ϕ) F1(t)sin(ϕ + θ)

+F2(vC )˙ηC /vC )=0. (E.28) As this takes place, the generalized constraint reaction forces are expressed as

2 ∗ ¨ − 2 − Λ1 = β2 (M ξC M2l1(¨ϕ sin ϕ +˙ϕ cos ϕ) F1(t)cos(ϕ + θ) ˙ 3 ∗ − 2 +F2(vC )ξC /vC )+β2 (M η¨C + M2l1(¨ϕ cos ϕ ϕ˙ sin ϕ) (E.29)

−F1(t)sin(ϕ + θ)+F2(vC )˙ηC /vC ) , Appendix E 257

2 ∗ ¨ − 2 − Λ2 = β3 (M ξC M2l1(¨ϕ sin ϕ +˙ϕ cos ϕ) F1(t)cos(ϕ + θ) ˙ 3 ∗ − 2 +F2(vC )ξC /vC )+β3 (M η¨C + M2l1(¨ϕ cos ϕ ϕ˙ sin ϕ) (E.30)

−F1(t)sin(ϕ + θ)+F2(vC )˙ηC /vC ) . 2 3 2 3 In equation (E.28) and relations (E.29), (E.30) the quantities β1 ,β1 ,β2 ,β2 , 2 3 β3 ,β3 should be calculated according to formulae (E.6). In the case of a front-drive car, inequalities, the fulfillment of which means the realization of constraints (E.1) and (E.2), appear as

| | fr Λ1

3 3 3 where coefficients β1 ,β2 ,β3 are determined from (E.19), and the quantity fr Λ1 is defined as fr Λ1 = k1N1 . (E.33)

The relation for determining the generalized reaction Λ2 is 3 ∗ − 2 − Λ2 = β3 (M η¨C + M2l1(¨ϕ cos ϕ ϕ˙ sin ϕ) F1(t)sin(ϕ + θ)+ fr 1 +F2(vC )˙ηC /vC +Λ1 sign(ϕ )cosϕ) .

III-rd type of motion. The car front axle executes side (lateral) motion. In this case the, for a front-drive car the two Maggi equations take the form ∗ ¨ ¨ J ϕ¨ + J2θ + M2l1(−ξC sin ϕ +¨ηC cos ϕ) − l1F1(t)sinθ+ fr 2 3 ∗ − 2 − +Λ2 sign(ϕ )l1 cos θ + β1 (M η¨C + M2l1(¨ϕ cos ϕ ϕ˙ sin ϕ) 258 Appendix E

Fig. E. 4

− fr 2 F1(t)sin(ϕ + θ)+F2(vC )˙ηC /vC +Λ2 sign(ϕ )cos(ϕ + θ)) = 0 , ∗ ¨ 2 ˙ M ξC − M2l1(¨ϕ sin ϕ +˙ϕ cos ϕ) − F1(t)cos(ϕ + θ)+F2(vC )ξC /vC − − fr 2 3 ∗ − 2 − Λ2 sign(ϕ )sin(ϕ + θ)+β2 (M η¨C + M2l1(¨ϕ cos ϕ ϕ˙ sin ϕ) − fr 2 F1(t)sin(ϕ + θ)+F2(vC )˙ηC /vC +Λ2 sign(ϕ )cos(ϕ + θ)) = 0 . 3 3 3 Here the quantities β1 ,β2 ,β3 are defined from (E.23), and the friction force fr Λ2 is expressed as 2 2 fr 2 (k2N2) =(F1) +(Λ2 ) . (E.34)

In this case the generalized constraint reaction force Λ1 is 3 ∗ − 2 − Λ1 = β3 (M η¨C + M2l1(¨ϕ cos ϕ ϕ˙ sin ϕ) F1(t)sin(ϕ + θ)+

fr 2 +F2(vC )˙ηC /vC +Λ2 sign(ϕ )cos(ϕ + θ)) .

IV-th type of motion. Both car axles execute side motion. Equations of motion of a front-drive car slipping on the horizontal surface (level) are ∗ ¨ ¨ J ϕ¨ + J2θ + M2l1(−ξC sin ϕ +¨ηC cos ϕ) − l1F1(t)sinθ+

fr 1 fr 2 +Λ1 sign(ϕ )l2 +Λ2 sign(ϕ )l1 cos θ =0, ∗ ¨ 2 ˙ M ξC − M2l1(¨ϕ sin ϕ +˙ϕ cos ϕ) − F1(t)cos(ϕ + θ)+F2(vC )ξC /vC − − fr 1 − fr 2 Λ1 sign(ϕ )sinϕ Λ2 sign(ϕ )sin(ϕ + θ)=0, ∗ 2 M η¨C + M2l1(¨ϕ cos ϕ − ϕ˙ sin ϕ) − F1(t)sin(ϕ + θ)+F2(vC )˙ηC /vC + fr 1 fr 2 +Λ1 sign(ϕ )cosϕ +Λ2 sign(ϕ )cos(ϕ + θ)=0. fr fr The values of side friction forces Λ1 and Λ2 are defined from (E.33) and (E.34). Taking into account conditions (E.31), (E.32) of constraints realization and formulae for defining the values of friction forces (E.33), (E.34), the logic Appendix E 259 of change from one type of motion to another is the same as in the case of a rear-drive car (see § 3).

§ 5. Calculation of motion of a certain car

As an example, let us consider the motion of a hypothetical compact 2 2 motor car with M1 = 1000 kg ; M2 = 110 kg ; J1 = 1500 kg·m ; J2 =30kg·m ; l1 =0.75 m ; l2 =1.65 m ; k1fr =0.4 ; k2fr =0.4 for the power characteristics: −1 F2(vC )=k2vC N ; k2 = 100 N·s·m . The following car motion is studied. In the beginning the vehicle moves rectilinearly (the planes of the front and rear wheels are parallel) during eight seconds, in this case ϕ = π/6. During this time the function F1(t) changes by the law F1(t) = 200t (F1 is measured in Newtons, t is measured in seconds), i. e. at the initial time F1(0) = 0, and at the end of rectilinear motion F1(8) = 1600. Graphs of dependences of coordinates on time are presented in Fig. E. 4. After eight seconds of rectilinear motion the driver starts to turn the wheel at a smooth manner at the angle θ = π(t − 8)/8 ,thatis,in two seconds the angle θ is equal to π/4 . For this motion F1(t) = 1600 .By the computed values of constraint reactions Λ1 and Λ2 we get graphs shown in Fig. E. 5 . It follows from the graphs that inequality (E.17) is satisfied, but condition (E.16) is violated when t1 =9.5147 , θ(t1)=0.5948 .Thus,when 8

Fig. E. 5 260 Appendix E the same time we check if the condition ϕ2 =0 is fulfilled. As follows from Fig. E. 6 , it starts to be satisfied at the moment t2 =9.8415;inthiscaseas we can see from calculations, the constraint reaction force |Λ2| becomes close in value to the friction force between wheels and the road, and the front axle stops moving in side directions.

Fig. E. 6

Fig. E. 7

Fig. E. 8 Appendix E 261

Thus, for t1

§ 6. Reasonable choice of quasivelocities

Previously, when studying possible types of the car motion, we had to use different forms of the equations of motion (E.8), (E.20), (E.24), (E.26). This makes certain difficulties, especially when numerically integrating the given systems of differential equations with the help of computer. For simi- lar problems with nonholonomic nonretaining constraints N. A. Fufayev [72] suggests to use a single form of Boltzmann-Hamel’s equations. Let us see, how this idea may be applied in the case of using Maggi’s equations in anal- ogous problems. (We notice that for solving similar problems the equations of motion of nonholonomic systems with variable kinematic structure can be effective [221]). Quite different forms of the equations of motion (E.8), (E.20), (E.24), (E.26) were obtained due to the fact that for different types of the car motion new transition formulas for quasivelocities were chosen every time, or the generalized coordinates were used directly to get the Lagrange equations of the second kind. Now we shall use the form of Maggi’s equations for all the four types of motion, the generalized velocities being always expressed in terms of quasivelocities by the same formulas (E.5). In these formulas the 1 quasivelocities have a certain physical meaning: v∗ is the angular velocity 2 3 of rotation of the car body, v∗ and v∗ are, according to formulas (E.12) and (E.13), the side velocities of the rear and front axles, correspondingly, aligned with the vectors j and j1. If the nonholonomic constraints (E.1), (E.2) are 2 3 realized, quasivelocities v∗ and v∗ vanish, and if these constraints turn out to be nonretaining, then these quasivelocities have real nonzero values (except for the instant stops of axles in their side motion). For the motion of the I-st type we still use the equation of motion (E.8) (or (E.21)) and the formulas for determination of the generalized reactions (E.10), (E.11). For the II-nd type of motion, if the constraint ϕ2 =0holds, then the generalized reaction Λ2 calculated by the formula (E.11) arises. In this case the equation of motion (E.8) should be completed with the differential equa- tion (E.10), where Λ1 is changed for the projection of the side friction force − fr 1 ( Λ1 sign(ϕ )) acting on the rear axle during its side slipping. It is necessary to add the constraint equation (E.2) to these differential equations. 262 Appendix E

For the III-rd type of motion Λ1 is calculated in the same way by formula (E.10), and equation (E.11), in which the reaction Λ2 is replaced with the − fr 2 projection of the side friction force ( Λ2 sign(ϕ )), is added to equation (E.8). The constraint equation (E.1) is added to these differential equations. Maggi’s equations are linear combinations of the Lagrange equations of the second kind, therefore, in order to keep the uniformity of differential equations and for the IV-th type of motion corresponding to the holonomic problem, it is convenient to use the form of Maggi’s equations. Eventually the equations of motion will take the form (E.8), (E.10), (E.11), where Λ1 − fr 1 − fr 2 and Λ2 are replaced with ( Λ1 sign(ϕ )) and ( Λ2 sign(ϕ )). The logic of change from one type of motion to another is the same as in § 3. Pay attention that the obtained equations of motion have a singularity at θ =0. Therefore, the difficulties may occur in calculations, when turning begins with rectilinear motion. In this case, instead of some possible modifica- tions of the system of differential equations, which we used in the calculations given above, we can advise to change initially to the special system of curve- linear coordinates suggested in works [423]. APPENDIX F

CONSIDERATION OF REACTION FORCES OF HOLONOMIC CONSTRAINTS AS GENERALIZED COORDINATES IN APPROXIMATE DETERMINATION OF LOWER FREQUENCIES OF ELASTIC SYSTEMS

A new method for determination of lower frequencies of mechanical sys- tems consisting of elastic bodies connected to each other is offered. The con- ditions of connection of bodies are written as holonomic constraints, the reac- tions of which are considered as generalized coordinates. Therefore the number of degrees of freedom proves to be equal to the number of constraints.

On the possibility of introducing generalized reaction forces as Lagrangean coordinates. This Appendix presents a development of the method suggested in the Chapter VI. The equation of frequencies (6.12) of this chapter makes it possible, if necessary, to determine any number of the system’s natural frequencies for a reasonably great number N of dynamically considered oscillation modes of the system elements. However, as a rule, it is necessary to know only several first frequencies and modes. When calculating them one can use the following approximate approach to this problem. The potential energy of the system consisting of elastic bodies connected to each other can be represented as a positively defined quadratic form of the generalized constraint reactions introduced

1 n Π= c Λ Λ , (F.1) 2 ij i j i,j=1 when considering all the natural vibration modes of the system’s elements quasi-statically. Recall that the coefficients of this form are calculated by formulas (5.15), (5.13) of Chapter VI. In quasistatics the deformed state of all system elements is uniquely deter- mined by setting the quantities Λi, i = 1,n. The given elastic system comes to this state as a result of the fact that its points have obtained displacements, which can be found as linear functions of the reactions Λi, i = 1,n. Hence the position of all points of the system at the time t is uniquely determined by setting the quantities Λi, i = 1,n. Therefore, they can be considered as the generalized Lagrange coordinates; and the kinetic energy of the system can be represented in the form

1 n T = a Λ˙ Λ˙ . (F.2) 2 ij i j i,j=1

263 264 Appendix F

Here aij, i, j = 1,n, are some constants, the calculation procedure for which will be shown below through a number of examples. Lagrange’s equations of the second kind corresponding to expressions (F.1) and (F.2) are

n (aijΛ¨ j + cijΛj)=0,i= 1,n. j=1

By assuming as in § 5 of Chapter VI

Λi = Λ˜ i cos(pt+ α) ,i= 1,n, we come to the following equation of frequencies:

2 det[cij − p aij ]=0. (F.3)

When calculating the factors aij and cij of this determinant, one need not know the natural frequencies and natural modes of oscillation of the system’s elements. It is essential that these factors can be determined rather simply for the bars of variable section too. Let us start analyzing this approach with solving the problem of approxi- mate determining the first natural frequency and mode of bending oscillations of the cantilever of variable cross-section. Bending oscillations of the cantilever of variable cross-section. Let us assume that at the end x = l the bar is rigidly clamped and that the area of cross-section and the moment of inertia of this section are defined correspondingly as follows: x S(x)=A(ξ)S(l) ,J(x)=B(ξ)J(l) ,ξ= , 0  ξ  1 . (F.4) l Here A(ξ) and B(ξ) are some prescribed functions. Note that they may be step functions too. Let us introduce into consideration the deflection of neutral layer of the cantilever y(x, t). As the bar is rigidly clamped at the end x = l,then ∂y y(l, t)=0, =0. (F.5) ∂x x=l We shall consider these two conditions as holonomic constraints imposed on the motion of a free bar. The constraint reaction forces are the bending moment M =Λ1 and the lateral force Q =Λ2 applied to the end x = l of the free bar (see Fig. F. 1). The motion of the free bar under the action of these forces can be repre- sented as, first, translational motion (motion of the center of mass C), sec- ondly, rotation about the center of mass and, third, bending. This bending deformation in quasistatics can be found in the following manner. Appendix F 265

Fig. F. 1

The acceleration of the center of mass Wc and the angular acceleration ϕ¨ at the time t are

Λ2(t) Λ1(t)+(l − xc)Λ2(t) Wc = , ϕ¨ = . (F.6) l l − 2 ρ 0 S(x)dx ρ 0 S(x)(xc x) dx

Here ρ is the density, and xc is the coordinate of the center of mass. The intensity of inertia forces caused by translational and rotation motion of the bar appears as

q(x, t)=−ρ(Wc +¨ϕ(x − xc))S(x) . (F.7)

The bending moment in section x, corresponding to the load q(x, t),isequal to x M(x, t)= q(x1,t)(x − x1)dx1 . (F.8) 0 The deflection caused by the action of the bending moment M(x, t) satisfies the equation ∂2y EJ(x) = M(x, t) . ∂x2 This equation in dimensionless variables

y x M(x, t)l y¯ = ,ξ= ,L(ξ,t)= (F.9) l l EJ(l) takes the form: ∂2y¯ B(ξ) = L(ξ,t) . (F.10) ∂ξ2 Formulas (F.4), (F.6)–(F.9) imply that the dimensionless moment L(ξ,t) is equal to L(ξ,t)=Λ¯ 1(t)f1(ξ)+Λ¯ 2(t)f2(ξ) . (F.11) Here Λ (t)l Λ (t)l2 Λ¯ (t)= 1 , Λ¯ (t)= 2 , 1 EJ(l) 2 EJ(l) ξ A(η)(c − η) f1(ξ)= (ξ − η) dη , 0 a 266 Appendix F ξ (c − η)A(η)(1 − c) A(η) f2(ξ)= − (ξ − η) dη , (F.12) 0 a b 1 1 1 1 a = A(ξ)(c − ξ)2 dξ; b = A(ξ) dξ , c = ξA(ξ) dξ . 0 0 b 0 Integrating (F.10) and taking into account the constraint equation (F.5) pro- duce 2 1 f (η)(η − ξ) y¯(ξ,t)= Λ¯ (t)h (ξ) ,h= k dη . (F.13) k k k B(η) k=1 ξ The potential energy of the bar 1 l M 2(x, t) Π= dx 2 0 EJ(x) can be represented by using the formulas (F.4), (F.9), (F.11) as

EJ(l) 2 Π= c¯ Λ¯ Λ¯ , (F.14) 2l ij i j i,j=1 where 1 fi(ξ)fj(ξ) c¯ij = dξ . 0 B(ξ) The kinetic energy of the system ρ l ∂y 2 T = S(x) dx , 2 0 ∂t as follows from formulas (F.4), (F.9), (F.13), is 1 2 1 T = ρS(l) l3 a¯ Λ¯˙ Λ¯˙ , a¯ = A(ξ)h (ξ)h (ξ) dξ . (F.15) 2 ij i j ij i j i,j=1 0 Equation (F.3) and expressions (F.14), (F.15) imply that the dimension- less frequencies p∗ related to the required frequencies p as 1 EJ(l) p = p∗ (F.16) l2 ρS(l) are the roots of the equation

2 det [¯cij − p∗a¯ij]=0,i,j=1, 2 . (F.17)

For oscillations with the frequencies pk,k=1, 2, in accordance with ex- pression (F.13) we obtain: ˜ ˜ y¯k(ξ,t)=(Λ¯ k1h1(ξ)+Λ¯ k2h2(ξ)) cos(pkt + α) ,k=1, 2 . Appendix F 267

˜ ˜ The quantities Λ¯ k1, Λ¯ k2,k=1, 2, satisfy the equations

− 2 ¯˜ − 2 ¯˜ (¯c21 p∗ka¯21)Λk1 +(¯c22 p∗ka¯22)Λk2 =0,k=1, 2 . This yields that the fist two modes of oscillation of the cantilever can be approximately represented as

X (ξ) c¯ − p2 a¯ Y (ξ)= k ,X(ξ)=h (ξ) − 12 ∗k 12 h (ξ) ,k=1, 2 . k k 1 − 2 2 Xk(0.5) c¯22 p∗ka¯22 The exact solutions for the cantilever of wedge and cone shape were obtained by Kirchhoff in 1879. These solutions are given in many books, in particular, in the reference book by E. Kamke [421] (Chapter IV, paragraphs 4.22, 4.24). For the wedge, where

A(ξ)=ξ, B(ξ)=ξ3 , natural frequencies p∗ are the roots of the equation √ J1(κ)I0(κ)=I1(κ)J0(κ) ,κ=2 p∗ .

Here J0(κ) and J1(κ) are Bessel’s functions of the first kind, and I0(κ) and I1(κ) are modified Bessel’s functions of the first kind. Natural modes corre- sponding to the natural frequencies p∗ are as follows: √ √ X(ξ) J (κ)I (κ ξ) − I (κ)J (κ ξ) Y (ξ)= ,X(ξ)= 0 1 √ 0 1 . X(0.5) ξ In the case of a cone, where

A(ξ)=ξ2 ,B(ξ)=ξ4 , the equation of frequencies, and functions X(ξ) take the form:

κ(J0(κ)I1(κ)+I0(κ)J1(κ)) = 4J1(κ)I1(κ) , √ √ √ √ √ √ I (κ)[J (κ ξ) − κ ξ J (κ ξ)] J (κ)[I (κ ξ) − κ ξ I (κ ξ)] X(ξ)= 1 1 √ 2 0 + 1 1 √ 2 0 . ξ ξ ξ ξ By using the suggested approximate approach we obtain — for the wedge: p∗1 =5.3187 ,p∗2 =17.3006 , 5ξ ξ3 1 ξ ξ2 ξ3 h (ξ)=1− +2ξ2 − ,h(ξ)= − + − , 1 2 2 2 6 2 2 6 — for the cone: p∗1 =8.73521 ,p∗2 =25.1813 , 7 5ξ2 2ξ3 1 ξ ξ2 ξ3 h (ξ)= − 3ξ + − ,h(ξ)= − + − . 1 6 2 3 2 6 2 2 6 268 Appendix F

The exact values of the first two frequencies are as follows: — for the wedge: p∗1 =5.3151 ,p∗2 =15.2072 , — for the cone: p∗1 =8.71926 ,p∗2 =21.1457 . The second frequency error for the wedge as well as for the cone is great enough. Therefore this approximate method can be used only for determina- tion of the first frequency and the first mode for the cantilever of variable cross-section. ThefirstnaturalmodesforthewedgeandtheconeareshowninFig.F.2. Solid curves correspond to the approximate solution, and dashed curves over them correspond to the exact solution. For visualization of differences be- tween the depicted curves, the deflection at ξ =1/2 is taken as a unit of measurement for each of them. The cone is a more flexible bar than the wedge and thus the first natural mode of the cone for ξ<1/2 is located higher than the corresponding curve for the wedge. For the cone the mass per unit of length decreases while approaching to the end by the quadratic law, and for the wedge the linear law is applied. For the bar of constant cross-section the mass per unit of length is constant. Pay attention to the following fact. The first frequency error for the cone is equal to 0.2%, for the wedge it is equal to 0.07%. For the bar of constant cross-section we have: — approximately: p∗1 =3.516035 ,p∗2 =22.7125 , —exactly: p∗1 =3.516015 ,p∗2 =22.0345 . Thus, the first frequency error makes up only 5.7 · 10−4% .Uponcompar- ison of given above errors for the cone, the wedge and the bar of constant cross-section we can expect that for the bar of constant cross-section with the mass localized at the end the approximate solution will become practically

Y1 6

5

4

3

2

1

0.2 0.4 0.6 0.8 1 ξ Fig. F. 2 Appendix F 269 the exact one. Really, in this case we obtain: m A(ξ)=1+γδ(ξ) ,B(ξ)=1,γ= 2 . m1

Here δ(ξ) is the Dirac delta-function, m2 is the load mass, m1 is the bar mass. For γ =1we have: — approximately: p∗1 =1.5572990 ,p∗2 =16.6203 , —exactly: p∗1 =1.5572976 ,p∗2 =16.2501 . We see that the first frequency error decreased six times relative to the case when γ =0. For the cantilever with the disk at its end we obtain quite accurate solution if we consider the presence of disk at the end as the third and the forth holonomic constraints. This system with four degrees of freedom makes it possible to determine to a rather high accuracy not only the first frequency but the second and the third ones. So let’s analyze the following problem. Determination of the lower natural frequencies of bending oscil- lations of the cantilever of variable cross-section with a disk at its end. In the rotor dynamics, the urgent problem is accurate determination of first two critical critical speeds of the cantilever shaft with a disk at its end. We remind that the values of these critical speeds are proportional to natural frequencies of the cantilever with a disk. Actually, as for instance in the case of marine screw (water propeller) or airscrew, there is not a disk at the shaft end but a body of rather complicated shape. There are methods allowing us to determine the moment of inertia of this body relative to the axis that is perpendicular to the shaft axis. Let us assume that this moment is set in the form 2 I = m2R , where m2 = γρlS(l) is mass of the body, and R = rl is its radius of in- ertia. Notice that with given functions A(ξ) and B(ξ) the required natural frequencies p∗ will depend on two parameters γ and r. In the case of the bar of constant cross-section the exact values of the frequencies p∗ are found from the equation V (x)+γxU(x) S(x)+γxV (x) √ det =0,x= p∗ . (F.18) S(x) − γr2x3T (x) T (x) − γr2x3U(x)

Here 1 1 S(x)= (ch x +cosx) ,T(x)= (sh x +sinx) , 2 2 1 1 U(x)= (ch x − cos x) ,V(x)= (sh x − sin x) 2 2 are the Krylov functions. In approximate determination of the frequencies p∗ we shall consider the conditions of rigid fixing (F.5) as two holonomic constraints as before. We 270 Appendix F shall denote now their reaction forces: the bending moment M(t) and lateral force Q(t) by Λ1(t) and Λ2(t) correspondingly. The condition that the deflection y(0,t) is equal to the displacement of mass m2, and the angle of rotation of the bar’s end ∂y ϕ = ∂x x=0 is equal to the angle of the body rotation will be considered as two holonomic constraints imposed on motion of the free bar. The reaction forces of these constraints are the lateral force Λ3(t) and bending moment Λ4(t).Theyare applied to the bar at the cross-section x =0. Positive directions of reactions, applied to the bar are shown in Fig. F. 3. Formulas (F.6) in this case will take the form:

Λ2(t)+Λ3(t) Λ1(t) − Λ4(t)+(l − xc)Λ2(t) − xcΛ3(t) Wc = , ϕ¨ = . l l − 2 ρ 0 S(x)dx ρ 0 S(x)(xc x) dx The intensity of inertial forces q(x, t) will be calculated by formula (F.7) as before; formula (F.8) will take the form: x M(x, t)=Λ4(t)+xΛ3(t)+ q(x1,t)(x − x1) dx1 . 0 When going to dimensionless variables we obtain:

4 L(ξ,t)= Λ¯ k(t)fk(ξ) . k=1 Here Λ (t)l Λ (t)l2 Λ¯ (t)= 1 , Λ¯ (t)= 2 , 1 EJ(l) 2 EJ(l) Λ (t)l2 Λ (t)l Λ¯ (t)= 3 , Λ¯ (t)= 4 . 3 EJ(l) 4 EJ(l)

The functions f1(ξ) and f2(ξ) are set by formulas (F.12), and the functions f3(ξ) and f4(ξ) are as follows: ξ (η − c)cA(η) A(η) f3(ξ)=ξ + − (ξ − η) dη , 0 a b

Fig. F. 3 Appendix F 271 ξ A(η)(η − c) f4(ξ)=1+ (ξ − η) dη . 0 a Formulas (F.13), (F.14), (F.17) remain valid, but their indices i, j and k run nowfrom1to4. When calculating the kinetic energy it is necessary to take into account the kinetic energy of the disk, therefore the factors a¯ij of determinant (F.17) in this case are as follows: 1 2 a¯ij = A(ξ)hi(ξ)hj (ξ) dξ + γhi(0)hj(0) + γr ϕi(0)ϕj (0) ,i,j= 1, 4 . 0 (F.19) Here dh (ξ) ϕ (ξ)= i ,i= 1, 4 . i dξ In the case of the bar of constant cross-section the equation (F.18) allows us to calculate the natural frequencies exactly and so to estimate an error of this approximate method. The radius of inertia for the thin disk R is equal to R1/2,whereR1 is the radius of the disk and therefore R1 =2lr. If the shaft of radius r1 and the disk of thickness h are made of the same material then for r1 = l/20 and h = R1/20 we obtain

γ = 160 r3 . (F.20)

Assuming that γ and r are related to each other with this expression and r varies within the range from 0 to 1/2, let us follow the change of error for the first, second and third frequencies. Upon calculations we obtain the following values for the error in percentage terms (%):

r =0.000 1.5 · 10−4 0.56 2.67

r =0.125 3.7 · 10−5 9/5 · 10−2 0.85 r =0.250 1.4 · 10−6 3.7 · 10−4 0.40 r =0.500 − 9.0 · 10−6 3.9 · 10−5 0.35 The first column corresponds to the first frequency, the second column cor- responds to the second frequency and the third one corresponds to the third frequency. We see that the higher frequency, the greater error. For r  0.125 the error for the first frequency is close to the limits of ac- curacy which is provided by the software package "Mathematica 5.2". In this regard one can say that this method permits to determine the first frequency exactly. Therefore it may be used both for the rotor dynamics and for testing the programs for analysis of complicated mechanical systems. In rotor engineering it is important to have the analytical dependence of the first natural frequency on the system’s parameters. This method based on consideration of four holonomic constraints does not allow us to do that 272 Appendix F as it leads to the solution of algebraic equation of the fourth order. But if we limit ourselves to consideration of only two constraints at the end where the disk is located, then the required first frequency will be determined in analytical form as a root of biquadratic equation. Let us prove, that this simple solution also makes it possible to find the first frequency accurately enough. When getting this solution it is reasonable to measure the coordinate of the bar cross-section not from the free end but from the end that is rigidly clamped. Formulas (F.4) and (F.17) remain valid, but now S(l) and J(l) will correspond not to the rigidly clamped end, but to the place of disk fixation. The bending moment Λ1(t) and lateral force Λ2(t), applied to the end x = l, are constraint reactions and considered in this problem as the generalized coordinates. Their positive directions, as well as the positive direction of the moment M(x, t) applied to the cross-section x, are shown in Fig. F. 4. The dimensionless bending moment L(ξ,t) introduced by formula (F.9) is equal in this case to

L(ξ,t)=Λ¯ 1(t)f1(ξ)+Λ¯ 2(t)f2(ξ) , Λ (t)l Λ (t)l2 (F.21) f (ξ)=1,f(ξ)=1− ξ, Λ¯ (t)= 1 , Λ¯ (t)= 2 . 1 2 1 EJ(l) 2 EJ(l)

Expression (F.11), as seen, survives and therefore the potential energy will be written in the form (F.14). Integrating equation (F.10) and taking into account that ∂y¯ y¯(0,t)= =0, ∂ξ ξ=0 imply expression (F.13), where now ξ fk(η)(η − ξ) hk(ξ)= dη , k =1, 2 . (F.22) 0 B(η) As the deflection is represented in the same form (F.13), the kinetic energy will be written in the same form (F.15) too. The factors a¯ij in this case should

Fig. F. 4 Appendix F 273

be calculated by formulas (F.19), but now hi(0) should be replaced with hi(1), and ϕi(0) should be replaced with ϕi(1). When calculating for the bar of constant cross-section the error of the first and second frequencies in percentage terms (%) for the same relation (F.20) between γ and r, we obtain:

r =0.000 0.47 58 r =0.125 8.4 · 10−2 15.6 r =0.250 2.6 · 10−3 0.21 r =0.500 1.1 · 10−5 1.1 · 10−3

For r  0.25 we can say that for the first frequency we obtain the exact value. Notice, however that for r =0.25 the disk diameter is equal to the shaft length, and for r =0.5 it is two times greater. For such relation between these quantities for the assumed values r1 = l/20 and h = R1/20 this disk can not be regarded as a perfectly rigid body. It is necessary to take into account the influence of its compliance on the natural frequencies of the system. It is feasible but it will require additional calculations, the basic framework of which will be shown through the example of the cantilever with a flexible bar at its end. This example will require no new mathematical apparatus. It is reduced to the same calculations as above. Determination of the first three frequencies of the cantilever with a flexible bar at its end. Let us analyze the problem, when the bar executing longitudinal oscillations in the mechanical system depicted in Fig. VI. 2 is absent (see Fig. F. 5). Within the frames of such problem we have three constraints and three reaction forces correspondingly. The bending moment Λ1(t) and the lateral force Λ2(t) are applied to the cantilever as is shown in Fig. F. 4. The third reaction force is the lateral force Λ3(t) applied to the bar which is perpendicular to the cantilever. Both kinetic and potential energy of the cantilever are determined by the formulas given above. Therefore it is necessary to take into account only the second bar. When released from the constraints it becomes free and similar to the bar shown in Fig. F. 1, but now the bending moment M(t)=Λ1(t) and lateral force Q(t)=Λ3(t) are applied not to the end of the bar but to the cross-section x∗ = zl. Therefore, the constraint equations will be written in the form ∂y y(x∗,t)=0, =0. (F.23) ∂x x=x∗ 274 Appendix F

We shall not provide the parameters of the second bar with indices when considering the question how the deflection curve will change depending on the place of application of the reactions. We shall do that upon obtaining expressions for the potential energy of its deflection and for the deflection curve. Formulas (F.6) in this case will appear as

Λ3(t) Λ1(t)+(x∗ − xc)Λ3(t) Wc = , ϕ¨ = , l l − 2 ρ 0 S(x) dx ρ 0 S(x)(xc x) dx and formula (F.7) remains valid. The bending moment M(x, t) applied to the left of the cross-section x = x∗ is set by expression (F.8), and the bending moment applied to the right of cross-section takes the form l M(x, t)= q(x1,t)(x1 − x) dx1 ,x∗

¯ (2) ¯ (2) Ln(ξ,t)=Λ1 (t)f1n(ξ)+Λ3 (t)f3n(ξ) ,n=1, 2 .

Fig. F. 5 Appendix F 275

Here Λ (t)l Λ¯ (t)l2 Λ¯ (2)(t)= 1 , Λ¯ (2)(t)= 3 , 1 EJ(l) 3 EJ(l) ξ (c − η)A(η) f (ξ)= (ξ − η) dη , 0  ξ  z, 11 a 0 ξ (c − η)(z − c)A(η) A(η) f (ξ)= − (ξ − η) dη , 0  ξ  z, 31 a b 0 1 A(η)(η − c) f (ξ)= (ξ − η) dη , z  ξ  1 , 12 a ξ 1 (η − c)(z − c)A(η) A(η) f32(ξ)= + (ξ − η) dη , z  ξ  1 . ξ a b (F.24) We remind that the values a, b, c, included in these expressions are calculated ¯ (2) ¯ (2) by formulas (F.12). The index "2"of the quantities Λ1 (t) and Λ3 (t) means that transition to the dimensionless variables corresponds to the parameters l, E and J(l) of the second bar (see Fig. 5). The functions A(ξ), B(ξ) and the values a, b, c, should be also provided with index "2"hereinafter, but for the sake of simplicity they are omitted. Integrating equation (F.10) for L(ξ,t)=L1(ξ,t),andthenforL(ξ,t)= L2(ξ,t), and taking into account the constraint equations (F.23) imply

(2) (2) y¯(ξ,t)=Λ¯ (t)h11(ξ)+Λ¯ (t)h31(ξ) , 0  ξ  z, 1 3 (F.25) ¯ (2) ¯ (2)   y¯(ξ,t)=Λ1 (t)h12(ξ)+Λ3 (t)h32(ξ) ,zξ 1 , where z f (η)(η − ξ) f (ξ)= k1 dη , 0  ξ  z, k1 B(η) ξ ξ fk2(η)(ξ − η) fk2(ξ)= dη , z  ξ  1 ,k=1, 3 . z B(η) By using the unit function 1 ,x 0 , U(x)= 0 ,x<0 , we represent expressions (F.25) as

¯ (2) ¯ (2)   y¯(ξ,t)=Λ1 (t)h1(ξ)+Λ3 (t)h3(ξ) , 0 ξ 1 . (F.26) Here hk(ξ)=hk1(ξ)U(z − ξ)+hk2(ξ)U(ξ − z) . (F.27) 276 Appendix F

The potential energy of deformation of the second bar has to be calculated independently for its right and left sections. Calculating and summing these energies produce EJ(l) Π= (¯c(2)(Λ¯ (2)(t))2 +2¯c(2)Λ¯ (2)(t)Λ¯ (2)(t)+¯c(2)(Λ¯ (2)(t))2) , (F.28) 2l 11 1 13 1 3 33 3 where z f 2 (ξ) 1 f 2 (ξ) c¯(2) = k1 dξ + k2 dξ , k =1, 3 , kk B(ξ) B(ξ) 0 z z 1 (2) f11(ξ)f31(ξ) f12(ξ)f32(ξ) c¯13 = dξ + dξ . 0 B(ξ) z B(ξ) Adding the potential energy of bending of the first bar to potential energy (F.28), we represent their sum in the form

E J (l ) 3 Π= 1 1 1 c¯ Λ¯ (1)Λ¯ (1) . (F.29) 2l ij i j 1 i,j=1 Here index "1" means that this quantity corresponds to the first bar. The ¯ (1) dimensionless variables Λi ,i= 1, 3, are introduced by the formulas:

2 ¯ (1) Λ1(t)l1 ¯ (1) Λk(t)l1 Λ1 (t)= , Λk (t)= ,k=2, 3 . E1J1(l1) E1J1(l1)

Note that in these formulas J1(l1) corresponds not to the place of rigid fixing, as it was in the beginning of this Appendix, but to the point where the first bar is connected to the second one (see Fig. F 5). In formulas (F.24) and (F.28) all quantities refer to the second bar. In- troduction of the parameters

3 E1J1(l1)l2 l2 α = 3 ,β= E2J2(l2)l1 l1 allows us to represent the potential energy (F.28) of the second bar as

E1J1(l) (2) ¯ (1) 2 −2 (2) ¯ (1) ¯ (1) −1 (2) ¯ (1) 2 Π2 = α (¯c11 (Λ1 (t)) β +2¯c13 Λ1 (t)Λ3 (t)β +¯c33 (Λ3 (t)) ) . 2l1

This implies that the factors c¯ij in expression (F.29) are as follows:

(1) −2 (2) (1) c¯11 =¯c11 + αβ c¯11 , c¯12 =¯c12 , −1 (2) (1) (2) c¯13 = αβ c¯13 , c¯22 =¯c22 , c¯23 =0, c¯33 = αc¯33 . Here in accordance with formulas (F.14), (F.21) 1 1 1 2 (1) dξ (1) (1 − ξ) dξ (1) (1 − ξ) dξ c¯11 = , c¯12 = , c¯22 = . 0 B1(ξ) 0 B1(ξ) 0 B1(ξ) Appendix F 277

The kinetic energy of the first bar will be represented by using expressions (F.15), (F.21), (F.22) in the form

1 2 T = ρ S (l ) l3 a¯(1)Λ¯˙ (1)Λ¯˙ (1) , 1 2 1 1 1 1 ij i j i,j=1 1 (1) (1) (1) a¯ij = A1(ξ)hi (ξ)hj (ξ) dξ , 0 ξ ξ (1) (ξ − η) dη (1) (1 − η)(ξ − η) dη h1 (ξ)= ,h2 (ξ)= . 0 B1(η) 0 B1(η) Let us calculate the kinetic energy of the second bar now. The assump- tion that amplitude of oscillations of the bars under consideration is small allows us, as was noted in § 2 of Chapter VI, to calculate the kinetic energy of translational motion of the second bar along the axis independently from the kinetic energy of its motion in the direction that is perpendicular to its axis. The kinetic energy of translational motion of the second bar is m l2 T = 2 1 (h(1)(1)Λ¯˙ (1) + h(1)(1)Λ¯˙ (1))2 , 21 2 1 1 2 2 1 m2 = ρ2S2(l2) l2 A2(ξ) dξ . 0 Displacements of the cross-sections of the second bar in the direction perpendicular to the bar axis are caused, first, by rotation of the bar about the cross-section x∗ = zl2, and, secondly, by the deflection defined by expression (F.26). Therefore we have:

− ¯ (2) (2) ¯ (2) (2) y2(ξ,t)=l2(ψ(t)(z ξ)+Λ1 (t)h1 (ξ)+Λ3 (t)h3 (ξ)) . Here (1) ¯ (1) ¯ (1) dhk ψ(t)=ϕ1(1)Λ1 (t)+ϕ2(1)Λ2 (t) ,ϕk(1) = ,k=1, 2 . dξ ξ=1

(2) (2) Index "2" of the functions h1 (ξ) and h3 (ξ) means that these functions defined by expressions (F.27) are calculated for the parameters of the second bar. Taking into account that

¯ (2) −2 ¯ (1) ¯ (2) −1 ¯ (1) Λ1 = αβ Λ1 , Λ3 = αβ Λ3 , the kinetic energy l2 2 1 ∂y2 T22 = ρ2 S2(x) dx , 2 0 ∂t 278 Appendix F will be represented as 1 1 3 ¯˙ (1) ¯˙ (1) − T22 = ρ2S2(l2)l2 A2(ξ)((ϕ1(1)Λ1 + ϕ2(1)Λ2 )(z ξ)+ 2 0 −2 ¯˙ (1) (2) −1 ¯˙ (1) (2) 2 +αβ Λ1 h1 (ξ)+αβ Λ3 h3 (ξ)) dξ . Introducing into consideration the third parameter ρ S (l )l γ = 2 2 2 2 , ρ1S1(l1)l1 the total kinetic energy of the second bar appears as follows:

γ 3 T = ρ S (l ) l3 a¯(2)Λ¯˙ (1)Λ¯˙ (1) . 2 2 1 1 1 1 ij i j i,j=1

(2) Analytic expressions for the factors aij , dependent on the functions A2(ξ) and parameters α and β, are rather intricate and thus not given here. Note that they are easily found with the software package "Mathematica 5.2". The kinetic energy of both bars is

1 3 T = ρ S (l ) l3 a¯ Λ¯˙ (1)Λ¯˙ (1) , a¯ =¯a(1) + γa¯(2) . 2 1 1 1 1 ij i j ij ij ij i,j=1

We’ll find the required natural frequencies p∗ by solving equation (F.17). Notice that in formula (F.16) of transition to dimensional frequencies all quantities correspond to the first bar at the point of its connection to the second bar. Comparison with the bars of constant cross-section. The problem of bars of constant cross-section has been solved exactly by the methods of mathematical physics. As this takes place the equation of frequencies is obtained by equating the determinant of sixth order to zero. Its elements are the Krylov functions, the arguments of which depend on the parameters α, γ and z. This intricate transcendental equation, the computational solution of which was a matter of some difficulty even for modern computers, was used for testing the method suggested in § 3 of Chapter VI. Note that calculation of first three frequencies by using this suggested method does not create any difficulties. As stated above, the problem under investigation is a particular case of the problem discussed in §§ 5 and 6 of Chapter VI. When the bar executing longitudinal vibration is absent, the frequency determinant is a determinant of third order. Comparing the roots of the transcendental equation with the roots of the frequency equation shows that the first frequency is determined with four valid significant digits in the second approximation, the second fre- quency is determined with the same accuracy in the fourth approximation, Appendix F 279 and the third one is obtained with the same accuracy in the sixth approxi- mation. If the first and the second bars are made of the same material and have the same cross-sections, then at z =1/2 the solution depends on a single parame- 3 ter β = l2/l1, for in this case γ = β and α = β . The calculations show that for the first frequency the error decreases as β rises, and for β =1/8, 1/4, 1/2, 2 it is equal to 0.22, 0.12, 0.056, 0.0022 percent (%) correspondingly. Note that in this example in case β  0.25, it is reasonable to consider the second bar as a concentrated mass located at the end of the cantilever beam and to use the method presented in the beginning of this Appendix. Let us discuss briefly the errors of the method under consideration for the second and third frequencies. Let us examine this problem through the example of the bars, differing only in length. For α = β = γ =1and z =1/2 the exact and approximate values of first three dimensionless frequencies p∗ are as follows: 1.44851 , 6.20782 , 14.0641 , 1.44876 , 6.24235 , 14.1204 . The errors in percentage terms (%) are equal correspondingly to 0.017 , 0.56 , 0.40 . If the second bar is symmetrically positioned in relation to the first one, there exists a mode of oscillations such that the first bar does not oscillate, and both halves of the second bar oscillate like a cantilever of length l = βl1/2. The first frequency of the cantilever oscillation in the dimensionless variables is 4 p∗ =3.516 . (F.30) β2 This frequency in the series of frequencies of the system consisting of two bars has the number n. This number increases as β decreases. For example, for β =1/4 it will be the ninth frequency, and the third root of equation (F.17) will correspond to it. Let us find this root in the explicit form. When the second bar does not oscillate, then the bending moment Λ1 and the lateral force Λ2 applied to the end of the first bar vanish. Therefore in this oscillation mode only the lateral force Λ3 applied to the middle of the second bar is not equal to zero. Under the action of this force the second bar moves translationally and bends so that the application point of the force Λ3 is immovable. In quasistatics the intensity of inertial forces is constant in this case, therefore either the second or the third root of equation (F.17) at z =1/2 is equal to 1 ξ c 4 2 p∗ = ,c= f (ξ) dξ , f(ξ)= (ξ − η) dη , a β2 0 0 1 1 a = h2(ξ) dξ , h(ξ)= f(η)(ξ − η) dη . 0 ξ 280 Appendix F

When calculating we obtain 4 p∗ =3.530 . (F.31) β2

This frequency exceeds its exact value obtained by formula (F.30) by 0.40 %. For β =1/2 the frequency approximately defined by expression (F.31) corresponds to the exact value of the fourth frequency, for β =1and β =2 it corresponds to the third frequency, and for β =4it corresponds to the second frequency. Hence this approximate method makes it possible to determine the first frequency for any values of the system parameters with a rather high degree of accuracy, and for some values of the parameters it allows us to define the second and the third frequencies as well. APPENDIX G

THE DUFFING EQUATION AND STRANGE ATTRACTOR

The nonhomogeneous Duffing equation with a linear resistance is studied. In this case the possibility of arising of strange attractors and periodical so- lutions with a period multiple to the period of excitation, depending on the excitation level, is investigated by a numerical method. The Appendix presents the first part of the paper by P. E. Tovstik and T. M. Tovstik [425]. The prob- ability properties of a strange attractor considered in the second part of this paper are not covered in the Appendix. A more completed table of solution properties is given. The relationship of strange attractors with the classical theory of motion stability is presented in the monograph by G. A. Leonov [426].

In § 4 of Chapter VI the nonhomogeneous Duffing equation (4.9) has been obtained for describing the lateral vibration of a beam with the supports fixed in the logitudinal directiion. Taking into consideration a linear resistance and some changes in notation, in dimensionless variables it appears as

d2x dx + c + x + x3 = b cos ωt , (G.1) dt2 dt where π 2 EJ 2L4 ω = Ω,b= √ f0 . L ρS π4E JS

Here Ω and f0 are the frequency and the amlitude of the disturbed force, respectively, c is a coefficient characterizing damping, E and ρ are the coeffi- cient of elasticity and density of beam material, respectively, L is the length of beam, S is the cross-section area of the beam, J is the moment of inertia of cross section of the beam with respect to zero line. Equation (G.1) includes three parameters — c, b,andω. Let us fix two of them (ω =1,c=0.25) and vary parameter b in a wide range 0  b  100. Equation (G.1) has been integrated numerically under the arbitrary giv- en initial conditions x(0), x˙(0) belonging to the domain of ([−5.0, 5.0] × [−5.0, 5.0]). It has been determined, how the existance of strange attrac- tors and limiting solutions with a period multiple to the period of exci- tation depends on the value of b and the initial conditions. To this end, the range 0  b  100 has been partitioned with a step 0.1, and for each bi =0.1i the qualitative character of a limiting trajectory has been defined. The neighbour values of bi with the same qualitative characteristics have been united in intervals. When subsequently varying i from 0 up to 1000, 55 intervals with different qualitative behaviour of solutions have been found in total.

281 282 Appendix G

Таблица G. 1.

bnk bnk

0.0 − 2.911 52.13A, 2, 2 3.0 − 9.621, 152.2 − 52.722, 2 9.7 − 11.911 52.8 − 53.124, 4 12.0 − 14.821, 153.22A, A 14.9 − 22.911 53.3 − 54.31A 23.0 − 35.521, 154.3 − 54.72A, 1 35.6 − 38.622, 254.8 − 54.93A, 5, 1 38.7 − 38.924, 455.08A, 15, 15, 15, 10, 10, 5, 1 39.044, 4, 3, 355.1 − 57.92A, 1 39.1 − 39.224, 458.011 39.3 − 39.39 2 8, 858.1 − 58.22A, 1 39.44A, A, 8, 858.33A, A, 1 39.52A, A 58.434, 4, 1 39.64A, A, 10, 10 58.5 − 58.732, 2, 1 39.7 − 40.62A, A 58.843, 3, 2, 1 40.7 − 41.21A 58.9 − 59.032, 2, 1 41.33A, 5, 559.1 − 60.831, 1, 1 41.4 − 41.61A 60.9 − 62.021, 1 41.7 − 44.32A, 362.13A, 1, 1 44.4 − 48.613 62.2 − 62.343, 3, 1, 1 48.7 − 49.123, 362.4 − 62.733, 1, 1 49.226, 662.8 − 67.421, 1 49.33A, 6, 667.5 − 77.311 49.42A, A 77.4 − 91.521, 1 49.5 − 50.61A 91.641, 1, 1, 1 50.724, 491.7 − 92.731, 1, 1 50.828, 892.8 − 100.021, 1 50.9 − 52.01A Table G. 1 contains the results. In it, for corresponding values of b there are: —thenumbern of different limiting solutions, which can be obtained when changing the initial conditions, — the multiplicity k of a period kT of the limiting solution, the number of values of k given through a comma being equal to n, — in the case, when a periodical solution is not kT-periodical, but a strange attractor, the number k is substituted in Table G. 1 for the letter A. Forexample,forb =54.9 there are three (n =3) different stable limiting solutions: a strange attractor, a 5T -periodical solution, and a T -periodical solution. If we compare this table with the results obtained in the paper [425], then we see that this table only complements them. A greater number Appendix G 283 of intervals b has been got as a result of decreasing a partition step. This demonstrates that a more detailed study of the variation interval of b can lead to arising of new intervals that are qualitatively different from the considered ones. It follows from the table, that strange attractors occur in the range 39.4  b  62.1. Note that for b>100 strange attractors also occur, but in this case the vibration amplitude is so great that this vibration can hardly be modelled by the Duffing equation. We illustrate the dependence of limiting solutions on the initial conditions through the example b =4.0. As follows from Table G. 1, for this value of b there are two stable T -periodical solutions. In Fig. G. 1 on the part of the plane −5  x(0), x˙(0)  5 the domains of initial conditions that lead to the first or second solutions are given. These solutions are presented in Fig. G. 2. The part of the plane −50  x(0), x˙(0)  50, which is a hundred times greater, has been also regarded, in this case it turned out that the structure of the domain is more complicated than in Fig. G. 1. It is impossible to describe here all the considered variation range of b. We limit ourselves to four consecutive intervals in the range 40.0  b  45.0 and regard four successive values of b. The results are given in the form of the Poincar´e diagrams (see Fig. G. 3), on which points with the coordinates x(mT ), x˙(mT ) for integer m are dotted. The Poincar´e diagrams (or cross- sections) are the powerful means, which make it possible to determine the qualitative character of solution behaviour and find out bifurcations, i. e. the transfers from one qualitative state to another.

Fig. G. 1 284 Appendix G

x 2 2

1 1

t π 2π

–1

–2

Fig. G. 2

Fig. G. 3 Appendix G 285

If a limiting solution is kT-periodical, then a diagram has k different dots. The number of dots for a strange attractor depends on duration of integration. In Fig. G. 3 each of the strange attractors contains 800 dots. Consider consecutively the diagrams shown in Fig. G. 3. On the first of them (for b =40.0) two strange attractors 1 and 2 are depicted, which can be obtained under certain initial conditions. As b increases, attractors approach to each other, and for b =41.0 there is only one attractor under any initial conditions. For b =43.0 we have two stable limiting solutions: a strange attractor 1 and a 3T -periodical solution 2 depicted by three dots on the Poincar´e diagram. As b grows further, a strange attractor vanishes, and there remains only one 3T -periodical solution depicted by three dots in Fig. G. 3 for b =45.0. References

1. Абакиров Б.А., Федорченко Л.Г., Юшков М.П. Влияние сопротивления на нелинейные колебания балок и пластин [Abakirov B.A., Fedorchenko L.G., Yushkov M.P. Resistance effect on nonlinear oscillations of beams and plates] // Вестн. Ленингр. ун-та. Сер. 1. 1986. Вып. 4. С. 17-19. 2. Абрарова Е.В., Буров А.А., Степанов С.Я. Шевалье Д.П. Об уравнениях движения системы тягач-полуприцеп со сцепкой типа "пятое колесо"[Abrarova E.V., Burov A.A., Stepanov S.Ya. Chevallier D.P. Equationsofmotionofasys- tem: an articulated vehicle with the hitching of the "fifth wheel"type] // Задачи исследования устойчивости и стабилизации движения. М.: ВЦ РАН. 1998. С. 45-70. 3. Акуленко Л.Д., Лещенко Д.Д. О вpащении тяжелого твеpдого тела, имею- щего опоpу на гоpизонтальной плоскости с тpением [Akulenko L.D., Leshchenko D.D. Revolution of heavy rigid body with one support on horizontal plane with friction] // Мех. тверд. тела. 1984. Вып. 16. С. 64-68. 4. Appell P. Trait´e de Mecanique rationnelle. Paris: Gauthier-Villars. Tome I, 1941; Tome II, 1953; Tome III, 1921; Tome IV-1, 1932; Tome IV-2, 1937; Tome V, R. Thiry, 1955. (Аппель П. Теоретическая механика. М.: Физматгиз. Т. I. 1960. 516 с.; Т. II. 1960. 488 с.) 5. Аржаных И.С. Вихревой принцип аналитической механики. Условия применимости потенциального метода интегрирования уравнений движения неголономных неконсервативных систем [Arzhanykh I.S. The vortex principle of analytic mechanics. Conditions for application of potential method for integrat- ing the equations of motion of nonholonomic nonconservative systems] // Докл. АН СССР. 1949. Т. 65. №5. С. 613-616; 1952. Т. 87. №1. С. 15-18; The same. Неголономные динамические системы, имеющие кинетический потенциал [Non- holonomic dynamic systems with kinetic potential] // The same. №6. С. 809-811; The same. Об интегрируемости уравнений движения неголономных систем класса T(2; 1) [Integrability of equations of motion for nonholonomic systems of class T(2; 1)] // Докл. АН УзССР. 1956. №3. С. 3-6. 6. Аpнольд В.И. Математические методы классической механики [Arnol’d V.I. Mathematical methods of classical mechanics]. М.: Наука. 1974. 432 с. 7. Аpнольд В.И., Козлов В.В., Нейштадт А.И. Математические аспекты классической и небесной механики [Arnol’d V.I., Kozlov V.V., Neishtadt A.I. Mathematical aspects of classical and celestial mechanics] // Итоги науки и техники. Сеp. Совpеменные пpоблемы математики. Фундаментальные напpавления. Динамические системы. М.: ВИНИТИ. 1985. Т. 3. 304 с. 8. Аpтоболевский И.И., Зиновьев В.А., Умнов Н.В. Уpавнения движения машинного агpегата с ваpиатоpом [Artobolevskii I.I., Zinov’ev V.A., Umnov N.V. Equations of motion of mechanical aggregate with variator] // Докл. АН СССР. 1967. Т. 173. №5. С. 1017-1020. 9. Архангельский Ю.А. Аналитическая динамика твердого тела [Arkhangel’skii Yu.A. The analytical dynamics of rigid body]. М.: Наука. 1977. 328 с. 10. Астапов И.С. . Об устойчивости вращения кельтского камня [Astapov I.S. Stability of Celtic rattleback rolling] // Вестн. Моск. ун-та. Сер. 1. Математика. Механика. 1980. №2. С. 97-100.

287 288 References

11. 9. Афонин А.А., Козлов В.В. Задача о падении диска, движущегося по гоpизонтальной плоскости [Afonin A.A., Kozlov V.V. The problem of falling the disk moving on a horizontal plane] // Мех. тверд. тела. 1997. №1. С. 7-14. 12. Бабаков И.М. Теория колебаний [Babakov I.M. The theory of vibrations]. М.: Наука. 1965. 559 с. 13. Beghin H. Etude th´eorique des compas gyrostatuques Ansch¨utz et Sperry. Th´ese №1727. Paris. 1922. (Беген А. Теоpия гиpоскопических компасов Аншютца и Спеppи и общая теоpия систем с сеpвосвязями. М. 1967. 171 с.) 14. Бидерман В.Л. Теория механических колебаний [Biderman V.L. The the- ory of mechanical oscillations]. М.: Высшая школа. 1960. 408 с. 15. Билимович А.Д. Неголономный маятник [Bilimovich A.D. Nonholonomic pendulum] // Мат. сб. 1915. Т. 29. Вып. 2. 16. Бобылев Д.К. О шаре с гироскопом внутри, катящемся по горизонтальной плоскости безпроскальзывания[ Bobylev D.K. A ball with gyroscope inside rolling on a horizontal plane without sliding] // Мат. сб. 1892. Т. 16. Вып. 3. С. 544-581. 17. Бодунова Л.А., Юшков М.П. О критических скоростях вращения сжатых валов [Bodunova L.A., Yushkov M.P. Critical velocities of compressed shafts rolling] // Прикл. механика. Вып. 1. Л.: Изд-во Ленингр. ун-та. 1974. С. 139-143. 18. Болотов Е.А. О движении матеpиальной плоской фигуpы, стесненной связями с тpением [Bolotov E.A. A motion of mass planar figure with constraints with friction] // Мат. сб. 1904. Т. 25. С. 562-708; The same. О принципе Гаусса [Gauss’ principle] // Изв. физ.-мат. об-ва при Казанском университете. Сер. 2. 1916. Т. 21. №3. С. 99-152. 19. Борисов А.В., Мамаев И.С. и др. Неголономные динамические системы. Интегрируемость . Хаос. Странные аттракторы [Borisov A.V., Mamaev I.S. and others. Nonholonomic dynamic systems. Integrability. Chaos. Strange attractors]. Москва-Ижевск: Институт компьютерных исследований. 2002. 328 с. 20. Борисов А.В., Мамаев И.С., Килин А.А. Новый интеграл в задаче о качении шара по произвольному эллипсоиду [Borisov A.V., Mamaev I.S., Kilin A.A. New integral in the problem on a rolling of ball on arbitrary ellipsoid] // Докл. РАН. 2002. Т. 385. №3. С. 1-4. 21. Борисов А.В., Мамаев И.С. Пуассоновы структуры и алгебры Ли в гамильтоновой механике [Borisov A.V., Mamaev I.S. Poisson’s structures and Lie algebras in the Hamilton mechanics]. Ижевск: Изд-во РХД. 1999. 464 с.; The same. Динамика твердого тела [The dynamics of rigid body]. // The same. 2001. 384 с.; The same. Гамильтоновость задачи Чаплыгина о качении шара [The Hamilton property of Chaplygin’s problem on a rolling of ball] // Мат. заметки. 2001. Т. 70. №5. С. 793-795. 22. Борисов А.В., Федоров Ю.Н. О двух видоизмененных интегрируемых задачах динамики [Borisov A.V., Fedorov Yu.N. Two modified integralable prob- lems of dynamics] // Вестн. Моск. ун-та. Сер. Математика. Механика. 1995. №6. С. 102-105. 23. Брюно А.Д. Локальный метод нелинейного анализа дифференциальных уравнений [Bryuno A.D. The local method of nonlinear analysis of differential equations]. М.: Наука. 1979. 255 с. 24. Булатович Р.М. Замечания о неустойчивости положений pавновесия неголономных систем [Bulatovich R.M. Remarks on instability of equilibria of nonholonomic systems] // Вестн. Моск. ун-та. Сеp. 1. Математика. Механика. 1989. №4. С. 57-60. References 289

25. Булгаков Б.В. Колебания [Bulgakov B.V. Oscillations]. М.: ГИТТЛ. 1954. 892 с. 26. Буров А.А. О частных интегралах уравнений движения твердого тела по гладкой горизонтальной плоскости [Burov A.A. The partial integrals of equations of motion of rigid body on a smooth horizontal plane] // Задачи исследования устойчивости и стабилизации движения. М.: ВЦ АН СССР. 1985. С. 118-121. 27. Буров А.А., Карапетян А.В. О несуществовании дополнительного интеграла в задаче о движении тяжелого твердого эллипсоида по гладкой плоскости [Burov A.A., Karapetyan A.V. Nonexistence of additional integral in the problem of motion of heavy rigid ellipsoid on a smooth plane] // Прикл. мат. мех. 1985. Т. 49. №3. С. 501-503. 28. Бутенин Н.В., Фуфаев Н.А. Введение в аналитическую механику [Butenin N.V., Fufaev N.A. Introduction in the analytical mechanics]. М.: Наука. 1991. 256 с. 29. Бычков Ю.П. О катании твердого тела по неподвижной поверхности [By- chkov Yu.P. A rolling of rigid body on a fixed surface] // Прикл. мат. и мех. 1965. Т. 29. Вып. 3. С. 573-583; The same. О движении тела вращения, ограниченного сферой, на сферическом основании [Motion of body of revolution bounded by sphere on a spherical basis] // The same. 1966. Т. 30. Вып. 5. С. 934-935; The same. О катании твердого тела по движущейся поверхности [On rolling of a rigid body on a moving surface] // The same. 2004. Т. 68. Вып. 5. С. 886-895. 30. Вагнер В.В. Геометрическая интерпретация движения неголономных механических систем [Vagner V.V. A geometric interpretation of motion of non- holonomic mechanical systems] // Тр. семинара по векторному и тензорному анализу. 1941. Вып. 5. М.: ОГИЗ. С. 301-327; The same. Внутренняя геометрия нелинейных неголономных многообразий [Intrinsic geometry of nonlinear non- holonomic manifolds] // Мат. сб. 1943. Т. 13. №55. 31. Величенко В.В. Матpичные уpавнения движения голономных систем [Velichenko V.V. Matrix equations of motion of holonomic systems] // Докл. АН СССР. 1985. Т. 280. №6. С. 1330-1333; The same. Матричные уравнения движения неголономных систем [Matrix equations of motion of nonholonomic systems] // The same. 1991. Т. 321. №3. С. 499-504. 32. Ваpиационные пpинципы механики (Сбоpник статей под pедакцией Л.С. Полака) [The variational principles of mechanics (Collection of works. Red. L.S. Polak)]. М.: Физматгиз. 1959. 932 с. 33. Вершик А.М. Классическая и неклассическая динамика со связями [Ver- shik A.M. The classical and nonclassical dynamics with constraints] // Новое в глобальном анализе. Воронеж: Воронежский гос. ун-т. 1984. С. 23-48. 34. Вершик А.М., Гершкович В.Я. Неголономные динамические системы. Геометрия распределений и вариационные задачи [Vershik A.M., Gershkovich V.Ya. Nonholonomic dynamic systems. Distributions geometry and variational prob- lems] // Деп. 1987. Итоги науки и техники: Фундаментальные направления. Т. 16. С. 5-85. 35. Вершик А.М., Фаддеев Л.Д. Дифференциальная геометрия и лагранжева механика со связями [Vershik A.M., Faddeev L.D. Differential geometry and La- grange’s mechanics with constraints] // Докл. АН СССР. 1972. Т. 202. №3. С. 555- 557; The same. Лагранжева механика в инвариантном изложении [Lagrange’s mechanics in invariant representation] // Проблемы теоретической физики. Л.: Изд-во Ленингр. ун-та. 1975. С. 129-141. 290 References

36. Вернигор В.Н. Определение собственных частот и эквивалентных масс упругого тела по его динамической податливости [Vernigor V.N. Determination of natural frequencies and equivalent mass of elastic body by its dynamic compli- ance] // Вестн. Ленингр. ун-та. Сер. 1. 1990. Вып. 4 (№2). С. 35-42. 37. Веселов А.П. Об условиях интегрируемости уравнения Эйлера на SO(4) [Veselov A.P. Integrability conditions of Euler’s equations on SO(4)] // Докл. АН СССР. Т. 270. №6. С. 1298-1300. 38. Веселов А.П., Веселова Л.Е. Интегрируемые неголономные системы на группах Ли [Veselov A.P., Veselova L.E. Integralable nonholonomic systems on Lie groups] // Мат. заметки. 1988. Т. 44. №5. С. 604-619; The same. Потоки на группах Ли с неголономной связью и интегрируемые неголономные системы [The flows on Lie groups with nonholonomic constraint and the integralable non- holonomic systems] // Функц. анализи его приложения. 1986. Т. 20. Вып. 4. С. 65-66. 39. Веселова Л.Е. Новые случаи интегрируемости уравнений движения твердого тела при наличии неголономной связи [Veselova L.E. New cases of integrability of equations of motion of rigid body with nonholonomic constraint] // Сб.: Геометрия, дифференциальные уравнения и механика. Изд-во Моск. ун-та. 1986. С. 64-68. 40. Вильке В.Г. О качении вязкоупpугого колеса [Vil’ke V.G. A rolling of viscoelastic wheel] // Мех. тверд. тела. 1993. №6. С. 11-15; The same. Качение колеса с пневматической шиной [A rolling of wheel with pneumatic] // Вестн. Моск. ун-та. Сеp. 1. Математика. Механика. 1998. №5. С. 30-39; The same. Об анизотропном сухом трении и неудерживающих неголономных связях [On the anisotropic Coulomb friction and nonretaining nonholonomic constraints] // Прикл. мат. и мех. 2008. Т. 72. Вып. 1. С. 3-12; The same. Теоретическая механика [The- oretical mechanics]. М.: Лань. 2003. 302 с. 41. Воронец П.В. Об уравнениях движения для неголономных систем [Voronets P.V. Equations of motion of nonholonomic systems] // Мат. сб. 1901. Т. 22. Вып. 4. С. 659-686; The same. Преобразование уравнений движения с помощью линейных интегралов движения (с приложением к задаче об n телах) [Transformation of equations of motion by linear integrals of motion (and the ap- plication to n bodies problem)] // Изв. Киевск. ун-та. 1907. Т. 47. №1. С. IV.1- IV.82; №2. С. IV.83-IV.180; The same. К задаче о движении твердого тела, катящегося безскольжения по данной поверхности под действием данных сил [The problem of motion of rigid body rolling without sliding on a given surface under given forces] // Универ. Извест. Университ. Св. Владимира. 1909. С. 1-11; The same. Вывод уравнений движения тяжелого твердого тела, катящегося без проскальзывания по горизонтальной плоскости [Generation of equations of mo- tion of heavy rigid body rolling without sliding on a horizontal plane]. Киев: Тип. Имп. ун-та Св. Владимиpа. 1901. 17 с.; The same. Об одном преобразовании уравнений динамики [Transformation of equations of dynamics]. Киев: Тип. Имп. ун-та Св. Владимиpа. 1901. 14 с.; The same. Уравнения движения твердого тела, катящегося безскольжения по неподвижной плоскости [Equations of motion of rigid body rolling without sliding on a fixed plane]. Киев: Тип. Имп. ун-та Св. Владимира. 1903. 152 с. 42. Галиуллин А.С. Методы решения обратных задач динамики [Galiullin A.S. The methods for solution of inverse problems of dynamics]. М.: Наука. 1986. 224 с.; The same. Аналитическая динамика [The analytical dynamics]. М.: Высшая школа. 1989. 264 с. References 291

43. Галиуллин А.С., Мухаметзянов И.И., Мухарлямов Р.Г., Фурасов В.Д. Построение систем программного движения [Galiullin A.S., Mukhametzyanov I.I., Mukharlyamov R.G., Furasov V.D. Construction of systems of program mo- tion]. М.: Наука. 1971. 352 с. 44. Гантмахер Ф.Р. Лекции по аналитической механике [Gantmakher F.R. Lectures on analytical mechanics]. М: Наука. 1966. 300 с. 45. Гапонов А.В. Неголономные системы С.А. Чаплыгина и теория коллекторных электрических машин [Gaponov A.V. The nonholonomic system of S.A. Chaplygin and the theory of commutator machines] // Докл. АН СССР. Новая серия. 1952. Т. LXXXVII. №3. С. 401-404; The same. Электpомеханические системы со скользящими контактами и динамическая теоpия электpических машин [Electromechanical systems with sliding contacts and the dynamic theory of electrical machines] // Сб. памяти А.А. Андpонова. М.: Изд-во АН СССР. 1955. С. 196-214. 46. Гаpтунг Ю.А. Новые фоpмы уpавнений аналитической динамики [Gar- tung Yu.A. New forms of equations of the analytical dynamics] // Сб. научно- методич. статей по теоpет. механике. Вып. 3. М.: Высшая школа. 1972. С. 66-69. 47. Геронимус Я.Л. Уравнения движения машинного агрегата при наличии неголономных связей [Geronimus Ya.L. Equationsofmotionofmechanicalag- gregate with nonholonomic constraints] // Механика машин. Вып. 45. М.: Наука. 1974. С. 124-132. 48. Гершкович В.Я. Оценки метрик, порожденных неголономными распределениями на группах Ли [Gershkovich V.Ya. Estimates of metrices gen- erated by nonholonomic distributions on Lie groups] // Вестн. Ленингp. ун-та. Математика, механика, астpономия. 1984. Вып. 7. С. 87-89; The same. Вариационная задача с неголономной связью на SO(3) [The variational problem with nonholonomic constraint on SO(3)] // Геометрия и топология в глобальных нелинейных задачах. Воронеж: Воронежский гос. ун-т. 1984. С. 149-152. 49. Godbillon C. Geometrie differentielle et mecanique analytique. Paris: Her- mann. 1969. (Годбийон К. Диффеpенциальная геометpия и аналитическая механика. М.: Миp. 1973. 188 с.) 50. Голубев Ю.Ф. Основные принципы механики для систем с дифференциальными нелинейными связями [Golubev Yu.F. Basic principles of mechanics for systems with differential nonlinear constraints] // Второе Всероссийское совещание-семинар заведующих кафедрами теорет. механики. Тез. докл. Москва, 11-16 октября 1999 г. С. 14-15. 51. Goldsmith W. Impact. The theory and physical behaviour of colliding solids. London: Edward Arnold Publishers. 1960. (Гольдсмит В. Удар. М.: Стройиздат. 1965. 448 с.) 52. Денева С., Диамандиев В. Пpоблемы, связанные с упpавляемыми неголономными системами [Deneva S., Diamandiev V. The problems of non- holonomic controllable systems] // Годишник Софийск. ун-та. Фак. мат. и инф. Математика. 1990. №84. С. 159-164. 53. Денисов Г.Г., Неймаpк Ю.И., Сандалов В.М., Цветков Ю.В. Об обкатке pотоpа по жесткому подшипнику [Denisov G.G., Neimark Yu.I., Sandalov V.M., Tsvetkov Yu.V. The rotor break-in on rigid bearing] // Мех. тверд. тела. 1973. №6. С. 4-13. 54. Деpябин М.В., Козлов В.В. К теоpии систем с одностоpонними связями [Deryabin M.V., Kozlov V.V. The theory of systems with unilateral constraints] // Прикл. мат. и мех. 1995. Т. 59. Вып. 4. С. 531-539. 292 References

55. Marsden J. E., McCracken M. The Hopf bifurcation and its applications. New York: Springer–Verlag. 1976. (Марсден Дж., Мак-Кракен М. Бифуркация рождения цикла и ее приложения. М.: Мир. 1980.) 56. Джанелидзе Г.Ю., Луpье А.И. О пpименении интегpальных и ваpиационных пpинципов механики в задачах колебаний [Dzhanelidze G.Yu, Lur’e A.I. The application of the integral and variational principles of mechanics to oscillation problems] // Прикл. мат. и мех. 1960. Т. 24. Вып. 1. С. 80-87. 57. Диевский В.А., Егоpов А.В. Математическое описание вентильного электpодвигателя как электpомеханической неголономной системы [Dievskii V.A., Egorov A.V. Mathematical description of thyratron motor as an electromechanical nonholonomic system] // Пpик. механика. Вып. 3. Л.: Изд-во Ленингp. ун-та. 1977. С. 212-218. 58. Добронравов В.В. Обобщение теоремы Гамильтона–Якоби на случай квазикоординат [Dobronravov V.V. The extension of the Hamilton–Jacobi the- orems to the case of quasicoordinates] // Докл. АН СССР. 1939. Т. 22. №8. С. 481-484; The same. О некоторых вопросах механики неголономных систем [Some questions of mechanics of nonholonomic systems] // Прикл. мат. и мех. 1952. Т. 16. Вып. 6. С. 760-764. 59. Добронравов В.В. Основы механики неголономных систем [Dobronravov V.V. Foundations of mechanics of nonholonomic systems]. М.: Высшая школа. 1970. 272 с.; The same. Основы аналитической механики [Foundations of analyt- ical mechanics]. М.: Высшая школа. 1976. 264 с. 60. Добронравов В.В. Сферическое движение твердого тела по неголономным программам [Dobronravov V.V. A spherical motion of rigid body by nonholo- nomic programs] // К.Э. Циолковский и научно-технический прогресс. М. 1982. С. 67-71. 61. Долапчиев Бл. Пpинцып на Jourdain и уpавнения на Nielsen [Dolapchiev Bl. Jourdain’s principle and Nielsen’s equations] // Годишник Софийск. ун-та. Мат. факультет. 1966. Т. 59. С. 71-84; The same. Об уpавнениях Нильсена–Ценова и их пpименении к неголономным системам с нелинейными связями [The equa- tions of Nielsen–Tsenov and their application to nonholonomic systems with non- linear constraints] // Докл. АН СССР. 1966. Т. 171. №4. С. 822-829. 62. ДоШань.Уpавнения движения механических систем с нелинейными неголономными связями втоpого поpядка [Do Sanh. Equationsofmotionofme- chanical systems with nonlinear second-order nonholonomic constraints] // Прикл. мат. и мех. 1973. Т. 37. Вып. 2. С. 349-354; The same. Об опpеделении сил pеакций связей [The determination of forces of constraint reactions] // The same. 1975. Т. 39. Вып. 6. С. 1129-1134. 63. Дубровин Б.А., Новиков С.П., Фоменко А.Т. Современная геометрия [Dubrovin B.A., Novikov S.P., Fomenko A.T. Modern geometry]. М.: Наука. 1979. 760 с. 64. Дувакин А.П. Об устойчивости движений диска [Duvakin A.P. Stability of motion of disk] // Инж. жуpн. 1965. Т. 5. Вып. 1. С. 3-9. 65. Дусанов Н.М. Составление уpавнений движения механических систем с одностоpонними идеальными связями [Dusanov N.M. The generation of equa- tions of motion for mechanical systems with unilateral ideal constraints] // Деп. в ВИНИТИ 14.02.92, №505-В92. 13 с. 66. Еpшов Б.А., Тpифоненко Б.В. Движение твеpдого тела пpи действии упpавляющих связей [Ershov B.A., Trifonenko B.V. A motion of rigid body with program constraints] // Вестн. Ленингp. ун-та. 1985. №8. С. 52-56. References 293

67. Жуковский Н.Е. О гиpоскопическом шаpе Д.К. Бобылева [Zhukovsky N.E. The gyroscopic ball of D.K. Bobylev] // Тp. отделения физических наук Общ-ва любителей естествознания, антpопологии и этногpафии. 1893. Т. 6. Вып. 1. С. 11-17. (Собp. соч. М.-Л.: ОГИЗ. 1948. Т. 1. С. 275-289). 68. Жуковский Н.Е. К динамике автомобиля [Zhukovsky N.E. The dynamics of car]. Полное собpание сочинений. Т. 7. М.-Л.: ГИТТЛ. 1950. С. 362-368. 69. Жуpавлев В.Ф. Метод анализа вибpоудаpных систем пpи помощи специальных функций [Zhuravlev V.F. The method for analysis of vibroimpulsive systems by special functions] // Мех. тверд. тела. 1976. №2. С. 30-34; The same. Исследование некотоpых вибpоудаpных систем методом негладких пpеобpазований [The investigation of certain vibroimpulsive systems by the method of nonsmooth transformations] // The same. 1977. №6. С. 24-28; The same. Уpавнения движения механических систем с идеальными одностоpонними связями [Equations of motion for mechanical systems with ideal unilateral con- straints] // Прикл. мат. и мех. 1978. Т. 42. №5. С. 37-69. 70. Жуpавлев В.Ф. О модели сухого трения в задаче качения твердых тел [Zhuravlev V.F. A model of dry friction in the problem of rolling the rigid bodies] // Прикл. мат. и мех. 1998. Т. 62. Вып. 5. С. 762-767; The same. О сухом трении в условиях сложного скольжения [A dry friction in the case of compound sliding] // Втоpое Всеpос. совещание-семинаp заведующих кафедpами теоpетической механики. Тез. докл. Москва, 11-16 октябpя 1999 г. С. 24; The same. Динамика тяжелого однородного шара на шероховатой плоскости [Dynamics of a hard homogeneous ball on the rough plane] // Мех. тверд. тела. 2006. №6. С. 3-9. 71. Жуpавлев В.Ф., Климов Д.М. Пpикладные методы в теоpии колебаний [Zhuravlev V.F., Klimov D.M. The applied methods in the theory of oscillations]. М.: Наука. 1988. 326 с. 72. Жуpавлев В.Ф., Фуфаев Н.А. Механика систем с неудеpживающими связями [Zhuravlev V.F., Fufaev N.A. The mechanics of systems with nonretaining constraints]. М.: Наука. 1993. 240 с. 73. Забелина (Харламова) Е. И. Движение твердого тела вокруг неподвижной точки при наличии неголономной связи [Zabelina (Kharlamova) E.I. A motion of rigid body with nonholonomic constraint around stationary point] // Тр. Донецк. индустр. ин-та. 1957. Т. 20. №1. С. 69-75. 74. Заремба А.Т., Зегжда С.В., Коноплёв В.А. Синтезпрограммных движений роботов на основе обратных задач кинематики [Zaremba A.T., Zegzh- da V.S., Konoplyov V.A. The synthesis of program motion of robots on the base of inverse problems of kinetics] // Изв. АН СССР. Технич. кибернетика. 1991. №1. С. 142-152. 75. Зегжда С.А. К задаче о соударении деформируемых тел [Zegzhda S.A. The collision problem of solids] // Прикл. механика. Вып. 4. Л.: Изд-во Изд-во Ленингр. ун-та. 1979. С. 91-108; The same. Соударение колец [Collision of rings] // Вестн. Ленингр. ун-та. Сер. 1. 1986. Вып. 1. С. 77-83. 76. Зегжда С.А. Применение обобщенного оператора Лагранжа при неголономных связях высокого порядка [Zegzhda S.A. Application of the gen- eralized Lagrange operator to the case of high-order nonholonomic constraints] // Вестн. С.-Петербург. ун-та. Сер. 1. 1998. Вып. 2 (№8). С. 76-77. 77. Зегжда С.А. Соударение упругих тел [Zegzhda S.A. Collision of elastic bodies]. СПб: Изд-во С.-Петерб. ун-та. 1997. 316 с. 294 References

78. Зегжда С.А., Солтаханов Ш.Х., Юшков М.П. Основные результаты Поляховской школы по аналитической механике [Zegzhda S.A., Soltakhanov Sh.Kh., Yushkov M.P. The main results of the Polyakhov school in analytical mechanics] // Третьи Поляховские чтения. Избранные труды. СПб. 2003. С. 16-22; The same. Плавный переход спутника с круговой орбиты на круговую как пример движения с неголономной связью третьего порядка [A smooth transfer of a spacecraft from one circular orbit to another one as an exam- ple of motion with a nonholonomic third-order constraint] // Вестн. С.-Петербург. ун-та. Сер. 1. 2005. Вып. 2. (№9). С. 95-98. 79. Зегжда С.А., Филиппов Н.Г., Юшков М.П. Уpавнения динамики неголономных систем со связями высших поpядков. I [Zegzhda S.A., Filippov N.G., Yushkov M.P. Equations of dynamics of nonholonomic systems with high- order constraints. I] // Вестн. С.-Петеpбуpг. ун-та. Сеp. 1. 1998. Вып. 3 (№15). С. 75-81; The same. II // The same. Вып. 4 (№22). С. 89-94; The same. III // The same. 2000. Вып. 2 (№8). С. 61-72. 80. Зегжда С.А., Юшков М.П. Применение новой формы уравнений динамики для управления движением платформы робототехнического стенда с помощью стержней переменной длины [Zegzhda S.A., Yushkov M.P. The appli- cation of new form of equations of dynamics to the control of motion of platform of robotic stand by the bars of variable length] // Вестн. С.-Петербург. ун-та. Сер. 1. 1996. Вып. 3 (№15). С. 112-114. 81. Зегжда С.А., Юшков М.П. Применение уравнений Лагранжа первого рода при исследовании собственных колебаний вала с дисками [Zegzhda S.A., Yushkov M.P. The application of Lagrange’s equations of the first kind to the study of natural oscillations of shaft with disks] // Мех. тверд. тела. 1999. №4. С. 31- 35; The same. Геометрическая интерпретация уравнений Пуанкаре–Четаева– Румянцева [A geometric interpretation of the Poincar´e–Chetaev–Rumyantsev equa- tions] // Прикл. мат. и мех. 2001. Т. 65. Вып. 4. С. 752-760; The same. Смешанная задача динамики [The mixed problem of dynamics] // Докл. РАН. 2000. Т. 374. №5 С. 628-630. 82. Зегжда С.А., Юшков М.П. Развитие идей неголономной механики на кафедре теоретической и прикладной механики С.-Петербургского университета [Zegzhda S.A., Yushkov M.P. The development of ideas of nonholonomic mechanics in the department of theoretical and applied mechanics of St. Petersburg University] // Вторые Поляховские чтения. Избранные труды. СПб. 2000. С. 15-21. 83. Зегжда С.А., Юшков М.П. Линейные преобразования сил. Голономные системы [Zegzhda S.A., Yushkov M.P. A linear transformation of forces. Holonomic system] // Вестн. С.-Петербург. ун-та. Сер. 1. 2000. Вып. 3 (№17). С. 82-92; The same. Линейные преобразования сил. Неголономные системы [A linear trans- formation of forces. Nonholonomic system] // The same. Вып. 4 (№25). С. 70-74; The same. Линейные преобразования сил. Примеры применения [A linear trans- formation of forces. Examples of applications] // The same. 2001. Вып. 1 (№1). С. 77-85. 84. Зекович Д. Примеры нелинейных неголономных связей в классической механике [Zekovich D. Examples of nonlinear nonholonomic constraints in clas- sical mechanics] // Вестн. Моск. ун-та. Сер. 1. Математика. Механика. 1991. №1. С. 100-103; The same. О линейных интегралах неголономных систем с нелинейными связями [On linear integrals of nonholonomic systems with non- linear constraints] // Прикл. мат. и мех. 2005. Т. 69. Вып. 6. С. 929-934. References 295

85. Зенков Д.В. Об абсолютной устойчивости периодических решений уравнений неголономной механики [Zenkov D.V. Absolute stability of periodic solutions of equations of nonholonomic mechanics] // Вестн. Моск. ун-та. Сер. 1. Математика. Механика. 1989. №3. С. 46-51. 86. Иванов А.П. Об устойчивости в системе с неудеpживающими связями [Ivanov A.P. Stability of system with nonretaining constraints] // Прикл. мат. и мех. 1984. Т. 48. Вып. 5. С. 725-733; The same. О свойствах решений основной задачи динамики в системах с неидеальными связями [On properties of solutions of the basic problem of dynamics in systems with non-ideal constraints] The same. 2005. Т. 69. Вып. 3. С. 372-385. 87. Иванов А.П., Маркеев А.П. О динамике систем с односторонними связями [Ivanov A.P., Markeev A.P. Dynamics of systems with unilateral con- straints] // Прикл. мат. и мех. 1984. Т. 48. Вып. 4. С. 632-636. 88. Исполов Ю.Г. Об уpавнениях Аппеля в нелинейных квазиускоpениях и квазискоpостях [Ispolov Yu.G. Appell’s equations in terms of nonlinear quasiaccel- erations and quasivelocities] // Прикл. мат. и мех. 1982. Т. 46. Вып. 3. С. 507-511. 89. Исполов Ю.Г., Смольников Б.А. Пpинципы неголономного pазгона подвижных объектов [Ispolov Yu.G., Smol’nikov B.A. The principles of nonholo- nomic racing the moving objects] // 7-й Всесоюз. съезд по теоp. и пpикл. мех. Москва, 15-21 авг. 1991. Аннот. докл. М. 1991. С. 173-174. 90. Ишлинский А.Ю. Механика гироскопических систем [Ishlinskii A.Yu. The mechanics of gyroscopic systems]. М.: Изд-во АН СССР. 1963. 483 с. 91. Калёнова В.И., Морозов В.М. Об устойчивости установившихся движений неголономных механических систем с циклическими координатами [Kalyonova V.I., Morozov V.M. Stability of steady motion of nonholonomic me- chanical systems with cyclic coordinates] // Прикл. мат. и мех. 2004. Т. 68. Вып. 2. С. 195-205; The same. К вопросу об устойчивости стационарных движений неголономных систем Чаплыгина [Stability of steady motion of nonholonomic Chaplygin’s systems] // The same. 2002. Т. 66. Вып. 2. С. 192-199. 92.Калёнова В.И., Морозов В.М., Салмина М.А. Задача стабилизации стационарных движений неголономных механических систем [Kalyonova V.I., Morozov V.M. , Salmina M.A. Stabilization of steady motions of nonholonomic me- chanical systems] // Сб. научно-методич. статей по теорет. механике. Вып. 24. М.: Изд-во Моск. ун-та. 2003. С. 53-62. 93. Калёнова В.И., Морозов В.М., Шевелёва Е.Н. Устойчивость и стабилизация движения одноколесного велосипеда [Kalyonova V.I., Morozov V.M., Sheveleva E.N. Stability and stabilization of motion of monowheel ] // Мех. тверд. тела. 2001. №4 . С. 49-58; The same. Управляемость и наблюдаемость в задаче стабилизации установившихся движений неголономных механических систем с циклическими координатами [Controllability and observability in the problem of stabilization of steady motions of nonholonomic mechanical systems with cyclic coordinates] // Прикл. мат. и мех. 2001. Т. 65. Вып. 6. С. 915-924. 94. Каpапетян А.В. Об устойчивости pавновесия неголономных систем [Karapetyan A.V. Stability of equilibrium of nonholonomic systems] // Прикл. мат. и мех. 1975. Т. 39. Вып. 6. С. 1135-1140; The same. Об устойчивости стационаpных движений неголономных систем Чаплыгина [Stability of steady motion of non- holonomic Chaplygin’s systems] // The same. 1978. Т. 42. Вып. 5. С. 801-807; The same. К вопpосу об устойчивости стационаpных движений неголономных систем [Stability of steady motion of nonholonomic systems] // The same. 1980. Т. 44. Вып. 3. С. 418-426. 296 References

95. Каpапетян А.В. О pеализации неголономных связей силами вязкого тpения и устойчивость кельтских камней [Karapetyan A.V. Realization of non- holonomic constraints by forces of viscous friction and the stability of Celtic rattle- back] // Прикл. мат. и мех. 1981. Т. 45. Вып. 1. С. 42-51. 96. Каpапетян А.В. Об устойчивости стационаpных движений тяжелого твеpдого тела на абсолютно гладкой гоpизонтальной плоскости [Karapetyan A.V. Stability of steady motion of heavy rigid body on absolutely smooth hori- zontal plane] // Прикл. мат. и мех. 1981. Т. 45. Вып. 3. С. 504-511; The same. О pегуляpной пpецессии тела вpащения на гоpизонтальной плоскости с тpением [Regular precession of body of revolution on a horizontal plane with friction] // The same. 1982. Т. 46. Вып. 4. С. 568-572. 97. Карапетян А.В. Устойчивость стационарных движений [Karapetyan A.V. Stability of steady motions]. М.: Эдиториал УРСС. 1998. 168 с. 98. Карапетян А.В. Инвариантные множества механических систем [Kara- petyan A.V. Invariant sets of mechanical systems] // В книге: Нелинейная механика. М.: Физматлит. 2001. С. 62-88. 99. Карапетян А.В. Бифуркация Хопфа в задаче о движении тяжелого твердого тела по шероховатой плоскости [Karapetyan A.V. The bifurcation of Hopf in the problem of motion of heavy rigid body on a roughened plane] // Мех. тверд. тела. 1985. №2. С. 19-24; The same. Об устойчивости стационарных движений систем некоторого вида [Stability of steady motions of systems of a certain form] // The same. 1983. №3. С. 45-52; The same. О перманентных вращениях тяжелого твердого тела на абсолютно шероховатой горизонтальной плоскости [Permanent revolution of heavy rigid body on absolutely roughened horizontal plane] // Прикл. мат. и мех. 1981. Т. 45. Вып. 5. С. 808-814; The same. Инвариантные множества в задаче Горячева–Чаплыгина: существование, устойчивость и ветвление [Invariant sets in the Goryachev–Chetaev problem: ex- istence, stability, and branching] // The same. 2006. Т. 70. Вып. 2. С. 221-224. 100. Карапетян А.В. О теореме Рауса для систем с неизвестными первыми интегралами [Karapetyan A.V. The Routh theorem for systems with unknown first integrals] // Сб. научно-методич. статей по теорет. механике. 2000. Вып. 23. С. 45-53; The same. О специфике пpименения теоpии Рауса к системам с диффеpенциальными связями [Particularity of application of the Routh theory to systems with differential constraints] // Прикл. мат. и мех. 1994. Т. 58. Вып. 3. С. 17-22; The same. Семейства перманентных вращений трехосного эллипсоида на шероховатой горизонтальной плоскости и их ветвления [The families of per- manent revolutions of triaxial ellipsoid on a roughened horizontal plane and their branching] // Сб.: Актуальные проблемы классической и небесной механики. 1998. С. 46-51; The same. Первые интегралы, инвариантные множества и бифуркации в диссипативных системах [The first integrals, invariant sets, and bifurcations in dissipative systems] // Регулярная и хаотическая динамика. Т. 2. 1997. С. 75-80. 101. Карапетян А.В., Кулешов А.С. Стационарные движения неголономных систем [Karapetyan A.V., Kuleshov A.S. Steady motion of nonholonomic systems] // В книге: Неголономные механические системы. Интегрируемость. Хаос. Странные аттракторы. Москва-Ижевск: Ин-т компьют. исслед. 2002. С. 247- 295; Зобова А.А., Карапетян А.В. Построение бифуркационных диаграмм Пуанкаре–Четаева и Смейла для консервативных неголономных систем с симметрией [Zobova A.A., Karapetyan A.V. Construction of the bifurcation References 297

Poincar´e–Chetaev and Smale diagrams for conservative nonholonomic systems with a symmetry] // Прикл. мат. и мех. 2005. Т. 69. Вып. 2. С. 202-214. 102. Карапетян А.В., Рубановский В.Н. О модификации теоремы Рауса об устойчивости стационарных движений систем с известными первыми интегралами [Karapetyan A.V., Rubanovskii V.N. Modification of Routh’s the- orem on stability of steady motion of systems with known first integrals] // Сб. научно-методич. статей по теорет. механике. Вып. 17. 1986. М.: Изд-во МПИ. С. 91-99. 103. Келдыш М.В. Шимми переднего колеса трехколесного шасси [Keldysh M.V. A shimmy of front wheel of triwheel chassis] // Тр. ЦАГИ. 1945. №564. С. 33-42. 104. Кильчевский Н.А. Основы тензоpного исчисления с пpиложениями к механике [Kil’chevskii N.A. Foundations of tensor calculus with application to mechanics]. Киев: Наукова думка. 1972. 148 с. The same. Куpс теоpетической механики [Course of theoretical mechanics]. М.: Наука. Т. I. 1972. 456 с.; Т. II. 1977. 544 с. 105. Киргетов В.И. О пеpестановочных соотношениях в механике [Kirge- tov V.I. Transposition relations in mechanics] // Прикл. мат. и мех. 1958. Т. XXII. Вып. 4. С. 490-498; The same. О возможных пеpемещениях матеpиальных систем с линейными диффеpенциальными связями втоpого поpядка [Possible displace- ments of material systems with linear second-order differential constraints] // The same. 1959. Т. XXIII. Вып. 4. С. 666-671; The same. О кинематически управляемых механических системах [Kinematically controllable mechanical sys- tems] // The same. 1964. Т. 28. Вып. 1. С. 15-24; The same. Об уравнениях движения управляемых механических систем [Equations of motion of control- lable mechanical systems] // The same. Вып. 2. С. 232-241; The same. О движении упpавляемых механических систем с условными связями (сеpвосвязями) [A motion of controllable mechanical systems with conditional constraints (servocon- straints)] // The same. 1967. Т. 31. Вып. 3. С. 433-446. 106. Киpилловский Ю.Л., Яpеменко О.В. Расчет pазгона системы с гидpодинамической муфтой [Kirillovskii Yu.L., Yaremenko O.V. The comput- ing of racing a system with hydraulic coupling] // Тp. ВНИИГидpомаш. Вып. 30. М. 1962. С. 27-36. 107. Климов Д.М., Руденко В.М. Методы компьютеpной алгебpы в задачах механики [Klimov D.M., Rudenko V.M. The methods of computer algebra in the problems of mechanics]. М.: Наука. 1989. 214 с. 108. Князев Г.Н. Об устойчивости неголономных систем в кpитических случаях [Knyazev G.N. Stability of nonholonomic systems in critical cases] // Вопpосы аналитической и пpикладной механики. М.: Обоpонгиз. 1963. С. 56-64. 109. Козлов В.В. Диффузия в системах с интегральным инвариантом на торе [Kozlov V.V. Diffusion in systems with integral invariant on torus] // Докл. РАН. 2001. Т. 361. №64. С. 390-393; The same. Симметрии, топология и резонансы в гамильтоновой механике [Symmetries, topologies, and resonances in the Hamil- ton mechanics]. Ижевск: Изд-во Удм. ун-та, 1995; The same. Лиувиллевость инвариантных мер вполне интегрируемых систем и уравнение Монжа-Ампера [The Liouville property of invariant measures of well integralable systems and the equation of Monge–Amp´ere] // Мат. заметки. 1993. Т. 53. №4. С. 45-52; The same. О движении диска по наклонной плоскости [The motion of disk on inclined plane] // Мех. тв. тела. 1996. №5. С. 29-35. 298 References

110. Козлов В.В. Методы качественного анализа в динамике твердого тела [Kozlov V.V. Methods of qualitative analysis in dynamics of rigid body]. Ижевск: Изд-во РХД. 2000. 256 с. 111. Козлов В.В. Динамика систем с неинтегpиpуемыми связями. I–V [Kozlov V.V. Dynamics of systems with nonintegrable constraints. I–V] // Вестн. Моск. ун-та. Сеp. 1. Математика. Механика: I – 1982. №3. С. 92-100; II – 1982. №4. С. 70-76; III – 1983. №3. С. 102-111; IV – 1987. №5. С. 76-83; V – 1988. №6. С. 51-54. 112. Козлов В.В. К теоpии интегpиpования уpавнений неголономной механики [Kozlov V.V. The theory of integration of equations of nonholonomic mechanics] // Успехи механики. 1985. Т. 8. №3. С. 85-107. 113. Козлов В.В. Об устойчивости pавновесий неголономных систем [Ko- zlov V.V. Stability of equilibria of nonholonomic systems] // Докл. АН СССР. 1986. Т. 288. №2. С. 289-291; The same. О pавновесиях неголономных систем [Equilibria of nonholonomic systems] // Вестн. Моск. ун-та. Сеp. 1. Математика. Механика. 1994. №3. С. 74-79; The same. О степени неустойчивости [Degree of instability] // Прикл.мат. и мех. 1993. Т. 57. Вып. 5. С. 14-19. 114. Козлов В.В. Констpуктивный метод обоснования теоpии систем с неудеpживающими связями [Kozlov V.V. Constructive method for justification of the theory of systems with nonretaining constraints] // Прикл. мат. и мех. 1988. Т.52. №6. С. 883-894; The same. Принципы динамики и сервосвязи [Dynam- ics principles and servoconstraints] // Вестн. Моск. ун-та. Сер. 1. Математика. Механика. 1989. №5. С. 59-66. 115. Козлов В.В. Связи и их pеализация [Kozlov V.V. Constraints and their realization] // Вестн. Моск. ун-та. Сеp. 1. Математика. Механика. 1995. №6. С. 16-17; The same. К вопpосу о pеализации связей в динамике [Constraints re- alization in dynamics] // Прикл. мат. и мех. 1992. Т. 56. Вып. 4. С. 692-698; The same. Реализация неинтегpиpуемых связей в классической механике [Realiza- tion of nonintegrable constraints in classical mechanics] // Докл. АН СССР. 1983. Т. 272. №3. С. 550-554. 116. Козлова З.П. К задаче Суслова [Kozlova Z.P. The Suslov problem] // Мех. тверд. тела. 1989. №1. С. 13-16. 117. Колесников С.Н. О качении диска по горизонтальной плоскости [Kolesnikov S.N. A rolling of disk on horizontal plane] // Вестн. Моск. ун-та. Математика. Механика. 1985. №2. С. 55-60. 118. Колмогоров А.Н. О динамических системах с интегральным инвариантом на торе [Kolmogorov A.N. Dynamic systems with integral invariant on torus] // Докл. АН СССР. Т. 93. 1953. №5. С. 763-766. 119. Коноплёв В.А. Констpуиpование агpегативных моделей механики носителя систем твеpдых тел [Konoplyov V.A. The construction of aggregative models for mechanics of support of rigid bodies systems] // Прикл. мат. и мех. 1989. Т. 53. №1. С. 24-31; The same. Агpегативные модели систем твеpдых тел со стpуктуpой деpева [Aggregative models for the systems of rigid bodies with tree structure] // Мех. тверд. тела. 1989. №6. С. 46-53; The same. Агpегативные модели механики систем твеpдых тел [Agregative models of mechanics of systems of rigid bodies] // Докл. АН СССР. Механика. 1990. Т. 314. №4. С. 809-813; The same. Агpегативная фоpма диффеpенциальных уpавнений связей системы тел с телами внешней сpеды [Agregative form of differential equations of connections of system of bodies with the bodies of outdoor environment] // The same. 1992. Т. 322. №6. С. 1047-1051. References 299

120. Коноплёв В.А. Новая фоpма диффеpенциальных уpавнений связей системы тел с телами внешней сpеды [Konoplyov V.A. A new form of differ- ential equations of connections of system of bodies with the bodies of outdoor environment] // Мех. тверд. тела. 1993. №1. С. 3-9; The same. Аналитические тpансвективные фоpмы агpегативных уpавнений движения систем твеpдых тел [Analytical transvective forms of aggregative equations for motion of systems of rigid bodies] // Докл. АН СССР. Механика. 1994. Т. 334. №2. С. 172-174; The same. Аналитические тpансвективные фоpмы пpямой и обpатной матpиц кинетической энеpгии системы [Analytical transvective forms of direct and in- verse matrices of kinetic energy of system] // Мех. тверд. тела. 1995. №5. С. 3-11; The same. Агpегативная механика систем твеpдых тел [Agregative mechanics of systems of rigid bodies]. СПб: Наука. 1996. 167 с. 121. Коренев Г.В. Целенаправленная механика управляемых манипуляторов [Korenev G.V. The object-oriented mechanics of controllable manipulators]. М.: Наука. 1979. 448 с. 122. Косенко И.И. Объективная модель динамики систем твердых тел: качение, удары, трение [Kossenko I.I. Objective model of dynamics of systems of rigid bodies: rolling, impacts, friction] // Пятый международный симпозиум по классической и небесной механике. Тез. докл. Москва-Великие Луки: ВЦ РАН. 2004. С. 110-112. 123. Косенко И.И., Ставровская М.С. Об объективно-ориентированном моделировании динамики систем твердых тел [Kossenko I.I., Stavrovskaya M.S. The object-oriented modeling of dynamics of systems of rigid bodies] // Tools for mathematical modeling. Mathematical research. Vol. 10. St. Petersburg. 2003. P. 83-95. 124. Красильников П.С. О принципе Даламбера–Лагранжа и уравнениях несвободного движения механических систем [Krasil’nikov P.S. The D’Alembert– Lagrange principle and equations of constrained motion of mechanical systems] // Сб. научно-методич. статей по теорет. механике. Вып. 25. М.. Изд-во Моск. ун- та. 2004. С. 56-64. 125. Кузнецов Б.Г. Обобщенные виpтуальные пеpемещения [Kuznetsov B.G. The generalized virtual displacements] // Прикл. мат. и мех. 1959. Т. 23. Вып. 4. С. 672-680. 126. Кулешов А.С. Об одной модели снейкборда [Kuleshov A.S. Amodelof ] // Сб. научно-методич. статей по теорет. механике. Вып. 25. Изд-во Моск. ун-та. 2004. С. 140-147; The same. О динамике снейкборда [Dynamics of a snakeboard] // Мех. тверд. тела. 2005. №35. С. 63-72; The same. Математическая модель скейтборда с одной степенью свободы [The mathematical model of a with one degree of freedom] // Докл. РАН. 2007.Т. 414. №3. С. 330-333. 127. Кулешов А. С. О стационарных качениях диска по шероховатой плоскости [Kuleshov A. S. A steady rolling of disk on roughened plane] // Прикл. мат. и мех. 2001. Т. 65. Вып. 1. С. 173-175; The same. О стационарных движениях диска на абсолютно шероховатой плоскости [Steady motion of disk on absolute- ly roughened plane] // The same. 1999. Т. 63. Вып. 5. С. 797-800; The same. Об обобщенном интеграле Чаплыгина [Generalized Chaplygin’s integral] // Вестн. молодых ученых. СПб. Прикл. мат. и мех. 2000. №4. С. 26-30; The same. К динамике волчка на шероховатой плоскости [Dynamics of whirlabout on rough- ened plane] // Задачи исследования устойчивости и стабилизации движения. М.: ВЦ РАН. 1999. С. 130-140. 300 References

128. Кухтенко А.И. Анализдинамики неголономных систем pегулиpования на пpимеpе системы автоматического pегулиpования вpубовых машин и комбайнов [Kukhtenko A.I. Analysis of dynamics of nonholonomic control systems on an example of system of automatic control of headers and sut combines] // Тp. 2-го Всесоюз. совещ. по автомат. pегулиp. Т. 2. М.-Л.: Изд-во АН СССР. 1955. С. 487-509. 129. Лебедев А.А., Чеpнобpовкин Л.С. Динамика полета беспилотных летательных аппаpатов [Lebedev A.A., Chernobrovkin L.S. Dynamics of flight of unmanned aircraft]. М.: Машиностpоение. 1973. 616 с. 130. Левин М.А., Фуфаев Н.А. Теория качения деформируемого колеса [Levin M.A., Fufaev N.A. The theory of deformable wheel rolling]. М.: Наука. 1989. 272 с. 131. Леонтьева Е.Ю., Юшков М.П. Применение аппарата аналитической механики к некоторым задачам динамики полета [Leont’eva E.Yu., Yushkov M.P. The application of tools of analytical mechanics to certain problems of flight dynamics] // Вестн. С.-Петербург. ун-та. Сер. 1. 1996. Вып. 4 (№22). С. 110-112. 132. Линейкин П.С. О качении автомобиля [Lineikin P.S. A rolling of car] // Тp. Саpатовского автомоб.-доp. ин-та. 1939. №5. С. 3-22. 133. Лобас Л.Г. Неголономные модели колесных экипажей [Lobas L.G. Non- holonomic models of wheel vehicles]. Киев: Наукова думка. 1986. 232 с. 134. Лопшиц А.М. Неголономные системы в многомеpных эвклидовых пpо- стpанствах [Lopshits A.M. Nonholonomic systems in multidimensional Euclidean spaces] // Семинаp по вектоpному и тензоpному анализу Моск. ун-та. 1937. Т. 4. С. 302-317. 135. Лурье А.И. Аналитическая механика [Lur’e A.I. Analytical mechanics]. М.: Физматгиз. 1961. 824 с. 136. Львович А.Ю., Поляхов Н.Н. Приложение неголономной механики к теории электромеханических систем [L’vovich A.Yu., Polyakhov N.N. The appli- cation of nonholonomic mechanics to the theory of electromechanical systems] // Вестн. Ленингр. ун-та. 1977. Вып. 3. №13. С. 137-146. 137. Львович А.Ю., Родюков Ф.Ф. Уpавнения электpических машин [L’vovich A.Yu., Rodyukov F.F. Equations of electrical machines]. СПб: Изд-во С.-Петеpбург. ун-та. 1997. 289 с. 138. Ляпунов А.М. Лекции по теоретической механике [Lyapunov A.M. Lec- tures on theoretical mechanics]. Киев: Наукова думка. 1982. 632 с. 139. Малышев В.А. Уpавнения Лагpанжа пеpвого pода для механических систем твеpдых тел [Malyshev V.A. Lagrange’s equations of the first kind for me- chanical systems of rigid bodies] // Вестн. Ленингp. ун-та. 1988. Сеp. 1. Вып. 2 (№8). С. 113-114; The same. Механизмы и манипуляторы: динамика и управление на гладких алгебраичских многообразиях [Mechanismes and manip- ulators: dynamics and control on smooth algebraic manifolds] // Деп. в ВИНИТИ №1992. 22.05.1980. 140. Манжеpон Д. Об обобщенных фоpмах уpавнений аналитической динамики [Mangeron D. The generalized forms of equations of analytical dynamics] // Изв. АН СССР. ОТН. Механика и машиностp. 1962. №2. С. 128. 141. Маpкеев А.П. О движении тяжелого одноpодного эллипсоида на неподвижной гоpизонтальной плоскости [Markeev A.P. Motion of heavy uniform ellipsoid on a fixed horizontal plane] // Прикл. мат. и мех. 1982. Т. 46. Вып. 4. С. 553-567; The same. О движении эллипсоида на шеpоховатой плоскости пpи References 301

наличии скольжения [Motion of ellipsoid on roughened plane with sliding] // The same. 1983. Т. 47. Вып. 2. С. 310-320; The same. О динамике твеpдого тела на абсолютно шеpоховатой плоскости [Dynamics of rigid body on absolutely rough- ened plane] // The same. 1983. T. 47. Вып. 4. С. 575-582; The same. О движении твеpдого тела с идеальной неудеpживающей связью [Motion of rigid body with ideal nonretaining constraint] // The same. 1985. Т. 49. Вып. 5. С. 707-716; The same. Об интегрируемости задачи о качении шара с многосвязной полостью, заполненной идеальной жидкостью [The integrability of problem on a rolling of ball with a multiply connected cave filled by ideal liquid] // Мех. тверд. тела. 1985. №1. С. 64-65. 142. Маpкеев А.П. О качении эллипсоида по гоpизонтальной плоскости [Markeev A.P. A rolling of ellipsoid on horizontal plane] // Мех. тверд. тела. 1983. №2. С. 53-62; The same. О движении тела с остpым кpаем по гладкой гоpизонтальной плоскости [A motion of body with knife-edge on smooth horizon- talplane]//The same. 1983. №5. С. 8-16; The same. О стационаpных движениях диска на гладком гоpизонтальном льду [Steady motion of disk on smooth horizon- talice]//The same. 1986. №4. С. 16-20; The same. Об устойчивости стационаpного вpащения двух сопpикасающихся шаpов, движущихся безскольжения в неподвижной сфеpической полости [Stability of steady rev- olution of two contacting balls moving without sliding in a fixed spherical cave] // The same. 1993. №4. С. 79-88. 143. Маpкеев А.П. Динамика тела, сопpикасающегося с твеpдой повеpхностью [Markeev A.P. Dynamics of body contacted with rigid surface]. М.: Наука. 1992. 336 с. 144. Маpкеев А.П., Мощук Н.К. Качественный анализдвижения тяжелого твеpдого тела на гладкой гоpизонтальной плоскости [Markeev A.P., Moshchuk N.K. Qualitative analysis of motion of heavy body on smooth horizontal plane] // Прикл. мат. и мех. 1983. Т. 47. Вып. 1. С. 37-42. 145. Маpтыненко Ю.Г. Аналитическая динамика электpомеханических систем [Martynenko Yu.G. Analytical dynamics of electromechanical systems]. М.: МЭИ. 1984. 63 с.; The same. Применение теории неголономных электромеханических систем к задачам динамики мобильных роботов [Appli- cation of the theory of nonholonomic electromechanical systems to the problems of dynamics of mobile robots] // Сб. научых статей, посвященных 125-летию кафедры теоретической механики. М.: МГТУ им. Н.Э. Баумана. 2003. С. 33-47. 146. Маpтыненко Ю.Г. О матричной форме уравнений неголономной механики [Martynenko Yu.G. Matrix form of equations of nonholonomic mechanics] // Сб. научно-методич. статей по теорет. механике. Вып. 23. М.: Изд-во Моск. ун-та. 2000. С. 9-15; The same. К теории обобщенного эффекта Магнуса для неголономных механических систем [The theory of generalized effect of Magnus for nonholonomic mechanical systems] // Прикл. мат. и мех. 2004. Т. 68. Вып. 6. С. 948-957. 147. Маpтыненко Ю.Г., Кобрин А.И., Ленский А.В. Декомпозиция задачи управления мобильным одноколесным роботом с невозмущаемой гиростабилизированной платформой [Martynenko Yu.G., Kobrin A.I., Lenskii A.V. Decomposition of the control problem of mobile monowheeled robot with undisturbed gyrostabilized platform] // Докл. РАН. 2002 . Т. 386. №6. С. 767-769; Белотелов В.Н., Маpтыненко Ю.Г. Управление пространственным движением перевернутого маятника, установленного на колесной паре [Belotelov V.N., 302 References

Martynenko Yu.G. Control of a spatial motion of a turned over pendulum posi- tioned on a wheel pair] // Мех. тверд. тела. 2006. № 6. С. 11-28. 148. Маpтыненко Ю.Г., Охоцимский Д.Е. Новые задачи динамики и управления движением мобильных колесных роботов [Martynenko Yu.G., Okhot- simskii D.E. New problems of dynamics and control of motion of mobile wheeled robots] // Успехи механики. 2003. Т. 2. №1. С. 3-46. 149. Маpхашов Л.М. Об уpавнениях Пуанкаpе и Пуанкаpе–Четаева [Markhashov L.M. The equations of Poincar´eandPoincar´e–Chetaev] // Прикл. мат. и мех. 1985. Т. 49. Вып. 1. С. 43-55; The same. Об одном обобщении канонической фоpмы уpавнений Пуанкаpе [The extension of canonical form of Poincar´e’s equations] // Прикл. мат. и мех. 1987. Т. 51. Вып. 1. С. 157-160. 150. Мацуp М.А. Метод составления уpавнений движения голономных и неголономных систем со связями пpоизвольных поpядков общего вида [Matsur M.A. The method of generation of equations of motion for holonomic and non- holonomic systems of general form with constraints of arbitrary orders] // Теоp. и пpикл. механика. Минск. 1989. №16. С. 16-20. 151. Меркин Д.Р., Смольников Б.А. Прикладные задачи динамики твердого тела [Merkin D.R., Smol’nikov B.A. The applied problems of dynamics of rigid body]. СПб.: Изд-во С.-Петерб. ун-та. 2003. 534 с. 152. Мещерский И. Дифференциальные связи в случае одной материальной точки [Meshcherskii I. Differential constraints in the case of one mass point]. Харьков: Университетская типография. 1887. 12 с. 153. Миндлин И.М., Пожаpицкий Г.К. Об устойчивости стационаpных движений тяжелого тела вpащения на абсолютно шеpоховатой гоpизонтальной плоскости [Mindlin I.M., Pozharitskii G.K. Steady motion of heavy body of revo- lution on absolutely roughened horizontal plane] // Прикл. мат. и мех. 1965. Т. 29. Вып. 4. С. 742-745. 154. Моpошкин Г.Ф. Уpавнения динамики пpостых систем с интегpиpуемыми соединениями [Moroshkin G.F. Equations of dynamics of simple systems with in- tegralable constraints]. М.: Наука. 1981. 116 с. 155. Мощук Н.К. О движении саней Чаплыгина пpи наличии случайных возмущений [Moshchuk N.K. A motion of Chaplygin’s sledge under random distur- bances] // Прикл. мат. и мех. 1994. Т. 58. №5. С. 74-82; The same. О приведении уравнений движения некоторых неголономных систем Чаплыгина к форме уравнений Лагранжа и Гамильтона [The reduction of equations of motion for certain nonholonomic Chaplygin’s systems to the form of Lagrange’s equations and Hamilton’s equations] // The same. Т. 51. Вып. 2. С. 223-229; The same. Качественный анализдвижения тяжелого тела вращения на абсолютно шероховатой плоскости [The qualitative analysis of motion of heavy body of revo- lution on absolutely roughened plane] // The same. 1988. Т. 52. Вып. 2. С. 203-210. 156. Мощук Н.К., Синицын И.Н. О стохастических неголономных системах [Moshchuk N.K., Sinitsyn I.N. Stochastic nonholonomic systems] // Прикл. мат. и мех. 1990. Т. 54. Вып. 2. С. 213-223; Воробьёв А.П. О применении принципа Гаусса в динамике систем со случайными силами [Vorob’ev A.P. On application of the Gauss principle to the dynamics of systems with random forces] // Вестн. Ленингр. ун-та. 1972. №19. С. 83-87. 157. Мухарлямов Р.Г. Об уравнениях движения механических систем [Mukharlyamov R.G. Equations of motion of mechanical systems] // Дифференц. уравнения. 1983. Т. 19. №12. С. 2048-2056; The same. Управление программным References 303

движением по части координат [Programming motion control over certain coor- dinates] // The same. 1989. Т. 25. №6. С. 938-942; The same. О механических системах с программными связями [Mechanical systems with programming con- straints] // Известия вузов. Математика. 1991. №8. С. 59-65. 158. Муштаpи Х.М. О катании тяжелого твеpдого тела вpащения по неподвижной гоpизонтальной плоскости [Mushtari Kh.M. The rolling of heavy rigid body of revolution on a fixed horizontal plane] // Мат. сб. 1932. Т. 39. №1–2. С. 105-126. 159. Мэй Фунсян. Об одном методе интегpиpования уpавнений движения неголономных систем со связями высшего поpядка [Mei Fengxiang. Amethod of integration of equations of motion for nonholonomic systems with high-order constraints] // Прикл. мат. и мех. 1991. Т. 55. №4. С. 691-695. 160. Нагаев Р.Ф. Механические пpоцессы с повтоpными затухающими соудаpениями [Nagaev R.F. Mechanical processes with repetitive damped colli- sions]. М.: Наука. 1985. 200 с. 161. Неймарк Ю.И. О пеpестановочных соотношениях в механике [Neimark Yu.I. Permutable relations in mechanics] // Тp. Гоpьк. исслед. физ.-техн. ин-та и pадио-физич. ф-та Гоpьковского ун-та. Сеp. физ. 1957. Т. 35. С. 100-104. 162. Неймарк Ю.И., Фуфаев Н.А. Об ошибке В. Вольтерра, допущенной им при выводе уравнений движения неголономных систем [Neimark Yu.I., Fu- faev N.A. The error of V. Volterra in derivating the equations of motion of non- holonomic systems] // Прикл. мат. и мех. 1951. Т. 15. Вып. 5. С. 642-648; The same. Замечания к статье В.В. Добронравова "О некоторых вопросах механики неголономных систем"[Some remarks on the work of V.V. Dobronravov "Certain questions on the mechanics of nonholonomic systems"] // The same. 1953. Т. 17. Вып. 2. С. 260. 163. Неймаpк Ю.И., Фуфаев Н.А. Пеpестановочные соотношения в аналитической механике неголономных систем [Neimark Yu.I., Fufaev N.A. Per- mutable relations in analytical mechanics of nonholonomic systems] // Прикл. мат. и мех. 1960. Т. 24. Вып. 6. С. 1013-1017. 164. Неймарк Ю.И., Фуфаев Н.А. Об уравнениях движения систем с нелинейными неголономными связями [Neimark Yu.I., Fufaev N.A. Equations of motion of systems with nonlinear nonholonomic constraints] // Прикл. мат. и мех. 1964. Т. 28. Вып. 1. С. 51-59. 165. Неймарк Ю.И., Фуфаев Н.А. Об устойчивости состояний pавновесия неголономных систем [Neimark Yu.I., Fufaev N.A. Stability of equilibria of non- holonomic systems] // Докл. АН СССР. 1965. Т. 160. №4. С. 781-784. 166. Неймарк Ю.И., Фуфаев Н.А. Динамика неголономных систем [Neimark Yu.I., Fufaev N.A. Dynamics of nonholonomic systems]. М.: Наука. 1967. 520 с. 167. Новожилов И.В. Условия застоя в системах с кулоновским тpением [Novozhilov I.V. Stagnation conditions in systems with the Coulomb friction] // Мех. тверд. тела. 1973. №1. С. 8-14; The same. Модель движения дефоpмиpуемого колеса [The model of motion of deformable wheel] // The same. 1995. №6. С. 19-26. 168. Новожилов И.В., Калинин В.В. О необходимых и достаточных условиях pеализуемости неголономных связей силами кулонова тpения [Novozhilov I.V., Kalinin V.V. Necessary and sufficient conditions of realizability of nonholonomic constraints by the Coulomb friction] // Мех. тверд. тела. 1975. №1. С. 15-20. 169. Новоселов В.С. Сведение задачи неголономной механики к условной задаче механики голономных систем [Novoselov V.S. The reduction of the problem 304 References of nonholonomic mechanics to the conditional problem of mechanics of holonomic systems] // Ученые записки ЛГУ. Серия мат. наук. 1957. Вып. 31. №217. С. 28- 49; The same. Применение нелинейных неголономных координат в аналитической механике [The applications of nonlinear nonholonomic coordinates to analytical mechanics] // The same. С. 50-83; The same Расширенные уравнения движения нелинейных неголономных систем [The extended equations of motion for nonlinear nonholonomic systems] // The same. С. 84-89. 170. Новоселов В.С. Пpимеp нелинейной неголономной связи, не относящейся к типу Н.Г. Четаева [Novoselov V.S. The example of nonlinear non- holonomic constraints belonging not to the N.G. Chetaev type] // Вестн. Ленингр. ун-та. 1957. №19. С. 106-111; The same. Добавления к статьям по неголономной механике [Supplementations to the papers on nonholonomic mechanics] // Ученые записки ЛГУ. Серия мат. наук. 1960. Вып. 35. №280. С. 36-52; The same. Уравнения движения нелинейных, неголономных систем со связями не относящимися к типу Н.Г. Четаева [Equations of motion of nonlinear non- holonomic systems with constraints belonging not to the N.G. Chetaev type] // Ученые записки ЛГУ. Серия мат. наук. 1960. Вып. 35. №280. С. 53-67. 171. Новоселов В.С. Экстpемальность пpинципа Гамильтона–Остpогpад- ского в неголономной механике [Novoselov V.S. Extremeness of the Hamilton– Ostrogradsky principle in nonholonomic mechanics] // Вестн. Ленингp. ун-та. 1961. Вып. 3. №13. С. 121-130; The same. Экстpемальность пpинципа Эйлеpа– Лагpанжа в неголономной механике [Extremeness of the Euler–Lagrange principle in nonholonomic mechanics] // The same. Вып. 4. №19. С. 138-144; The same. Экстpемальность интегpальных пpинципов неголономной механики в неголономных кооpдинатах [Extremeness of integral principles of nonholonom- ic mechanics in nonholonomic coordinates] // The same. 1962. №1. С. 124-133. 172. Новоселов В.С. Вариационные методы в механике [Novoselov V.S. Vari- ational methods in mechanics]. Л.: Изд-во Ленингр. ун-та. 1966. 72 с.; The same. Аналитическая механика систем с пеpеменными массами [Analytical mechanics of systems with variable masses]. Л.: Изд-во Ленингp. ун-та. 1969. 240 с. 173. Новоселов В.С. Обусловленность реакций уравнениями связей [Novoselov V.S. The reactions conditioning by equations of constraints] // Прикл. мех. Вып. 10 (К 90-летию со дня рождения профессора Н.Н. Поляхова). СПб: Изд-во С.- Петерб. ун-та. 1997. С. 198-199. 174. Ньютон И. Математические начала натуpальной философии. Собp. соч. акад. А.Н. Кpылова. Т. VII. М.-Л. 1936. 696 с. [Newton I. Philosophial natu- ralis principia mathematica (translate: Sir Isaac Newton’s Mathematical Principles of Natural Philosophy. London. 1687). Cambridge: F. Cajori. 1934]. 175. Обмоpшев А.Н. Колебания и устойчивость неголономных систем. Колебания линейных неголономных систем около состояния установившегося движения [Obmorshev A.N. Oscillations and stability of nonholonomic systems. Os- cillations of linear nonholonomic systems near steady motion state] // Механика. М.: Обоpонгиз. 1955. Изв. АН СССР. ОТН. Механика и машиностpоен. 1961. №5. С. 84-89. 176. Остpогpадский М.В. Избpанные тpуды [Ostrogradsky M.V. Selected works]. Л.: Изд-во АН СССР (Ленингp. отд-ие). 1958. 583 с. 177. Остроменский П.И., Родионов А.И. Составление и исследование уравнений движения голономных и неголономных систем методом обобщенных сил [Ostromenskii P.I., Rodionov A.I. Generation and investigation of equations References 305 of motion of holonomic and nonholonomic systems by the method of generalized forces] // Науч. вестн. НГТУ. 1997. №3. С. 121-140. 178. Охоцимский Д.Е., Голубев Ю.Ф. Механика и упpавление движением шагающего аппаpата [Okhotsimskii D.E., Golubev Yu.F. Mechanics and a legged vehicle motion control]. М.: Наука. 1984. 312 с. 179. Pars L.A. A treatise on analytical dynamics. Ox Bow. Woodbridge. CT. 1965. (Паpс Л.А. Аналитическая динамика (Пеpевод с англ.). М.: Наука. 1971. 636 с.) 180. Паскаль М. Асимптоматическое решение уравнений движения кельтского камня [Pascal M. Asymptotic solution of equations of motion of Celtic rattleback] // Прикл. мат. и мех. 1983. Т. 47. Вып. 2. С. 321-329; The same. Применение метода осреднения к исследованию нелинейных колебаний кельтского камня [Application de la methode de centrage a l’etude des oscillations non lineaires des pierres celtiques] // The same. 1986. Т. 50. Вып. 4. С. 679-681. 181. Петpов Н.Н. Существование абноpмальных кpатчайших геодезических субpимановой геометpии [Petrov N.N. The existence of abnormal shortest geodesics of subriemannian geometry] // Вестн. Ленингp. ун-та. 1993. Сеp. 1. Вып. 3. С. 28-32. 182. Погосов Г.С. Уравнения движения неголономных систем с нелинейными связями [Pogosov G.S. Equations of motion of nonholonomic systems with nonlin- ear constraints] // Вестн. Моск. ун-та. 1948. №10. С. 93-97. 183. Пожарицкий Г.К. Распространение принципа Гаусса на системы с сухим трением [Pozharitskii G.K. The extension of Gauss’ principle to systems with dry friction] // Прикл. мат. и мех. 1961. Т. 25. Вып. 3. С. 391-406. 184. Пойда В.К. Боковая устойчивость двухколесного экипажа на повоpоте [Poida V.K. Lateral stability of two-wheel carriage in a turning] // Вестн. Ленингp. ун-та. Математика, механика, астpономия. 1966. Вып. 3. №7. С. 64-76; The same. Уpавнения движения и pеакции двухскатной тележки [Equations of motion and reactions of dual-slope barrow] // The same. 1968. Вып. 13. №13. С. 106-116; The same. Об устойчивости в целом катящегося диска [Stability in large of rolling disk] // The same. 1981. №19. С. 82-88. 185. Поляхов Н.Н. Канонические уравнения для неголономных систем [Polyakhov N.N. Canonical equations for nonholonomic systems] // Вестн. Ленингр. ун-та. 1970. Вып. 1. №1. С. 120-122; The same. Уравнения движения механических систем при нелинейных, неголономных связях в общем случае [Equations of motion of mechanical systems with nonlinear nonholonomic con- straints in the general case] // The same. 1972. Вып. 1. №1. С. 124-132; The same. О дифференциальных принципах механики, получаемых изуравнений движения неголономных систем [Differential principles of mechanics obtained from equations of motion of nonholonomic systems] // The same. 1974. Вып. 3. №13. С. 106-116. 186. Поляхов Н.Н., Зегжда С.А., Юшков М.П. Уравнения динамики как необходимые условия минимальности принуждения по Гауссу [Polyakhov N.N., Zegzhda S.A., Yushkov M.P. Equations of dynamics as necessary Gauss conditions of constrain minimality] // Колебания и устойчивость механических систем. Прикл. механика. Вып. 5. Л.: Изд-во Ленингр. ун-та. 1981. С. 9-16; The same. Определение реакций неголономных систем как прямая задача механики [De- termination of reactions of nonholonomic systems as the direct problem of mechan- ics] // Вестн. Ленингр. ун-та. 1982. №1. С. 65-70. 306 References

187. Поляхов Н.Н., Зегжда С.А., Юшков М.П. Принцип Суслова–Журдена как следствие уравнений динамики [Polyakhov N.N., Zegzhda S.A., Yushkov M.P. The principle of Suslov–Jourdain as a consequence of equations of dynamics] // Сб. научно-методич. статей по теорет. механике. Вып. 12. М.: Высшая школа. 1982. С. 72-79. 188. Поляхов Н.Н., Зегжда С.А., Юшков М.П. Обобщение принципа Гаусса на случай неголономных систем высших порядков [Polyakhov N.N., Zegzhda S.A., Yushkov M.P. The extension of Gauss’ principle to the case of high-order nonholonomic systems] // Докл. АН СССР. 1983. Т. 269. №6. С. 1328-1330; The same. Линейное преобразование сил и обобщенный принцип Гаусса [A linear transformation of forces and the generalized Gauss’ principle] // Вестн. Ленингр. ун-та. 1984. №1. С. 73-79. 189. Поляхов Н.Н., Зегжда С.А., Юшков М.П. Теоретическая механика [Polyakhov N.N., Zegzhda S.A., Yushkov M.P. Theoretical mechanics]. Л.: Изд-во Ленингр. ун-та. 1985. 536 с.; М.: Высшая школа. 2000. 592 с. 190. Поляхов Н.Н., Зегжда С.А., Юшков М.П. Управление движением при помощи связей, зависящих от параметров [Polyakhov N.N., Zegzhda S.A., Yushkov M.P. The motion control by constraints depending on parameters] // Вестн. Ленингр. ун-та. 1985. №8. С. 56-61; The same. Использование дифференциальных принципов механики в задачах управления с неполной программой движения [The application of differential principles of mechanics to the problems of control with noncomplete program of motion] // The same. 1990. Сер. 1. Вып. 2 (№8). С. 64-66; The same. Специальная форма уравнений динамики системы твердых тел [A special form of equation of dynamics for system of rigid bodies] // Докл. АН СССР. 1989. Т. 309. №4. С. 805-807. 191. Попов Е.П., Верещагин А.Ф., Зенкевич С.Л. Манипуляционные роботы [Popov E.P., Vereshchagin A.F., Zenkevich S.L. Manipulation robots]. М.: Наука. 1978. 399 с. 192. Routh E.J. Dynamics of a system of rigid bodies. Part I. London: Macmillan and Co.; Part II. New York: Dover publications, INC. (Раус Э.Дж. Динамика системы твеpдых тел. М.: Наука. 1983. Т. I. 464 с.; Т. II. 544 с.) 193. Рачек И.Ю., Аванесьянц А.Г. Уpавнения движения систем с квазилинейными неголономными связями тpетьего поpядка и их пpименение к исследованию ваpиатоpов [Rachek I.Yu., Avanes’yants A.G. Equationsofmotion of systems with quasilinear third-order nonholonomic constraints and their applica- tion to the study of variators] // Тезисы докл. 6-й конф. по ваpиатоpам и гибким пеpедачам. Одесса. 1980. С. 65-66. 194. Рашевский П.К. О соединимости любых двух точек вполне неголономного пpостpанства допустимой линией [Rashevskii P.K. Connection of any two points of totally nonholonomic space by admissible line] // Уч. записки пед. ин-та им. К. Либкнехта. Сеp. физ.-мат. наук. 1938. №2. С. 83-94. 195. Родионов А.И. Уpавнения движения в квазиобобщенных силах в пpикладных задачах неголономной механики [Rodionov A.I. Equationsofmotion in terms of quasigeneralized forces in the applied problems of nonholonomic mechan- ics] // Вопp. вибpозащиты и вибpотехн. Новосибиpск. 1990. С. 122-129. 196. Румянцев В.В. О системах с трением [Rumyantsev V.V. Systems with friction] // Прикл. мат. и мех. 1961. Т. 25. Вып. 6. С. 969-977; The same. О вариационных принципах для систем с неудерживающими связями [On References 307 variational principles for systems with nonretaining constraints] // The same. 2006. Т. 70. Вып. 6. С. 902-914; The same. О движении некотоpых систем с неидеальными связями [A motion of certain systems with nonideal constraints] // Вестн. Моск. ун-та. 1961. №5. С. 67-75. 197. Румянцев В.В. Об устойчивости движения гиpостатов некотоpого вида [Rumyantsev V.V. Stability of motion of gyrostats of a certain form] // Прикл. мат. и мех. 1961. Т. 25. Вып. 4. С. 778-784; The same. Об устойчивости движения неголономных систем [Stability of motion of nonholonomic systems] // The same. 1967. Т. 31. Вып. 2. С. 260-271; The same. Об устойчивости стационарных движений [Stability of steady motions] // The same. Т. 30. Вып. 5. 1966. С. 922- 933; The same. Об устойчивости равномерных вращений механических систем [Stability of uniform revolutions of mechanical systems] // Изв. АН СССР. ОТН. Механика. Машиностроение. Вып. 6. 1962. С. 113-121. 198. Румянцев В.В. О принципе Четаева [Rumyantsev V.V. The Chetaev principle] // Докл. АН СССР. 1973. Т. 210. №4. С. 787-790. 199. Румянцев В.В. О совместимости двух основных принципов динамики и о принципе Четаева [Rumyantsev V.V. Compatibility of two principles of dy- namics and the Chetaev principle] // Проблемы аналитической механики, теорий устойчивости и управления. М.: Наука. 1975. С. 258-267; The same. К вопросу о совместимости дифференциальных пpинципов механики [Compatibility of dif- ferential principles of mechanics] // Аэромеханика и газовая динамика. М.: Наука. 1976. С. 172-178. 200. Румянцев В.В. О принципе Гамильтона для неголономных систем [Rumyantsev V.V. Hamilton’s principle for nonholonomic systems] // Прикл. мат. и мех. 1978. Т. 42. Вып. 3. С. 407-419; The same. О принципах Лагранжа и Якоби для неголономных систем [The principles of Lagrange and Jacobi for nonholonomic systems] // The same. 1979. Т. 43. Вып. 4. С. 625-632; The same. Об интегpальных пpинципах для неголономных систем [Integral principles for nonholonomic systems] // The same. 1982. Т. 46. Вып. 1. С. 3-12; The same. Об основных законах и вариационных принципах классической механики [The basic laws and variational principles of classical mechanics]. М.: Ин-т пpоблем механики АН СССР. ВЦ АН СССР. 1985. Пpепpинт №257. 25 с. 201. Румянцев В.В. Об устойчивости вpащения тяжелого гиpостата на гоpизонтальной плоскости [Rumyantsev V.V. Stability of revolution of heavy gy- rostat on horizontal plane] // Мех. тверд. тела. 1980. №4. С. 11-21; The same. К задаче об устойчивости вpащения тяжелого гиpостата на гоpизонтальной плоскости с тpением [Stability of revolution of heavy gyrostat on horizontal plane with friction] // Совpеменные пpоблемы механики и авиации. М.: Машиностpоение. 1982. С. 263-272. 202. Румянцев В.В. Об "Аналитической механике Лагpанжа"[Rumyantsev V.V. "The analytical mechanics of Lagrange"] . М.: Ин-т пpоблем механики АН СССР, ВЦ АН СССР. 1989. Пpепpинт №421. 32 с. 203. Румянцев В.В. Об уpавнениях Пуанкаpе–Четаева [Rumyantsev V.V. The Poincar´e–Chetaev equations] // Тp. 5-й Всесоюз. конф. по анал. мех., теоpии устойчивости и упp. движением. Ч. 2. М.: ВЦ АН СССР. 1990. С. 3-18; The same. Об уpавнениях Пуанкаpе–Четаева [The Poincar´e–Chetaev equations] // Прикл. мат. и мех. 1994. Т. 58. Вып. 3. С. 3-16; The same. Общие уpавнения аналитической динамики [General equations of analytical dynamics] // The same. 1996. Т. 60. Вып. 6. С. 917-928; The same. К уpавнениям Пуанкаpе и Четаева 308 References

[The Poincar´e–Chetaev equations] // The same. 1998. Т. 62. Вып. 4. С. 531-538; The same. Об общих уpавнениях классической механики [General equations of classical mechanics] // Втоpое Всеpос. совещание-семинаp заведующих кафедpами теоpет. механики. Тез. докл. Москва, 11-16 октябpя 1999 г. С. 57. 204. Румянцев В.В., Каpапетян А.В. Устойчивость движений неголономных систем [Rumyantsev V.V., Karapetyan A.V. Stability of motion of nonholonomic systems] // Итоги науки и техники. Общая механика. Т. 3. М.: ВИНИТИ. 1976. С. 5-42. 205. Самсонов В.А. Качественный анализзадачи о движении волчка по плоскости с тpением [Samsonov V.A. A qualitative analysis of the problem on a motion of whirlabout on a plane with friction] // Мех. тверд. тела. 1981. №5. С. 29-35; The same. Динамика тормозной колодки и "удар трением"[Dynamics of a block and "the impact by friction"] // Прикл. мат. и мех. 2005. Т. 69. Вып. 6. С. 92-921. 206. Сапа В.А. Ваpиационные пpинципы в механике пеpеменной массы [Sapa V.A. Variational principles in the mechanics of variable mass] // Изв. АН КазССР. Сеp. мат. и мех. 1956. Т. 5. №9. 207. Семенова Л.Н. О теоpеме Рауса для неголономных систем [Semenova L.N. The Routh theorem for nonholonomic systems] // Прикл. мат. и мех. 1965. Т. 29. Вып. 1. С. 156-157. 208. Synge J.L. Tensorial methods in gynamics. Toronto: University of Toronto. 1936. (Синдж Дж.Л. Тензоpные методы в динамике. М.: ИЛ. 1947. 44 с.) 209. Синцов Д.М. Работы по неголономной геометpии [Sintsov D.M. The works on nonholonomic geometries]. Киев: Вища школа. 1972. 296 с. 210. Смиpнов В.И. Куpс высшей математики [Smirnov V.I. Course of higher mathematics]. Т. I. М.: Наука. 1974. 480 с. 211. Солтаханов Ш.Х. Использование принципа Суслова–Журдена при составлении уравнений движения систем с неголономными связями первого порядка [Soltakhanov Sh.Kh. The application of the Suslov–Jourdain principle to the generation of equations of systems motion with first-order nonholonomic con- straints] // Динамика механич. систем. Владимир. 1989. С. 122-125. 212. Солтаханов Ш.Х. Об обобщенном представлении управляющих сил, обеспечивающих заданную программу движения [Soltakhanov Sh.Kh. General- ized representation of control forces providing the given program of motion] // Вестн. Ленингр. ун-та. 1990. Сер. 1. Вып. 2 (№8). С. 70-75; The same. Об одном видоизменении принципа Поляхова–Зегжды–Юшкова [A modification of the Polyakhov–Zegzhda–Yushkov principle] // The same. Сер. 1. 1990. Вып. 4 (№22). С. 58-61; The same. Сравнительный анализуравнений движения неголономных систем, вытекающих изпринципа Поляхова–Зегжды–Юшкова и Нордхайма– Долапчиева (принципа Манжерона–Делеану) [Comparative analysis of equations of motion of nonholonomic systems based on the principle of Polyakhov–Zegzhda– Yushkov and Nordheim–Dolapchiev (the Mangeron–Deleanu principle)] // Сб.: Проблемы механикии управления. Нелинейные динамические системы. Пермь. 1997. С. 136-148. 213. Солтаханов Ш.Х., Юшков М.П. Исследование нестационарного движения систем с гидродинамическими передачами методами неголономной механики [Soltakhanov Sh.Kh., Yushkov M.P. Investigation of transient motion of systems with hydrodynamic transmissions by the methods of nonholonomic me- chanics] // Прикладные задачи колебаний и устойчивость механич. систем. Прикл. механика. Вып. 8. Л.: Изд-во Ленингр. ун-та. 1990. С. 44-48. References 309

214. Солтаханов Ш.Х., Юшков М.П. Применение обобщенного принципа Гаусса для составления уравнений движения систем с неголономными связями третьего порядка [Soltakhanov Sh.Kh., Yushkov M.P. The application of general- ized Gauss’ principle to generating the equations of motion of systems with the third-order nonholonomic constraints] // Вестн. Ленингр. ун-та. 1990. Сер. 1. Вып. 3 (№15). С. 77-83.; The same. Уравнения движения одной неголономной системы при наличии связи второго порядка [Equations of motion of nonholo- nomic system with second-order constraint] // The same.. 1991. Вып. 4 (№22). С. 26-29; The same. Определение минимальной производной от добавочной силы, обеспечивающей заданную программу движения [Determination of minimal derivative of additional force providing a given program motion] // The same. 1993. Вып. 1 (№1). С. 97-101. 215. Солтаханов Ш.Х., Юшков М.П. Определение векторной стpуктуpы реакций связей высокого порядка [Soltakhanov Sh.Kh., Yushkov M.P. Determi- nation of vector structure of high-order constraint reactions] // Теоретическая механика. 1996. Вып. 22. М.: Изд-во МГТУ им. Н.Э. Баумана. С. 30-34. 216. Сретенский Л.Н. О работах С.А. Чаплыгина по динамике неголономных систем [Sretenskii L.N. The work of S.A. Chaplygin on dynamics of nonholonomic systems] // С.А. Чаплыгин. Исследования по динамике неголономных систем. М.-Л.: Гостехиздат. 1949. С. 100-107. 217. Сумбатов А.С. О пpинципе Гамильтона для неголономных систем [Sumbatov A.S. The Hamilton principle of nonholonomic systems] // Вестн. Моск. ун-та. Сер. 1. Математика. Механика. 1970. №1. С. 98-101; The same. О движении систем с сухим трением [On the motion of systems with the Coulomb friction] // Сб.: Задачи исследования устойчивости и стабилизации движения. М.: ВЦ СССР. 1986. С. 63-76; The same. Неэкстремальность семейств кривых, определяемых динамическими уравнениями неголономных систем Чаплыгина [Nonextremeness of families of curves defined by dynamic equations of nonholonom- ic Chaplygin’s systems] // Диффериальные уравнения. 1984. Т. 20. №5. С. 897- 899; The same. О распространении метода Якоби на неголономные системы [Extension of the Jacobi method on nonholonomic systems] // Сб.: Проблемы истории мат. и мех. Вып. 1. Изд-во Моск. ун-та. 1972. С. 100-112; The same О пpименении некотоpых обобщений теоpемы площадей в системах с качением твеpдых тел [The application of certain generalizations of the areas theorem to systems with rolling rigid bodies] // Прикл. мат. и мех. 1976. Т. 40. Вып. 4. С. 599-605. 218. Суслов Г.К. Основы аналитической механики [Suslov G.K. The foun- dations of analytical mechanics]. Том I. Киев: Тип. Имп. ун-та Св. Владимира. 1900. 287 с. 219. Суслов Г.К. Об одном видоизменении начала Даламбеpа [Suslov G.K. A modification of D’Alembert’s low] // Мат. сб. 1901. Т. 22. Вып. 4. С. 687-691. 220. Суслов Г.К. Теоpетическая механика [Suslov G.K. Theoretical mechan- ics]. М.-Л.: Гостехиздат. 1946. 656 с. 221. Суслонов В.М., Бячков А.Б., Иванов В.Н. Уравнения динамики систем твердых тел в избыточных координатах [Suslonov V.M., Byachkov A.B., Ivanov V.N. Equations of dynamics systems of rigid bodies in excessive coordinates] // Вестн. Пермского ун-та. Математика. 1994. Вып. 1. С. 185-192; Byachkov A.B., Suslonov V.M. Maggi’s equations in terms of quasi-coordinates // Regular and chaotic Dynamics. 2002. Vol. 7. №3. P. 269-279. 310 References

222. Сучков В.Н. Обобщенные уравнения Лагранжа [Suchkov V.N. General- ized Lagrange’s equations]. М.: Изд-во Московск. горного ин-та. 1999. 36 с. 223. Struik D.J. Einf¨uhrung in die neueren Methoden der Differentialgeometrie. Zweiter Band. Geometrie. I. Groningen-Batavia: Noordhoff. 1935; Schouten J.A. and Struik D.J. Einf¨uhrung in die neueren Methoden der Differentialgeometrie. Vol. 2–Geometrie. I. Groningen-Batavia: Noordhoff. 1938. (Схоутен И.А., Стpойк Д.Дж. Введение в новые методы диффеpенциальной геометpии. Т. I. М.: ГОНТИ. 1939. 184 с.; Т. II. М.: ИЛ. 1948. 348 с.) 224. Татаpинов Я.В. Слабо неголономное пpедставление задачи о качении твеpдого тела и возможности усpеднения по фазовым тоpам [Tatarinov Ya.V. Slightly nonholonomic representation of the problem on a rolling of rigid body and the possibility of averaging over phase toruses] // Мех. тверд. тела. 1988. №1. С. 25-33; The same. Следствия неинтегрируемого возмущения интегрируемых связей. Нелинейные эффекты движения вблизи многообразия равновесий [The results of nonintegrable disturbances of integralable constraints. Nonlinear effects of motion near manifolds of equilibria] // Прикл. мат. и мех. 1992. Т. 56. Вып. 4. С. 604-614. 225. Татаpинов Я.В. Уравнения классической механики в новой форме [Tatarinov Ya.V. New form of equations of classical mechanics] // Вестн. Моск.ун- та. Сер. 1. Математика. Механика. 2003. №3. С. 67-76; The same. Новая форма уравнений неголономной механики, обобщение приведения по Чаплыгину и изоэнергетические гамильтонианы [New form of equations of nonholonomic me- chanics, the extension of reduction in sense of Chaplygin and the isoenergy Hamil- tonians] // Пятый междунар. симпозиум по классической и небесной механике. Тез. докл. Москва-Великие Луки: ВЦ РАН. 2004. С. 201-203. 226. Теpтычный-Дауpи В.Ю. Адаптивная механика [Tertychnyi-Dauri V.Yu. Adaptive mechanics]. М.: Наука. 1998. 480 с. 227. Тимошенко С.П. Колебания в инженерном деле [Timoshenko S.P. Os- cillations in engineering]. М.: Физматгиз. 1959. 440 с. 228. Тхай В.Н. Некотоpые задачи об устойчивости обpатимой системы с малым паpаметpом [Tkhai V.N. Certain problems of stability of inverse system with small parameter] // Прикл. мат. и мех. 1994. Т. 58. №1. С. 3-12; The same. Об устойчивости качений тяжелого эллипсоида вpащения по шеpоховатой плоскости [Stability of a rolling of heavy ellipsoid of revolution on roughened plane] // Мех. тверд. тела. 1996. №1. С. 11-16. 229. Фам Гуен. Об уpавнениях движения неголономных механических систем в пеpеменных Пуанкаpе–Четаева [Fam Guen. Equations of motion of non- holonomic mechanical systems in the variables of Poincar´e–Chetaev] // Прикл. мат. и мех. 1967. Т. 31. Вып. 2. С. 253-259; The same. К уpавнениям движения неголономных механических систем в пеpеменных Пуанкаpе–Четаева [Equa- tions of motion of nonholonomic mechanical systems in the variables of Poincar´e– Chetaev] // The same. 1968. Т. 32. С. 804-814; The same. Об одной фоpме уpавнений движения механических систем [A certain form of equations of motion of mechanical systems] // The same. 1969. Т. 33. С. 397-40. 230. Федоpов Ю.Н. О качении диска по абсолютно шеpоховатой плоскости [Fedorov Yu.N. The rolling of disk on absolutely roughened plane] // Мех. тверд. тела. 1987. №4. С. 67-75; The same. О движении твердого тела в шаровом подвесе [Motion of rigid body in ball hang] // Вест. Моск. ун-та. Сер. 1. Математика. Механика. 1988. №5. С. 91-93; The same. О двух интегрируемых References 311

неголономных системах в классической механике [On two integralable nonholo- nomic systems in classical mechanics] // The same. 1989. №4. С. 38-41. 231. Фрадлин Б.Н. Об одной ошибке в неголономной механике [Fradlin B.N. On an error in nonholonomic mechanics] // Тр. Ин-та истории естествозн. и техники АН СССР. Т. 43. 1961. С. 470-477; The same. Научные труды С.А. Чаплыгина по неголономной механике и их дальнейшее развитие [The treatises of S.A. Chaplygin on nonholonomic mechanics and their development] // Очерки истории мат. и мех. М.: Изд-во АН СССР. 1963. С. 147-190. 232. Фрадлин Б.Н., Рощупкин Л.Д. Некотоpые вопpосы теоpии и пpиложений динамических уpавнений, содеpжащих диффеpенциальные опеpатоpы высших поpядков [Fradlin V.N., Roshchupkin L.D. Certain questions of the theory and application of dynamic equations with high-order differential op- erators] // Наука и техника. Вопpосы истоpии и теоpии. Вып. VIII. Ч. 2. К 250- летию АН СССР. Л. 1973. С. 56-59. 233. Фуфаев Н.А. О возможности реализации неголономной связи посредством сил вязкого трения [Fufaev N.A. Realization of nonholonomic con- straint by the forces of viscous friction] // Прикл. мат. и мех. 1964. Т. 28. Вып. 3. С. 513-515; The same. About an example of a system with nonholonomic constraint of second order // ZAMM. Vol. 70. S. 593-594. 234. Фуфаев Н.А. Катание шаpа по гоpизонтальной вpащающейся плоскости [Fufaev N.A. A rolling of ball on horizontal revolving plane] // Прикл. мат. и мех. 1983. Т. 47. №1. С. 43-47; The same. Катание тяжелого одноpодного шаpа по шеpоховатой сфеpе, вpащающейся вокpуг веpтикальной оси [A rolling of heavy uniform ball on roughened sphere rotating about vertical axis] // Пpикл. механика. 1987. Т. 23. №1. С. 98-101. 235. Хаpламов А.П. Обобщение задачи Чаплыгина о качении тяжелого тела вpащения на гоpизонтальной плоскости [Kharlamov A.P. Extension of the Chap- lygin problem to the rolling of heavy body of revolution on horizontal plane] // Мех. тверд. тела. 1984. №16. С. 50-56; The same. Гиростат с неголономной связью [The gyrostat with nonholonomic constraint] // Сб.: Мех. тверд. тела. 1971. №3. Киев: Наукова думка. С. 120-130. 236. Харламова-Забелина Е.И. Быстрое вращение твердого тела вокруг неподвижной точки при наличии неголономной связи [Kharlamova-Zabelina E.I. The fast revolution of rigid body about a fixed point under nonholonomic constraint] // Вестн. Моск. ун-та. Сер. 1. Математика. Механика. 1957. №6. С. 25-34. 237. Хаpламова Е.И. Интегpиpуемые случаи задачи о движении гиpостата, подчиненного неголономной связи [Kharlamova E.I. The integralable cases of the problem on a motion of gyrostat with nonholonomic constraint] // Мех. тверд. тела. 1991. №23. С. 6-8; The same. Качение шара по наклонной плоскости [A rolling of ball on inclined plane] // Прикл. мат. и мех. 1958. Т. XXII. С. 504-509. 238. Ценов И. Об одной новой фоpме уpавнений аналитической динамики [Tz´enoff J. A new form of equations of analytical dynamics] // Докл. АН СССР. 1953. Т. 89. №1. С. 21-24; The same. Об интегpальных ваpиационных пpинципах аналитической динамики [Integral variational principles of analytical dynamics] // The same. №4. С. 623-626. 239. Чаплыгин С.А. О движении тяжелого тела вращения по горизонтальной плоскости [Chaplygin S.A. A motion of heavy body of revolution on a horizontal plane] // Тр. отделения физических наук общества любителей естествознания, 312 References

антpопологии и этногpафии. 1897. Т. IX. Вып. 1. С. 10-16. (Собр. соч. М.-Л.: Гостехиздат. 1948. Т. 1. С. 57-75). 240. Чаплыгин С.А. О некотоpом возможном обобщении теоpемы площадей с пpименением к задаче о катании шаpов [Chaplygin S.A. A certain extension of the areas theorem with application to the problem of a rolling of balls] // Мат. сб. 1897. Т. XX. Вып. 1. С. 1-32. 241. Чаплыгин С.А. О катании шаpа по гоpизонтальной плоскости [Chaply- gin S.A. A rolling of ball on horizontal plane] // Мат. сб. 1903. Т. XXIV. Вып. 1. С. 139-168. 242. Чаплыгин С.А. К теории движения неголономных систем. Теорема о приводящем множителе [Chaplygin S.A. The theory of motion of nonholonomic systems. Theorem on a reduced multiplier] // Мат. сб. 1911. Т. XXVIII. Вып. 2. С. 303-314. (Собр. соч. Т. 1. М.-Л.: ОГИЗ. 1948. С. 15-25). 243. Чаплыгин С.А. Исследования по динамике неголономных систем [Chap- lygin S.A. The analysis of dynamics of nonholonomic systems]. М.-Л.: Гостехтеоp- етиздат. 1949. 112 с. 244. Чеpкасов О.Ю., Якушев А.Г. Оптимальное уклонение от объекта, наводящегося по методу погони [Cherkasov O.Yu., Yakushev A.G. Optimal devi- ation from the object aiming by pursuit method] // Вестн. Моск. ун-та. Сеp. 1. Математика. Механика. 1996. №1. С. 50-55; The same. Оптимальное уклонение от пpеследователя, наводящегося методом пpопоpциональной навигации [Op- timal deviation from a pursuer aiming by the method of proportional guidance] // The same. 1998. №1. С. 38-42. 245. Четаев Н.Г. О принципе Гаусса [Chetaev N.G. The Gauss principle] // Изв. физ.-мат. общества при Казанском ун-те. Т. 6. Сер. 3. 1932–1933. С. 68-71. 246. Четаев Н.Г. Одно видоизменение принципа Гаусса [Chetaev N.G. A modification of Gauss’ principle] // Прикл. мат. и мех. 1941. Т. V. Вып. 1. С. 11-12. 247. Четаев Н.Г. Об уpавнениях Пуанкаpе [Chetaev N.G. Poincar´e’s equa- tions] // Прикл. мат. и мех. 1941. Т. V. Вып. 2. С. 253-262. 248. Четаев Н.Г. Теоpетическая механика [Chetaev N.G. Theoretical me- chanics]. М.: Наука. 1987. 368 с. 249. Четаев Н.Г. Устойчивость движения. Работы по аналитической механике [Chetaev N.G. Stability of motion. The works on analytical mechanics]. М.: Изд-во АН СССР. 1962. 536 с. 250. Чувиковский В.С. Поперечные колебания стержней и пластин при наличии реактивных растягивающих усилий [Chuvikovskii V.S. Lateral oscilla- tions of bars and plates under reactive stretching force] // Инженерный сборник. Т. XXV. 1959. С. 81-91. 251. Чудаков Е.А. Избpанные тpуды. Т. 1: Теоpия автомобиля [Chudakov E.A. Selected works. Vol. 1: The theory of car]. М.: АН СССР. 1961. 463 с. 252. Чуев М.А. К вопpосу аналитического метода синтеза механизма [Chuev M.A. The analytical method for the synthesis of mechanism] // Изв. вузов. Машиностpоение. Изд-во. МВТУ им. Н.Э. Баумана. 1974. №8. С. 165-167; The same. К аналитической теоpии упpавления движениями космического летательного аппаpата [The analytical theory of spacecraft motion control] // Тp. девятых чтений К.Э. Циолковского. М. 1975. С. 67-80; The same. Программные движения механической системы [Program motions of a mechanical system] // Мех. тверд. тела. 2002. №3. С. 34-41; The same. Дифференциальные уравнения References 313

программных движений механической системы [Differential equations of pro- gram motions of a mechanical system] The same. 2008. №1. С. 179-192. 253. Шевердин Ю.С., Юшков М.П. Исследование движения автомобиля на основе решения неголономной задачи с неудерживающими связями [Sheverdin Yu.S., Yushkov M.P. Investigation of car motion in the framework of the solution of nonholonomic problem with nonretaining constraints] // Вестн. С.-Петеpбуpг. ун-та. 2001. Сеp. 1. Вып. 3 (№15). С. 105-111; Byachkov A.B., Cattani C., Nosova E.M., Yushkov M.P. The simplest model of the turning movement of a car with its possible sideslip // Techn. Mech. 2009. Bd 29. H. 1. S. 1-12; Бячков А.Б., Зегжда С.А., Каттани К., Юшков М.П. Уточненная модель разгона автомобиля как задача с освобождающей связью [Byachkov A.B., Zegzhda S.F., Cattani C., Yushkov M.P. The refined model of acceleration of a car as a problem with a non-retaining constraint] // Вестн. С.-Петеpбуpг. ун-та. 2008. Сеp. 1. Вып. 3. С. 97-105. 254. Щелкачев В.Н. Ваpиационные пpинципы механики [Shchelkachev V.N. Variational principles of mechanics]. М.: Моск. ин-т нефти и газа им. И.М. Губкина. 1989. 70 с. 255. Шульгин М.Ф. Наиболее общие уpавнения классической динамики [Shul’gin M.F. The most general equations of classical dynamics] // Тp. Ин-та математики и механики АН УзССР. 1950. Вып. 6. С. 107-130; The same. О динамических уравнениях Чаплыгина при существовании условных неинтегрируемых уравнений [Dynamic Chaplygin’s equations in the case of ex- istence of conditional nonintegrable equations] // Прикл. мат. и мех. 1954. Т. 18. Вып. 6. С. 749-752. 256. Шульгина И.М. Обобщение некотоpых динамических уpавнений Ценова [Shul’gina I.M. The extension of certain dynamic Tz´enoff’s equations] // Докл. АН УзССР. 1962. №5. С. 23-27. 257. Шульгина И.М., Шульгин М.Ф. Обобщенные фоpмы уpавнений Ла- гpанжа для нелинейных неголономных систем пеpеменной массы [Shul’gina I.M., Shul’gin M.F. The generalized forms of Lagrange’s equations of nonlinear nonholonomic systems of variable mass] // Научн. тp. ТашГУ. 1971. Вып. 397. С. 88-95. 258. Юшков М.П. Приближенный способ определения основной критической угловой скорости нагруженных весомых валов [Yushkov M.P. The approximate method of determination of the main critical angle velocity of loaded heavy shafts] // Вестн. Ленингр. ун-та. 1962. №13. С. 99-102; The same. Об одном способе определения основной критической угловой скорости роторов турбомашин [An approach to determination of main critical angle velocity of turbomachine rotors] // Изв. вузов. Энергетика. 1963. №1. С. 64-69; The same. Влияние растягивающей силы на критическую скорость вращения двухопорного вала [The stretching forces effect on a critical velocity of revolution of two-bearing shaft] // Вестн. Ленингр. ун-та. 1969. №1. С. 125-128. 259. Юшков М.П. Построение приближенных решений уравнений нелинейных колебаний на основе принципа Гаусса [Yushkov M.P. The construc- tion of approximate solutions of equations of nonlinear oscillations by Gauss’ prin- ciple] // Вестн. Ленингр. ун-та. 1984. №13. С. 121-123. 260. Юшков М.П. О минимальных свойствах реакции при использовании обобщенных вариационных принципов Даламбера и Гаусса [Yushkov M.P. Min- imality properties of reaction in applying the generalized variational principles of 314 References

D’Alembert and Gauss] // Задача Булгакова о максимальном отклонении и ее применение. М.: Изд-во Моск. ун-та. 1993. С. 133-141; The same. Выбор базиса для получения уравнений движения идеальных неголономных систем и связь уравнений с принципами механики [The choice of basis for obtaining the equations of motion of ideal nonholonomic systems and the connection of the equations with the principles of mechanics] // Проблемы механики и управления. Нелинейные динамические системы. Пермь. 1995. С. 170-181. 261. Юшков М.П. Значение связей типа Четаева для развития неголоном- ной механики и их современная трактовка [Yushkov M.P. TheroleofChetaev’s type constraints in development of nonholonomic mechanics and their modern treatment] // Вестн. С.-Петербург. ун-та. 1997. Сер. 1. Вып. 2 (№8). С. 92-99; The same. Уравнения движения машинного агрегата с вариатором как неголономной системы с нелинейной связью второго порядка [Equations of motion of a machine aggregate with variator as a nonholonomic system with nonlinear second-order con- straint] // Мех. тверд. тела. 1997. №4. С. 40-44. 262. Юшкова И.М. Установившиеся нелинейные колебания стержней, возбуждаемые вибратором ограниченной мощности [Yushkova I.M. Steady non- linear oscillations of bars generated by a vibrator of restricted power] // Вестн. Ленингр. ун-та. 1982. №19. С. 72-76. 263. Яpощук В.Я. Интегpальный инваpиант в задаче о качении без скольжения эллипсоида со специальным pаспpеделением масс по неподвижной плоскости [Yaroshchuk V.Ya. Integral invariant in the problem on a rolling without sliding of ellipsoid with special distribution of mass on a fixed plane] // Мех. тверд. тела. 1995. №2. С. 54-57; The same. Новые случаи существования интегрального инварианта в задаче о качении твердого тела без проскальзывания по неподвижной поверхности [New cases of the existence of integral invariant in the problem on a rolling of rigid body without slide on a fixed surface] // Вестн. Моск. ун-та. Сер. 1. Математика. Механика. 1992. №6. С. 26-30. 264. Aiserman M.A., Gantmacher F.R. Stabilit¨at der Gleichgewichtslage in einem nicht-holonomen System // ZAMM. 1957. Bd 37. №1–2. S. 74-75. 265. Appell P. Trait´edeM´ecanique Rationelle. Paris: Gauthier-Villars. 1896. 266. Appell P. Les Mouvements de roulement en Dynamique (avec deux notes de M. Hadamard) // Scientia. Phys.-Math. 1899. №4. P. 1-46. 267. Appell P. Sur les mouvements de roulement; ´equations du mouvement analoguesa ` celles de Lagrange // Comptes Rendus. 1899. T. CXXIX. P. 317-320; The same. Sur une forme g´en´erale des ´equations de la Dynamique // Comptes Rendus. 1899. T. CXXIX. P. 423-427. 268. Appell P. Sur l’int´egration des ´equations du mouvement d’un corps pesant de r´evolution roulant par une arˆete circulaire sur un plan horisontal; cas particulier du cerceau // Rendiconti del circolo matematico di Palermo. 1900. T. XIV. P. 1-6. 269. Appell P. D´eveloppement sur une forme nouvelle des ´equations de la Dy- namique//J.Math.PuresAppl.1900.T.VI.Fasc.I.P.5-40. 270. Appell P. Exemple de mouvement d’un syst´eme assujetti a une liason exprim´ee par une relation lin´eaire entre les composantes de la vitesse // Rendiconti del circolo matematico di Palermo. 1911. Vol. XXXII. P. 48-50. 271. Appell P. Sur les liaisons exprim´ees par des relations non lin´eaires entre les vitesses // Comptes Rendus. 1911. T. CLII. P. 1197-1200. 272. Appell P. Sur des transformations de movements //J. reine und angew Math. 1892. Vol. 110. P. 37-41. References 315

273. Appell P. Remarques d’odre analytique sur une nouvelle forme des equa- tions de la Dynamique // J. math. pure et appl. 1901. Vol. 7. Ser. 5. P. 5-12. 274. Bahar L.Y. A non-linear non-holonomic formulation of the Appell–Hamel problem // Int. J. non-linear Mechanic. 1998. Vol. 33. №1. P. 67-83; The same. A unified approach to nonholonomic dynamics // The same. 2000. Vol. 35, №4. P. 613 – 625. 275. Blajer W. A projetion method approach to constrained dynamic analysis // ASME. J. Appl. Mech. 1992. Vol. 59. №3. P. 643-649. 276. Boltzmann L. Ueber die Eigenschaften monocyklischer und anderer damit verwandter Systeme // J. f¨ur reine und angew. Math. 1885. Bd 98. S. 68-94. 277. Boltzmann L. Uber¨ die Form der Lagrange’schen Gleichungen f¨ur nichtho- lonome, generalisierte Koordinaten // Sitzungsberichte der Mathematisch-Natur- wissenschaftliche Akademie der Wissenschaften. Wien. 1902. Bd CXI. Abteilung IIa. H. 1–2. S. 1603-1614. 278. Borisov A.V., Mamaev I.S. The rolling of rigid body on a plane and sphere // Regular and chaotic dynamics. 2002. Vol. 7. №1. P. 177-200. 279. Borisov A.V., Mamaev I.S., Kilin A.A. Rolling of a ball on a surface. New integrals and hierarchy of dynamics // Regular and chaotic dynamics. 2002. Vol. 7. №2. P. 201-220. 280. Borri M., Bottasso C., Mantegazza P. Equivalence of Kane’s and Maggi’s equations // Meccanica. 1990. V. 25. №4. P. 272-274; The same. Acceleration pro- jection method in multibody dynamics // Europ. J. Mech. A/Solids. 1992. Vol. 11. №3. P. 403-417. 281. Bottema O. Note on a non-holonomic systeme // Quart. J. of Appl. Math. 1955. Vol. 13. №2. P. 191-192. (Боттема О. Об одной неголономной системе // Механика. Сб. перев. и обз. ин. период. лит. 1956. №5). 282. Bourlet M.C. Etude theorique sur la bicyclette // Bull. Soc. Math. France. 1899. Vol. 27. Fasc. 1. P. 76-96. 283. Boussinesq M.J. Aper¸cu sur la th´eorie de la bicyclette ´equilibre du cavalier // Comptes Rendus. 1898. Vol. 127. №23. P. 895-899. 284. Brauchli H. Mass-orthogonal formulation of equations of motion for multi- body systems // ZAMP. 1991. Bd 42. №3. P. 169-182. 285. Bremer H. Das Jourdainische Prinzip // ZAMM. 1993. Bd 73. S. 184-187. 286. Byachkov A.B., Suslonov V.M. Maggi‘s equations interms of quasi- coordinates // Regular and chaotic dynamics. 2002. Vol. 7. №3. P. 269-280. 287. Carath´eodori C. Der Schlitten // ZAMM. 1933. Bd 13. H. 2. S. 71-76. 288. Cardin F., Zanzotto G. On constrained mechanical systems: D’Alembert’s and Gauss’ principles // J. Math. Phys. 1989. Vol. 30. №7. P. 1473-1479. 289. Carvallo E. Theorie de mouvement du monocycle et de la bicyclette // J. de l’´ecole Polytechnique. Ser. 2. V Cahiers. 1900. P. 119-188; Ser. 2. VI Cahiers. 1901. P. 1-118. 290. Castoldi L. I "moivimenti astratti"di Appell e un nuovi exempio di vincoli anolonomi non lineari nelle velocita // Bull. Univ. Mat. Ital. 1947. Vol. 2. P. 221-228. 291. Caughey T.K. A mathematical model of the "rattleback"// Int. J. non- linear Mech. 1980. Vol. 15. №4–5. P. 293-302. 292. Chetaev N. Sur les ´equations de Poincar´e // Comptes Rendus. 1927. Vol. 185. P. 1577-1578. (Докл. АН СССР. 1928. №7. С. 103-104). 293. Chevallier D.P. Lie algebras, modules, dual quaternions and algebraic methods in kinematics // Mechanism and machine theory. 1991. Vol. 26. №6. 316 References

P. 613-627; The same. On the transference principle in kinematics, its various formes and limitations // The same. 1996. Vol. 31. №1. P. 57-76. 294. Chobanov G., Chobanov I. Gibbs–Appell’s nonholonomic equations as pro- jections of Euler’s dynamical axioms on appropriate axes // Годишник Софийск. ун-та. Фак. мат. и мех. Мех. 1985 (1989). Т. 79. №2. С. 61-105. 295. Chow W.L. Systeme von linearen partiellen differentialen Gleichungen er- ster Ordnung // Math. Ann. 1939. Bd 117. S. 98-105. 296. Crescini E. Sur moto di una sfera che rotola su di un plano fisso // Ren- diconti Accad. dei Lincei. 1889. T. 5. P. 204-209. 297. Cushman R., Kemppainen D., Sniatycki J., Bates L. Geometry of non- holonomic constraints // Rep. on Math. Phys. 1995. Vol. 36. №2/3. P. 275-286. 298. Delassus E. Sur les liaisons et les mouvement des syst´emes mat´eriels // Ann. scientif de l’Ecole normal. sup´erieure. Paris. 1912. V. 29. №3; The same. Les diverses formes du principe de d’Alembert et les ´equations g´en´erals du mouvement des syst´ems soumis ´a des liaisons d’ordre quelconques // Comptes Rendus. 1913. T. CLVI. P. 205-209. 299. Delassus E. Dynamique des syst´emes mat´eriels. Paris. 1913. 300. Desloge E.A. A comparison of Kane’s equations of motion and the Gibbs– Appell equations of motion // Am. J. Physics. 1986. Vol. 54. P. 470-472; The same. Relationship between Kane’s equations and Gibbs–Appell equations // J. of Guid- ance, Dynamics and Control. 1987. Vol. 10. №1. P. 120-122; Banerjee A.K. Com- ment on "Relationship between Kane’s equations and Gibbs–Appell equations"// The same. 1987. Vol. 10. №4. P. 596-597. 301. Dolaptschiew Bl. Uber¨ die verallgemeinerte Form der Lagrangeschen Gle- ichungen, welche auch die Behandlung von nicht-holonomen mechanischen Syste- men gestattet // ZAMP. 1966. Bd 17. S. 443-449; The same. Ueber die Nielsensche Form der Gleichungen von Lagrange und deren Zusammenhang mit dem Prinzip von Jourdain und mit den nichtholonomen mechanischen Systemen // ZAMM. 1966. Bd 46. S. 351-355. 302. Dolaptschiew Bl. Sur les systemes mecaniques non holonomes assujettis a des liaisons arbitraires // Comptes Rendus Acad. Sci. 1966. Vol. 262. P. 31-34; The same. Verwendung der einfachsten Gleichungen Tzenoffschen Typs (Nielsenschen Gleichungen) in der nicht-holonomen Dynamik // ZAMM. 1969. Bd 49. S. 179-184. 303. Dong Zhiming, Yang Haixing. The stability of Chaplygin’s sphere rolling with sliding on a slightly viscous-friction horizontal plane // Shanghai jiaotong daxue xuebao. = J. Shanghai Jiaotong Univ. 1992. Vol. 26. №1. P. 59-65. 304. Enge O., Kielau G., Meißer P. Dynamiksimulation elektromechanischer Systeme. Fortschritt-Berichte // Rechnerunterst¨utze Verfahren. №165. D¨usseldorf: VDI-Verlag GmbH. 1995. S. 99. 305. Ess´en H. Projecting Newton’s equations onto non-ordinate tangent vec- tors of the configuration space; a new look at Lagrange’s equations in ferms of quasicoordinates // 18th Int. Congr. Theor. and Appl. Mech., Haifa, Aug. 22-28, 1992. Haifa, 1992. P. 52; The same. On the geometry of nonholonomic dynamics // ASME. J. Appl. Mech. 1994. №61. P. 689-694. 306. Ferrers N.M. Extension of Lagrange’s equations // Quart. J. Pure Appl. Math. 1872. Vol. XII. P. 1-5. 307. Gauss K. Uber¨ ein neues allgemeines Grundgesetz der Mechanik // Crelle’s Journal f¨ur die reine Mathematik. 1829. Vol. IV. S. 233. References 317

308. Ge Z.M. The equations of motion of nonlinear nonholonomic variable mass system with applications // ASME. J. Appl. Mech. 1984. Vol. 51. P. 435-437. 309. Gibbs J.W. On the fundamental formulae of Dynamics // American J. of Math. Vol. II. 1879. P. 49-64. 310. Gugino E. Sulle equazioni dinamiche di Eulero-Lagrange secondo G. Hamel // Atti Accad. Naz. Lincei. Rendiconti Cl. Fis. Mat. Nat. 1936. Ser. 6. Vol. 23. P. 413-421. 311. Hadamard J. Sur les mouvement de roulement // Comptes Rendus. 1894. Vol. 118. P. 911-912. 312. Hagedorn P. Zur Umkehrung des Satzes von Lagrangeuber ¨ die Stabilit¨at // ZAMP. 1970. Vol. 21. S. 841-845; The same. On the stability of steady motions in free and restricteddynamical systems // ASME. J. Appl. Mech. Vol. 46. №2. 1979. P. 427-432. 313. Hamel G. Die Lagrange–Eulerischen Gleichungen der Mechanik // Zeit- schrift f¨ur Mathematik und Physik. 1904. Bd 50. H. 1/2. S. 1-57. 314. Hamel G. Ueber die virtuellen Verschiebungen in der Mechanik // Math. Annalen. 1904. Vol. 59. S. 416-434; The same. Nichtholonome Systeme h¨oherer Art // Sitzungsberichte der Berliner Mathematischen Gesellschaft. 1938. Bd 37. S. 41-52. 315. Hamel G. Theoretische Mechanik. Eine einheitliche Einf¨uhrung in die gesamte Mechanik. Berlin-G¨ottingen-Heidelberg: Springer-Verlag. 1949. S. 796. 316. He Ye-Qi. Higher order partial velocitities in higher order non-linear non- holonomic systems // Int. J. non-linear Mech. 1991. Vol. 26. №5. P. 455-459. 317. Hertz H. Die Prinzipien der Mechanik in neuem Zusammenhange dargestellt. 1894. (Ges. Werke. Bd III. Leipzig. 1910). (Геpц Г. Пpинципы механики, изложенные в новой связи. М.: Изд-во АН СССР. 1959. 386 с.). 318. H¨older O. Ueber die Prinzipien von Hamilton und Maupertuis // Nach- richten von der K¨onigl. Gesell. der Wissensch. G¨ottingen. Math.-Phys. Kl. 1896. Vol. 2. S. 122-157. 319. Huston R.L., Passerello C.E. Nonholonomic systems with nonlinear con- straint equations // Int. J. non-linear Mechanics. 1976. Vol. 11. P. 331-336. 320. Ispolov Yu. G., Smol’nikov B.A. Skateboard dynamics // Computer meth- ods in applied mechanics and engineering. 1996. №131. P. 327-333. 321. Ivanov G.E., Juschkov M.P., Soltachanov S.H. Zum Problem der Aufgabe von Appell–Hamel // Techn. Mech. 2001. Bd 21. H. 1. S. 41-45. 322. Jankowski K. Dynamics of mechanical systems with nonholonomic con- straints of higher order // Modelling, Simulation and Control. B. 1988. V. 25. P. 47-63; The same. Dynamics of controlled mechanical systems with material and program constraints: I. Theory. II. Methods of solution. III. Illustrative examples // Mechanics and machine theory. 1989. Vol. 24. P. 175-179, 181-185, 187-193. 323. Jarz¸ebowska E. The problem of small oscillations of mechanical systems with arbitrary order nonholonomic program constraints // Zagadnienia drga´n nielin- iowych. Warszawa. 1992. №24. P. 141-160. 324. Johnsen L. Die virtuellen Verschiebungen der nicht-holonomen Systeme und das d’Alembertsche Prinzip // Avhandlinger Utgitt av det Norske Videnkaps- Akademi Oslo. 1936. №10. S. 1-10; The same. Sur la reduction au nombre mini- mum des equations du mouvement d’un syst´eme non-holonome. Sur la d´eviation non-holonome // Avhandlinger Utgitt av det Norske Videnkaps-Akademi Oslo. 1937. No 11. P. 1-14; 1938. №3; The same. Dynamique g´en´erale des Syst´emes non- 318 References holonomes // Skrifter Utgitt av det Norske Videnkaps-Akademi Oslo. I. Mathematik- Naturvidenskab Klasse. 1941. №4. S. 1-75. 325. Jourdain P. On the general equations of mechanics // Quart. J. Pure Appl. Math. London. 1904. Vol. 36. №141. P. 153-157. 326. Jourdain P. On those principles of mechanics which depend upon processes of variation // Math. Annalen. Leipzig. 1908. Bd 65; The same. Note of analogy of Gauss’ principle of least constraint // Quart. J. Pure Appl. Math. London. 1909. Vol. 40. P. 153-157. 327. Juschkov M.P. Ableitung der Gleichungen von Maggi f¨ur nichtholonome Systeme aus dem zweiten Newtonschen Gesetz // Techn. Mech. 1996. Bd 16. H. 3. S. 227-236; The same. Anwendung der Lagrangeschen Gleichungen I. Art zur Un- tersuchung der nichtlinearen Querschwingungen von Balken mit unverschieblichen Lagern // Techn. Mech. 1998. Bd 18. H. 1. S. 79-84. 328. Juschkov M.P., Soltachanov S.H., Kasper R. Anwendung den Prinzip von Suslov–Jourdain bei der Untersuchung der Bewegung eines Systems mit hu- draulischen Getrieben // 6. Magdeburger Mаschinenbau-Tage. Otto-von-Guericke- Universitat Magdeburg. Tagundsband. 2003. S. 229-235. 329. Kalaba R.E., Udwadia F.E. Equations of motion for nonholonomic, con- strained dynamical systems via Gauss’s principle // ASME. J. Appl. Mech. 1993. Vol. 60. P. 662-668. 330. Kane T.R. Dynamics of nonholonomic systems // ASME. J. Appl. Mech. Vol. 28. December. 1961. P. 574-578; The same. Dynamics. New York: Holt, Rine- hart, and Winston. 1968. 331. Kane T.R., Levinson D.A. Realistic mathematical modeling of the rattle- back // Int. J. non-linear Mechanics. 1982. V. 17. №3. P. 175-186. 332. Karapetyan A.V. On construction of the effective potential in singular cases // Regular and chaotic dynamics. Vol. 5. №2. 2000. P. 219-224. 333. Karapetyan A.V., Kuleshov A.S. Steady motions of nonholonomic systems // Regular and chaotic dynamics. 2002. Vol. 7. №1. P. 81-117. 334. Karapetyan A.V., Rumyantsev V.V., etc. Modern Methods of Analytical Mechanics and Applications. Wien–New-York: Springer-Verlag. 1998. 335. Kitzka F. An example for the application of a nonholonomic constraint of 2nd order in particle mechanics // ZAMM. 1986. Vol. 66. №7. S. 312-314. 336. Korteweg D.J. Uеber¨ eine ziemlich verbreitete unrichtige Behandlungsweise eines Problemes der rollenden Bewegung,uber ¨ die Theorie dieser Bewegung, und ins besondereuber ¨ kleine rollende Schwingungen um eine Gleichgewichtslage // Nieuw Archief voor Wiskunde. Tweede Reeks. 1899. Deel. IV. S. 130-155. 337. Kossenko I.I., Stavrovskaia M.S. How one can jimulate dynamics of rolling bodies via Dymola: approach to model multibody system dynamics using Modelica // Proceedings of the 3rd International Modelica Conference. Linkopings univer- sitet. Linkoping. Sweden. Novenber 3-4. 2003. P. 299-309. 338. Kurdila A.J. Multibody dynamics formulations using Maggi’s approach // AIAA. Dyn. Spec. Conf., Long Beach, Calif., Apr. 5-8, 1990: Collect. Techn. Pap. Washington (D.C.). 1990. P. 547-558. 339. Kurdila A.J., Papastavridis J.G., Kamal M. Role of Maggi’s equations in computational methods for constrained multibody systems // J. Guidance. 1990. P. 113-120. 340. Lagrange J.L. M´ecanique Analitique. Paris. 1788. (Лагpанж Ж.Л. Аналитическая механика. М.-Л.: ГИТТЛ. 1950. Т. 1. 594 с.; Т. 2. 440 с.) References 319

341. Lampariello G. Su certe identita differenziali cui soddi isfano le funzioni delle equazioni dinamiche di Volterra–Hamel // Rendiconti Reale Accademia d’Italia. Cl. Sci. Fis. Mat. 1943. Ser. VII. №4. P. 12-19. 342. Lanczos C. The variational principles of mechanics. University of Toronto. Dover reprint. 1986. (Ланцош К. Ваpиационные пpинципы механики. М.: Миp. 1963. 408 с.) 343. Leitinger R. Uber¨ Jourdain’s Prinzip der Mechanik und dessen Zusammen- hang mit dem verallgemeinerten Prinzip der kleinsten Aktion // Sitzungsberichte der Osterreichischen¨ Akad. Wiss. Vath.-Naturwiss. Kl. Wien. 1913. V. IIa. Bd 122. S. 635-650. 344. Le´on M., Rodrigues P.R. Methods of differential geometrie in analitical mechanics. Amsterdam: North-Holland. 1989. 345. Lesser M. A geometrical interpretation of Kane’s equations // Proceedings of the Royal Society. London. 1992. Vol. A436. №1896. P. 69-87. 346. Levi-Civita T. Sur la recherche des solutions particulieres des systemesd- ifferentiels et sur les mouvements stationnaires // Prace Math. Fis. Vol. 17. 1906. P. 1-140. 347. Levi-Civita T., Amaldi U. Lez oni di Meccanica Razionale. Bologna. 1922. (Т. Леви-Чивита, У. Амальди. Курс теоретической механики. М.-Л.: ИЛ. Т. 1. Ч. 1. 1952. 357 с.; Т. 2. Ч. 1. 1951. 435 с.; Ч. 2. 1951. 555 с.) 348. Liang Lifu, Shi Zhifei. On some important problems in analytical dynamics of non-holonomic systems // Appl. Math. and Mech. (Engl. Ed.). 1993. Vol. 14. №12. P. 1113-1123. 349. Liang Lifu, Liang Zhongwei. On the between Vacco model and Chetaev model // Guti lixue xuebao. = Acta mech. solida sin. 1994. Vol. 15. №4. P. 289-295. 350. Lilong Cai. On the stability of the equilibrium state and small oscillations of non-holonomic systems // Dyn. and Stab. Syst. 1994. №1. P. 3-7. 351. Lindberg R.E., Longman R.W. On the dynamic behavior of the wobblestone // Acta Mech. 1983. Vol. 49. P. 81-94. 352. Lindel¨of E. Sur le mouvement d’un corps de revolution roulant sur un plan horisontal // Acta Societatis Scientiarum Fennicae. 1895. T. XX. №10. P. 1-18. 353. Liu Z.F., Jin F.S., Mei F.X. Nielsen’s and Euler’s operators of higher order in analytical mechanics // Appl. Math. and Mech. 1986. Vol. 7. P. 53-63. 354. Luo Shaokai. Generalized Noether’s theorem of nonholonomic nonpotential system in noninertial reference frames // Yingyong shuxue he lixue. = Appl. Math. and Mech. 1991. Vol. 12. №9. P. 863-870. 355. Maggi G.A. Principii della Teoria Matematica del Movimento dei Corpi. Corso di Meccanica Razionale. Milano: U. Hoepli. 1896. 356. Maggi G.A. Di alcune nouve forme delle equazioni della Dinamica, appli- cabili ai sistemi anolonomi // Atti della Reale Accademia Naz. dei Lincei. Rendi- conti. Classe di scienze fisiche, mathematische e naturali. Ser. 5. 1901. Vol. 10. №12. P. 287-292. 357. Maißer P. Modellgleichungen f¨ur Manipulatoren // Techn. Mech. 1982. Bd 3. H. 2. S. 64-78; The same. Analytische Dynamik von Mehrk¨orpersystemen // ZAMM. 1988. Vol. 68. S. 463-481. 358. Maisser P. A differential-geometric approach to the multi body system dynamics // ZAMM. 1991. Vol. 71. №4. S. 116-119; The same. Dynamik hybrider Mehrk¨orpersysteme aus kontinuusmechanischer Sicht // ZAMM. 1996. Vol. 76. №1. S. 15-33. 320 References

359. Maißer P., Steigenberger J. Zugang zur Theorie elektromechanischer Sys- teme mittels klassischer Mechanik. Teil 1: Elektrische Systeme in Ladungsformulie- rung // Wissenschaftliche Zeitschrift TH Ilmenau. 1974. Vol. 20. №6. S. 105-123. 360. Mangeron D., Deleanu S. Sur une classe d’´equationsdelam´ecanique analy- tiqueausensdeJ.Tz´enoff // Comptes Rendus de l’Acad´emie Bulgare des Sciences. 1962. V. 15. №1. P. 9-12. 361. Mayer A. Ueber die Aufstellung der Differentialgleichungen der Bewegung f¨ur reibungslose Punktsysteme // Berichte der K¨onigl. S¨achs. Gesell. der Wissensch. Leipzig. Math.-Phys. Kl. 1899. 362. Mei Fengxiang. One type of integrals for the equations of motion of higher- order nonholonomic systems // Appl. Math. and Mech. (Engl. Ed.). 1991. Vol. 12. №8. P. 799-806; The same. A field method for integrating the equations of motion of nonholonomic controllable systems // Appl. Math. and Mech. (Engl. Ed.). 1992. Vol. 13. №2. P. 181-187; The same. The free motion of nonholonomic system and disappearance of the nonholonomic property // Lixue xuebao. = Acta mech. sin. 1994. V. 26. №6. P. 470-476; The same. Nonholonomic mechanics // ASME. Appl. Mech. Rev. 2000. Vol. 53. №11. P. 283-305. 363. Mingori D.L. Lagrange’s equations, Hamilton’s equations, and Kane’s equations: interrelations, energy integrals, and variational principle // ASME. J. Appl. Mech. 1995. Vol. 62. P. 505-510. 364. Molenbrock P. Over de zu iver rolende beweging van een lichaam over wille kenrig oppervlak // Nieuw Archief voor Wiskunde. D. 1890. Vol. 17. P. 130-157. 365. Muschik W., Poliatzky N., Brunk G. Die Lagrangeschen Gleichungen bei Tschetaew-Nebenbedingungen // ZAMM. 1980. Bd 60. S. 46-47. 366. Neumann C. Ueber die rollende Bewegung eines K¨orpers auf einer gegebe- nen Horizontal-Ebene unter dem Einfluss der Schwere // Berichte der K¨onigl. S¨achs. Gesell. der Wissensch. Leipzig. Math.-Phys. Kl. 1885. Bd 37. S. 352-378; The same. Grundz¨uge der Analytischen Mechanik // Berichte der K¨onigl. S¨achs. Gesell. der Wissensch. Leipzig. Math.-Phys. Kl. 1887. Bd 39. S. 153-190; 1888. Bd 40. S. 22-88; The same. Ueber die rollende Bewegung einer K¨orpers auf einer gegebenen Horisontalebene unter dem Einfluß des Schwere // Math. Ann. 1886. Bd XXVII. S. 478-505; The same. Beitr¨age zur analytischen Mechanik // Abhandl. der K¨onigl. S¨achs. Gesell. der Wissensch. Leipzig. Math.-Phys. Kl. 1899. Bd 51. S. 371-443. 367. Nielsen J. Vorlesungenuber ¨ elementare Mechanik. Berlin: Springer-Verlag. 1935. 368. Nordheim L. Die Prinzipe der Dynamik. Handbuch f¨ur Physik. Bd 5. Berlin: Springer-Verlag. 1927. S. 43-90. 369. Nordmark A., Ess´en H. Systems with a preferred spin direction // Pro- ceedings of the Royal Society of London. A. Mathematical and Physical Sciences. 1999. №455. P. 933-941. 370. Papastavridis J.G. Maggi’s equations of motion and the determination of constraint reactions // J. of Guidance, Dynamics and Control. 1990. Vol. 13. №2. P. 213-220; The same. On energy rate theorems for linear first-order nonholono- mic systems // ASME. J. Appl. Mech. 1991. Vol. 58. P. 536-544; The same. On the Boltzmann–Hamel equations of motion: a vectorial treatment // The same. 1994. Vol. 61. №2. P. 453-459; The same. On the transformation properties of the nonlinear Hamel equations // The same. 1995. Vol. 62. P. 924-927; The same. Time- integral variational principles for nonlinear nonholonomic systems // The same. 1997. Vol. 64. P. 985-991; The same. A panoramic overview of the principles and References 321 equations of motion of advanced engineering dynamics // Appl. Mech. Rev. 1998. Vol. 51. №4. P. 239-265; The same. Tensor calculus and analytical dynamics. Boca Raton. FL: CRC Press. 1999; The same. Analytical Mechanics. Oxford: University Press. 2002. 1392 p. 371. Parczewski J., Blajer W. On realization of program constraints. I. Theory. II. Practical implications // ASME. J. Appl. Mech. 1989. Vol. 56. №3. P. 676-679, 680-684. 372. Poincar´eH.Les id´ees de Hertz sur la M´ecanique // Revue g´en´erale des Sci. pures et appl. 1897. №18. P. 734-743. 373. Poincar´eH.Sur une forme nouvelle des ´equationsdelam´ecanique // Comptes Rendus. 1901. Vol. 132. P. 369-371. 374. Poisson S. Trait´edeM´ecanique. T. II. Paris: Bachelier. 1833. 782 p. 375. Przeborski A. Die allgemeinsten Gleichungen der klassischen Dynamik // Math. Zeitschrift. 1931–1932. Bd 36. H. 2. S. 184-194. 376. Qiang Yuan Ge. On Chetayev’s conditions // Zhongquo kexue jishu daxue xuebao. = J. China Univ. Sci. and Technol. 1993. Vol. 23. №2. P. 175-182. 377. Quanjel J. Les ´equations g´en´erales de la m´ecanique dans le cas des lia- sons non-holonomes // Rendiconti del circolo mathematico di Palermo. 1906. T. 22. P. 263-273; Dautheville S. Sur les syst´emes non holonomes // Bull. soc. math. de France. 1909. Vol. 37. P. 120-132; P¨oschl T. Sur les ´equations canoniques des syst´ems non holonomes // Comptes Rendus. 1913. Vol. 156. P. 1829-1831. 378. Risito C. Sulla stabilit`a asintotica parziale // Annali di Matematica pura ed applicata. 1970. Ser. IV. V. LXXXIV. P. 279-292. 379. Routh E. Advanced part of a Treatise on the Dynamics of a System of Rigid Bodies. London. 1884. (Раус Э.Дж. Динамика системы твердых тел. М.: Наука. 1983. Т. I, 464 с.; Т. II, 544 с.) 380. Rumyantsev V.V. Sumbatov A.S. On the problem of a generalization of the Hamilton–Jacobi method for nonholonomic systems // ZAMM. 1978. Bd 58. P. 477-481. 381. Saint-Germain A. Sur la fonction S introduite par P. Appell dans les ´equa- tions de la Dynamice // Comptes Rendus. 1900. Vol. CXXX. P. 1174-1176. 382. Schouten G. Over de rollende beweging van een Omwentelingalichaam op een vlak // Verlangen der Konikl. Akad. van Wet. Amsterdam. Proceedings. 1899. Bd 5. S. 1-10. 383. Schouten J.A. On non holonomic connections // Verlangen der Konikl. Akad. van Wet. Amsterdam. Proceedings. 1928. Bd 31. S. 291-299. 384. Sharf J., d’Eleuterio G.M.T., Hughes P.C. On the dynamics of Gibbs, Appell, and Kane // Europ. J. of Mech. A/Solids. 1992. Vol. 11. №2. P. 145-155. 385. Shen Z.C., Mei F.X. On the new forms of the differential equations of the systems with higher-order nonholonomic constraints // Appl. Math. and Mech. 1987. Vol. 8. P. 189-196. 386. Smale S. Topology and mechanics // Invent. Math. 1970. Vol. 10. P. 305-311; Vol. 11. P. 45-64. 387. Song Kehui, Lu Dehua, Shu Xiangcai. D’Alembert principle in the velocity space // Huaihua shizhuan xuebao. = J. Huaihua Teach. Coll. Natur. Sci. 1995. Vol. 14. №2. P. 16-21. 388. Song Peilin, Ma Xingrui. Orthogonality of the dynamics of the constrained systems // Mech. Res. Commun. Vol. 18. №4. P. 157-166. 322 References

389. Stawianowski J.J. Nonholonomic variational problems and heuristics of control forces // Mech. teor. i stosow. 1991. Vol. 29. №3. P. 661-670. 390. Steigenberger L. Classical framework for nonholonomic mechanical control systems // Int. J. of robust and nonlinear control. 1995. Vol. 5. P. 331-342. 391. Steigenberger J., Maißer P. Zugang zur Theorie elektromechanischer Sys- teme mittels klassischer Mechanik. Teils 2 und 3 // Wissenschaftliche Zeitschrift TH Ilmenau. 1976. Vol. 22. №3. S. 157-163; №4. S. 123-139. 392. Storch J., Gates S. Motivating Kane’s method for obtaining equations of motion for dynamic systems // J. of Guidance, Dynamics and Control. 1989. Vol. 12. №4. P. 593-595. 393. Tz´enoff J. Sur les ´equations du mouvement des syst´emes materiels non holonomes // Mathematische Annalen. 1924. Bd 91. H. 1/2. S. 161-168. 394. Udwadia F.E., Kalaba R.E. A new perspective on constrained motion // Proceedings of the Royal Society. London. 1992. Vol. A439. №1906. P. 407-410; The same. Analytical dynamics: a new approach. Cambridge University Press. 1996; Udwadia F.E., Phailaung P. Explicit equations of motion for constrained mechan- ical systems with singular mass matrices and applications to multi-body dynamics // Proceedings of the Royal Society. London. 2008. Vol. 462. №2071. P. 2097-2117. 395. Vˆalcovici V. Une extension des liasions non holonomes // Comptes Rendus. 1956. Vol. 243. №15. P. 1012. 396. Van der Schaft A.J., Maschke B.M. On the hamiltonian formulation ofnon- holonomic mechanical systems // Rep. on Math. Phys. 1994. Vol. 34. №2. P. 225-233. 397. Vershik A.M., Gershkovich V.Ya. I. Nonholonomic dynamical systems. Ge- ometry of distributions and variational problems // Encyclopaedia of Mathematical Sciences. Berlin: Springer-Verlag. 1994. Vol. 16. P. 1-81. 398. Vierkandt A. Ueber gleitende und rollende Bewegung // Monatsheft f¨ur Mathematik und Physik. Verlag des Math. Seminars der Univ. Wien. III Jahrgang. 1892. S. 31-54, 97-134. 399. Volterra V. Sopra una classe di equazioni dinamiche // Atti della Reale Accademia delle Scieze. Torino. 1898. Vol. XXXIII. P. 451-475; The same. Sur la theorie des variations des lattitudes // Acta Math. 1899. Vol. XXII. P. 201-357. 400. Voss A. Ueber die Prinzipien von Hamilton und Maupertuis // Nachrich- ten von der K¨onigl. Gesell. der Wissensch. G¨ottingen. Math.-Phys. Klasse. 1900. S. 322-327. 401. Vranceanu G. Les espaces nonholonomes et leurs applications m´ecanique // M´em. Sci. Math. Fasc. 76. Paris: Gauthier-Villars. 1936. 402. Walker G.T. On the curious dynamical property of celts // Proc. Cam- bridge Phil. Soc. 1895. Vol. 8. Pt. 5. P. 305-306; The same. On a dynamical top // Quart. J. pure and appl. Math. 1896. Vol. 28 P. 175-184. 403. Walker J. The mysterious "rattleback"; a stone that spins in one direction and then reverses // Sci. Amer. 1979. Vol. 241. №4. P. 144-149. 404. Wassmuth A. Studienuber ¨ Jourdain’s Prinzip der Mechanik // Sitzungs- berichte der Osterreichischen¨ Akad. Wiss. Wien. 1919. Vol. IIa. Bd 128. S. 365-378. 405. Whittaker E.T. A treatise on the analytical dynamics of particles and rigid bodies with an introduction to the problem of three bodies. Third edition. Cambridge. 1927. (Уиттекер Е.Т. Аналитическая динамика. М.-Л.: ОНТИ. 1937. 500 с.) References 323

406. Wittenburg J. Dynamics of systems of rigid bodies. Stuttgart: Teubner. 1977. (Виттенбуpг И.С. Динамика систем твеpдых тел. М.: Миp. 1980. 292 с.) 407. Woronetz P. Uber¨ die Bewegung eines starren K¨orpers, der ohne Gleiten auf einer beliebigen Fl¨ache rollt // Math. Ann. 1911. Bd LXX. S. 410-453. ; The same. Uber¨ die Bewegungsgleichungen eines starren K¨orpers // Math. Ann. 1911. Bd LXXI. S. 392-403. 408. Xu Mingtao, Liu Chengqun, Huston R.L. Analysis of non-linearly con- strained non-holonomic multibody systems // Int. J. non-linear Mech. 1990. Vol. 25. №5. P. 511-519. 409. Yamamoto T. Rotation of an ellipsoid and reversible top // Sci. Repts Hirosaka Univ. 1980. V. 27. №1. P. 9-16. 410. Yang Haixing, Cheng Geng. The stability of a tippe top on a slightly round horizontal plane // Lixue xuebao. = Acta Mech. Sin. 1993. Vol. 25. №2. P. 242-248. 411. Yushkov M.P., Zegzhda S.A. A new method of vibration analysis of elastic systems, based on the Lagrange equations of the first kind // Techn. Mech. 1998. Bd 18. H. 2. S. 151-158; Cattani C., Scalia M., Yushkov M.P., Zegzhda S.A. Con- sideration of reaction forces of holonomic constraints as generalized coordinates in approximate determination of lower frequencies of elastic systems // The same. 2008. Bd 28. H. 2. S. 126-139. 412. ZekoviˇcD.O postulatu Cetajevaˇ i reakciji veza za nelinearne neholonomne sisteme // Tehnika. 1989. Vol. 44. №3–4. P. 251-254. 413. Zhang Jiefang, Guo Hong. Noether’s theorem and its inverse theorem for nonholonomic nonconservative systems in phase space // Yingyong lixue xuebao. = Chin. J. Appl. Mech. 1994. Vol. 11. №2. P. 116-120. 414. Zhu Haiping, Mei Fengxiang. On the stability of nonholonomic mechanical systems with respect to partial variables // Appl. Math. and Mech. 1995. Vol. 16. №3. P. 237-245. 415. Zhu Sigong. Two new equations in terms of quasi-coordinates for variable mass systems with high-order nonholonomic constraints // J. Harbin Inst. Elec. Technol. 1989. Vol. 12. №3. P. 278-290. 416. O’Reilly O.M., Srinivasa A.R. On a decomposition of generalized con- straint forces // Proceedings of the Royal Society. London. 2001. Vol. A457. P. 1307- 1313. 417. Casey J. A treatment of rigud body dynamics // ASME. J. Appl. Mech. 1983. №50. P. 905-907; The same. On the advantages of a geometrical viewpoint in the derivation of Lagrage’s equations for a rigid continuum // ZAMP. 1995. Vol. 46. S. 805-847; The same. Pseudo-rigid continua: basic theory and a geometrical derivation of Lagrage’s equations // Proceedings of the Royal Society. London. 2004. Vol. A460. P. 2021-2049. 418. Truesdell C. A first course in rational continuum mechanics. Academic Press, Inc. 1991. (Трусделл К. Первоначальный курс рациональной механики сплошных сред. М.: Мир. 1975. 592 с.) 419. Черноусько Ф.Л., Акуленко Л.Д., Соколов Б.Н. Управление колебаниями [Chernous’ko F.L., Akulenko L.D., Sokolov B.N. Control of the vibra- tions]. М.: Наука. 1980. 384 с.; Черноусько Ф.Л., Болотник Н.Н., Градецкий В.Г. Манипуляционные роботы: динамика, управление, оптимизация [Chernous’ko F.L., Bolotnik N.N., Gradetskii V.G. Robotic manipulators: dynamics, control, optimization]. М.: Наука. 1989. 364 с.; Черноусько Ф.Л., Ананьевский И.М., 324 References

Решмин С.А. Методы управления нелинейными механическими системами [Chernous’ko F.L., Ananyevskii I.M., Reshmin S.A. Nethods of control of nonlinear mechanical systems]. М.: Наука. 2006. 327 с. 420. Понтрягин Л.С., Болтянский В.Г., Гамкрелидзе Р.В., Мищенко Е.Ф. Математическая теория оптимальных процессов [Pontryagin L.S., Boltyanskii V.G., Gamkrelidze R.V., Mishchenko E.F. Mathematical theory of optimal pro- cesses]. М.: Наука. 1983. 392 с. 421. Kamke E. Differentialgleichungen. L¨osungs methoden und L¨osungen. I. Gew¨ohnliche Differentialgleichungen. Leipzig. 1959. (Камке Э. Справочник по обыкновенным дифференциальным уравнениям. СПб-М.-Краснодар: Лань. 2003. 576 с.) 422. Moore E.H. On the reciprocal of the general algebraic matrix // Bidl. Am. math. Soc. 1920. Vol. 26. P. 394-395; Penrose R. A generalized inverse of matrices // Proc. Camb. phil. Soc. 1955. Vol. 51. P. 406-413. 423. Калёнова В.И., Морозов В.М., Салмина М.А. Об устойчивости и стабилизации установившихся движений неголономных механических систем одного класса [Kalyonova V.I., Morozov V.M., Salmina M.A. On stability and stabilization of steady motions of nonholonomic systems of a certain class] // Прикл. мат. и мех. 2004. Т. 68. Вып. 6. С. 914-924; Калёнова В.И., Карапетян А.В., Морозов В.М., Салмина М.А. Неголономные механические системы и стабилизация движения [Kalyonova V.I., Karapetyan A.V., Morozov V.M., Salmi- na M.A. Nonholonomic mechanical systems and stabilization of motion] // Фундам- ентальная и прикл. математика. 2005. Т. 11. №7. С. 117-158. 424. Костин Г.В., Саурин В.В. Моделирование и оптимизация движений упругих систем методом интегродифференциальных соотношений [Kostin G.V., Saurin V.V. Modelling and optimization of motion of elastic systems by the method of integro-differential relations] // Докл. РАН. 2006. Т. 408. №6. С. 750-753. 425. Товстик П.Е., Товстик Т.М. Уравнение Дуффинга и странный аттрактор [Tovstik P.E., Tovstik T.M. The Duffing equation and strange attractor] // Анализи синтезнелин. механич. колебат. систем. СПб: 1998. Т. 2. С. 229-235. 426. Леонов Г.А. Странные аттракторы и классическая теория устойчивости движения [Leonov G.A. Strange attractors and the classical theory of motion sta- bility]. СПб: Изд-во С.-Петерб. ун-та. 2004. 144 с. 427. Товстик Т.П. Динамика Кельтского камня при наличии сопротивлений [Tovstik T.P. On the dynamics of the Celt rattleback with frictions] // Междунар. научн. конфер. "4 Поляховские чтения СПб, 7-10 февр., 2006. Избранные труды. СПб: ВВМ. 2006. С. 187-196; The same. On the influence of sliding on the Celt rat- tleback motion // Proceedings of XXXVth International Summer School-Conference APM-2007. St. Petersburg: 2007. P. 432-437. 428. Розенблат Г.М. О движении плоского твердого тела по шероховатой прямой [Rozenblat G.M. On the motion of a plane rigid body along a rough line] // Нелинейная динамика. 2006. Т. 2. №3. С. 293-306; The same. О безотрывных движениях твердого тела по плоскости [On motions of a rigid body on the surface with continuous contact] // Докл. РАН. 2007. Т. 415. №5. С. 622-624. 429. Матюхин В.И. О реализации неголономных механических связей [Matyukhin V.I. Realization of nonholonomic mechanical constraints] // Мех. тверд. тела. 1999. №6. С. 3-11; The same. Стабилизация движения механических систем с неголономными связями [Stabilization of motion of mechanical systems with nonholonomic constraints] // Прикл. мат. и мех. 1999. Т. 63. Вып. 5. С. 725- 735; The same. Управляемость неголономных механических систем в классе References 325

ограниченных управлений [Controllability of nonholonomic mechanical systems in the class of limited controls] // The same. 2004. Т. 68. Вып. 5. С. 758-775; The same. Управление механической колесной системой [The control by a mechanical wheeled system] // The same. 2007. Т. 71. Вып. 2. С. 237-249. 430. Ghori Q.K., Ahmed N. Principles of Lagrange and Jakobi for nonholonomic systems // Int. J. non-linear Mech. 1999. Vol. 34. №5. P. 823–829. 431. Frigioiu C. On the geometry of nonholonomic mechanical systems // Proc. Rom. Acad. 2005. Vol. A6. №2. P. 121–128. 432. Pfeiffer F., Foery M., Ulbrich H. Numerical aspects of non-smooth multi- body dynamics // Comput. meth. appl. mech. and eng. 2006. Vol. 195. №50–51. P. 6891-6908. 433. Batista M. Steady motion of a rigid disk of finite thickness on a horizontal plane // Int. J. non-linear Mech. 2006. Vol. 41. №4. P. 605-621; The same. Integra- bility of the motion of a rolling disk of finite thickness on a rough plane // The same. 2006. Vol. 41. №6–7. P. 850-859. 434. Simeon B. On Lagrange multipliers in flexible multibody dynamics // Comput. meth. appl. mech. and eng. 2006. Vol. 195. №50–51. P. 6993-7007. 435. Babitsky V.I., Shipilov A. Resonant robotic systems. Springer-Verlag. 2003. INDEX

Abstract constraints, 151, 152 Contravariant components, 215, 216 Acceleration vector for arbitrary of tangent vector, 105 mechanical system, 107 of velocity vector, 218 Amplitude-frequency Coordinate characteristics, 164 line, 213 Andronov–Hopf bifurcation, 229 plane, 215 Appell function, 200 surface, 213 Appell’s equations, 101, 123 Covariant components, 216 Appell’s form equations with of velocity vector, 218 third-order constraints, 123 Curves of static bend (deflection), 158 Approximate periodic Curvilinear coordinates, 213 solutions, 236 Cylindrical system of coordinates, 222 Approximate solution of Lagrange’s equations, 237 D’Alembert–Lagrange principle, 13, 207 Axes of curvilinear coordinates, 214 Dynamic compliances, 156 Dynamic control of the motion of a car, Basic metric form, 217 245 Basic metric tensor, 217 Dynamic Euler equations, 200 Basis of the Lie algebra, 200 Basis of s-dimensional Lie algebra Effective potential, 230 with the commutator, 199 Elastic constraints, 165, 167, 168 Bending oscillations of the cantilever Equations of motion, 214 of variable cross-section, 264 of nonholonomic systems in quasico- Bubnov–Galerkin method, 237 ordinates, 200 in quasicoordinates, 211 Chaplygin’s equations, 30, 39 Equations of noncomplete program in quasicoordinates, 43 of motion, 96 Chaplygin’s type equations, 32, Equations of nonholonomic systems in 42, 197 the Poincar´e–Chetaev Chetaev’s postulate, 76, 92–93 variables, 200 Chetaev’s type constraints, 76 Equations, represented in Maggi’s Christoffel symbols form, for third-order of first kind, 219 constraints, 121 of second kind, 219 Euclidean structure of the tangent Coefficients of influence, 156 space, 106 Complementary metric form, 217 Complementary metric tensor, 217 Formula for computing the Christoffel Condition of a free motion of the coefficients of the first Chaplygin sledge, 242 kind, 219 Condition of the ideality of Free (unconstrained) motion of constraints, 110 nonholonomic system, 239 Conditions of N. G. Chetaev, 202, 203, 207 Gaussian function, 116 Configuration space of the system, Gaussian principle, 103, 109 230 generalized, 119, 183 Constraints completely defined by their General (fundamental) equation of analytic representations, 9 dynamics, 110–111

327 328 Index

Generalized control force, 127 Maggi’s equations, 30, 201 Generalized D’Alembert–Lagrange second group, 30, 101 principle, 202 Mangeron–Deleanu principle, 135 Generalized forces, 6 Manifold of positions of the mechanical corresponding to system, 105 quasivelocities, 94 Maximum principle of Generalized impulses, 7 Pontryagin, 185 Generalized operator Metric tensor, 106 Appell, 114 Mixed problem of dynamics, 128 Lagrange, 114 Motion of dynamically symmetric ball Generalized problem of on absolutely roughened plane, P.L. Chebyshev, 126 233 Generalized reactions, 82, 150 Gradient of the function, 215 Natural (fundamental) basis, 215 Necessary and sufficient conditions for Hamel–Boltzmann equations, 31, 44 the existence of free motion of Hamel–Novoselov equations, 32, nonholonomic 43, 197 systems, 240 Hamiltonian nabla operator, 216 New class of control problems, 128 Harmonic coefficients of Newton’s determinacy principle, 136 influence, 156 Noncomplete program of motion, 100 High-order program Nonholonomic bases, 28 constraints, 135 Nonlinear second-order nonholonomic constraints, 116 Ideal constraints Normal (natural) forms (modes) of holonomic, 3, 4, 81 oscillations, 153 nonholonomic, 29, 81 Normal (natural) frequency, 153 Ideal control, 134 Ideality condition of Objects of nonholonomicity, 31 control, 135 Introducing generalized reaction Parametrization of constraints, 195 forces as Lagrangean Permutable relations, 206, 207 coordinates, 263 Poincar´e–Chetaev equations, 34 Poincar´e–Chetaev parameters, 202 Kinematical characteristics, 194 Poincar´e–Chetaev–Rumyantsev Kinematic control of the motion equations, 44, 201, 206 of a car, 245 Poincar´e diagrams, 283 Kronecker symbols, 215 Poincar´e equations, 44, 200 Poincar´e parameters, 194 Lagrange multipliers, 82, 150 Possible types of the car motion, 251 Lagrange operator, 6, 222 Principle of virtual accelerations, 110 Lagrange’s equations Principle of virtual displacements, 111 of first kind, 4, 7 Principle of virtual velocities, 110 of first kind in generalized Program constraints, 116, 119, 135 coordinates, 11 for nonholonomic systems, 33 Quasicoordinates, 41 of second kind with multipliers, 11 Quasivelocities, 41 undetermined, 33 Lam´e factors, 214 Reciprocal (dual) basis, 107, 215 Linear transformation of forces, 94 Representation point, 1, 2 Index 329

Residual, 235 Tangent space, 106 Rule of dummy index, 216 Rules of raising and missing an Udwadia–Kalaba equations, 34 index, 217 Variation of the generalized Series in resonance velocity, 67 frequencies, 186 Variations of coordinates, 12, 106 Set, bifurcational by Smale, Vector of generalized impulse, 113 231 Velocity vector of mechanical Steady motions, 231 system, 113 of conservative nonholonomic Virtual displacements, 12, systems, 229 106, 112 Steady rolling of disk on horizontal Virtual elementary work, 7, plane, 233 84, 106 Strange attractors, 281 Virtual velocity, 112 Structural constants of Lie Voronets equations, 40 algebra, 199 Voronets–Hamel coefficients of first Subspace kind, 198 of motions, 8 Voronets–Hamel equations, 44 of reactions, 8 Voronets–Hamel type Suslov–Jourdain principle, 68 equations, 198