Π0 Decay with the KLOE Experiment
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
X. Charge Conjugation and Parity in Weak Interactions →
Charge conjugation and parity in weak interactions Particle Physics X. Charge conjugation and parity in weak interactions REMINDER: Parity The parity transformation is the transformation by reflection: → xi x'i = –xi A parity operator Pˆ is defined as Pˆ ψ()()xt, = pψ()–x, t where p = +1 Charge conjugation The charge conjugation replaces particles by their antiparticles, reversing charges and magnetic moments ˆ Ψ Ψ C a = c a where c = +1 meaning that from the particle in the initial state we go to the antiparticle in the final state. Oxana Smirnova & Vincent Hedberg Lund University 248 Charge conjugation and parity in weak interactions Particle Physics Reminder Symmetries Continuous Lorentz transformation Space-time Translation in space Symmetries Translation in time Rotation around an axis Continuous transformations that can Space-time be regarded as a series of infinitely small steps. symmetries Discrete Parity Transformations that affects the Space-time Charge conjugation space-- and time coordinates i.e. transformation of the 4-vector Symmetries Time reversal Minkowski space. Discrete transformations have only two elements i.e. two transformations. Baryon number Global Lepton number symmetries Strangeness number Isospin SU(2)flavour Internal The transformation does not depend on Isospin+Hypercharge SU(3)flavour symmetries r i.e. it is the same everywhere in space. Transformations that do not affect the space- and time- Local gauge Electric charge U(1) coordinates. symmetries Weak charge+weak isospin U(1)xSU(2) Colour SU(3) The -
J. Stroth Asked the Question: "Which Are the Experimental Evidences for a Long Mean Free Path of Phi Mesons in Medium?"
J. Stroth asked the question: "Which are the experimental evidences for a long mean free path of phi mesons in medium?" Answer by H. Stroebele ~~~~~~~~~~~~~~~~~~~ (based on the study of several publications on phi production and information provided by the theory friends of H. Stöcker ) Before trying to find an answer to this question, we need to specify what is meant with "long". The in medium cross section is equivalent to the mean free path. Thus we need to find out whether the (in medium) cross section is large (with respect to what?). The reference would be the cross sections of other mesons like pions or more specifically the omega meson. There is a further reference, namely the suppression of phi production and decay described in the OZI rule. A “blind” application of the OZI rule would give a cross section of the phi three orders of magnitude lower than that of the omega meson and correspondingly a "long" free mean path. In the following we shall look at the phi production cross sections in photon+p, pion+p, and p+p interactions. The total photoproduction cross sections of phi and omega mesons were measured in a bubble chamber experiment (J. Ballam et al., Phys. Rev. D 7, 3150, 1973), in which a cross section ratio of R(omega/phi) = 10 was found in the few GeV beam energy region. There are results on omega and phi production in p+p interactions available from SPESIII (Near- Threshold Production of omega mesons in the Reaction p p → p p omega", Phys.Rev.Lett. -
Three Lectures on Meson Mixing and CKM Phenomenology
Three Lectures on Meson Mixing and CKM phenomenology Ulrich Nierste Institut f¨ur Theoretische Teilchenphysik Universit¨at Karlsruhe Karlsruhe Institute of Technology, D-76128 Karlsruhe, Germany I give an introduction to the theory of meson-antimeson mixing, aiming at students who plan to work at a flavour physics experiment or intend to do associated theoretical studies. I derive the formulae for the time evolution of a neutral meson system and show how the mass and width differences among the neutral meson eigenstates and the CP phase in mixing are calculated in the Standard Model. Special emphasis is laid on CP violation, which is covered in detail for K−K mixing, Bd−Bd mixing and Bs−Bs mixing. I explain the constraints on the apex (ρ, η) of the unitarity triangle implied by ǫK ,∆MBd ,∆MBd /∆MBs and various mixing-induced CP asymmetries such as aCP(Bd → J/ψKshort)(t). The impact of a future measurement of CP violation in flavour-specific Bd decays is also shown. 1 First lecture: A big-brush picture 1.1 Mesons, quarks and box diagrams The neutral K, D, Bd and Bs mesons are the only hadrons which mix with their antiparticles. These meson states are flavour eigenstates and the corresponding antimesons K, D, Bd and Bs have opposite flavour quantum numbers: K sd, D cu, B bd, B bs, ∼ ∼ d ∼ s ∼ K sd, D cu, B bd, B bs, (1) ∼ ∼ d ∼ s ∼ Here for example “Bs bs” means that the Bs meson has the same flavour quantum numbers as the quark pair (b,s), i.e.∼ the beauty and strangeness quantum numbers are B = 1 and S = 1, respectively. -
Understanding the J/Psi Production Mechanism at PHENIX Todd Kempel Iowa State University
Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2010 Understanding the J/psi Production Mechanism at PHENIX Todd Kempel Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Physics Commons Recommended Citation Kempel, Todd, "Understanding the J/psi Production Mechanism at PHENIX" (2010). Graduate Theses and Dissertations. 11649. https://lib.dr.iastate.edu/etd/11649 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Understanding the J= Production Mechanism at PHENIX by Todd Kempel A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Nuclear Physics Program of Study Committee: John G. Lajoie, Major Professor Kevin L De Laplante S¨orenA. Prell J¨orgSchmalian Kirill Tuchin Iowa State University Ames, Iowa 2010 Copyright c Todd Kempel, 2010. All rights reserved. ii TABLE OF CONTENTS LIST OF TABLES . v LIST OF FIGURES . vii CHAPTER 1. Overview . 1 CHAPTER 2. Quantum Chromodynamics . 3 2.1 The Standard Model . 3 2.2 Quarks and Gluons . 5 2.3 Asymptotic Freedom and Confinement . 6 CHAPTER 3. The Proton . 8 3.1 Cross-Sections and Luminosities . 8 3.2 Deep-Inelastic Scattering . 10 3.3 Structure Functions and Bjorken Scaling . 12 3.4 Altarelli-Parisi Evolution . -
Charge Conjugation Symmetry
Charge Conjugation Symmetry In the previous set of notes we followed Dirac's original construction of positrons as holes in the electron's Dirac sea. But the modern point of view is rather different: The Dirac sea is experimentally undetectable | it's simply one of the aspects of the physical ? vacuum state | and the electrons and the positrons are simply two related particle species. Moreover, the electrons and the positrons have exactly the same mass but opposite electric charges. Many other particle species exist in similar particle-antiparticle pairs. The particle and the corresponding antiparticle have exactly the same mass but opposite electric charges, as well as other conserved charges such as the lepton number or the baryon number. Moreover, the strong and the electromagnetic interactions | but not the weak interactions | respect the change conjugation symmetry which turns particles into antiparticles and vice verse, C^ jparticle(p; s)i = jantiparticle(p; s)i ; C^ jantiparticle(p; s)i = jparticle(p; s)i ; (1) − + + − for example C^ e (p; s) = e (p; s) and C^ e (p; s) = e (p; s) . In light of this sym- metry, deciding which particle species is particle and which is antiparticle is a matter of convention. For example, we know that the charged pions π+ and π− are each other's an- tiparticles, but it's up to our choice whether we call the π+ mesons particles and the π− mesons antiparticles or the other way around. In the Hilbert space of the quantum field theory, the charge conjugation operator C^ is a unitary operator which squares to 1, thus C^ 2 = 1 =) C^ y = C^ −1 = C^:; (2) ? In condensed matter | say, in a piece of semiconductor | we may detect the filled electron states by making them interact with the outside world. -
On the Scent of Glue
On the scent of glue by Frank Close Although this work was not new Soon after the quark model was in has been intensifying over the last for the specialists, the underlying vented twenty years ago, people re several years. Where have all the message was clear. 'Because of its alized that it was in trouble. The Pauli flowers gone? inherent singularities, classical gen exclusion principle ruled out many eral relativity predicts its own down well known states, in particular the How colour forces work fall,' stated Hawking, 'just as the configuration of three identical classical picture of the atom was also strange quarks that formed the ome Electrical charges are the sources doomed'. ga-minus. The very hadron whose of electromagnetic forces. As every The meeting merited two closing discovery had confirmed the Eight schoolchild knows, opposite char lectures. For the cosmologists, Mar fold Way seemingly killed its off ges attract while like charges repel. tin Rees of Cambridge confessed to spring, the quark model. Quarks possess electric charge and finding the symposium an 'unusual In those days, many people were so feel electromagnetic forces. That experience'. For the particle physi reluctant to accept the idea of frac is why even electrically uncharged cists, John Ellis described particle tionally charged quarks which had particles like neutrons have electro physics and cosmology as having 'a never been seen. The Pauli paradox magnetic interactions; they contain brilliant past in front of them' — refer suggested that quarks were at best electrically charged constituents. ring to the new common interest in no more than a bookkeeping device, Quarks also have colour and it ap the primaeval Big Bang and its imme not physical particles. -
And G-Parity: a New Definition and Applications —Version Viib—
BNL PREPRINT BNL-QGS-13-0901 Cparity7b.tex C- and G-parity: A New Definition and Applications |Version VIIb| S. U. Chung α Physics Department Brookhaven National Laboratory, Upton, NY 11973, U.S.A. β Department of Physics Pusan National University, Busan 609-735, Republic of Korea γ and Excellence Cluster Universe Physik Department E18, Technische Universit¨atM¨unchen,Germany δ September 29, 2013 abstract A new definition for C (charge-conjugation) and G operations is proposed which allows for unique value of the C parity for each member of a given J PC nonet. A simple straightforward extension of the definition allows quarks to be treated on an equal footing. As illustrative examples, the problems of constructing eigenstates of C, I and G operators are worked out for ππ, KK¯ , NN¯ and qq¯ systems. In particular, a thorough treatment of two-, three- and four-body systems involving KK¯ systems is given. α CERN Visiting Scientist (part time) β Senior Scientist Emeritus γ Research Professor (part time) δ Scientific Consultant (part time) 1 Introduction The purpose of this note is to point out that the C operation can be defined in such a way that a unique value can be assigned to all the members of a given J PC nonet. In conventional treatments in which antiparticle states are defined through C, one encounters the problem that anti-particle states do not transform in the same way (the so-called charge-conjugate representation). That this is so is obvious if one considers the fact that a C operation changes sign of the z-component of the I-spin, so that in general C and I operators do not commute. -
Arxiv:1706.02588V2 [Hep-Ph] 29 Apr 2019 D D O Oeua Tts Ntehde Hr Etrw Have We Sector Candidates Charm Good Hidden the Particularly the in As Are States
Heavy Baryon-Antibaryon Molecules in Effective Field Theory 1, 2 1, 1, Jun-Xu Lu, Li-Sheng Geng, ∗ and Manuel Pavon Valderrama † 1School of Physics and Nuclear Energy Engineering, International Research Center for Nuclei and Particles in the Cosmos and Beijing Key Laboratory of Advanced Nuclear Materials and Physics, Beihang University, Beijing 100191, China 2Institut de Physique Nucl´eaire, CNRS-IN2P3, Univ. Paris-Sud, Universit´eParis-Saclay, F-91406 Orsay Cedex, France (Dated: April 30, 2019) We discuss the effective field theory description of bound states composed of a heavy baryon and antibaryon. This framework is a variation of the ones already developed for heavy meson- antimeson states to describe the X(3872) or the Zc and Zb resonances. We consider the case of heavy baryons for which the light quark pair is in S-wave and we explore how heavy quark spin symmetry constrains the heavy baryon-antibaryon potential. The one pion exchange potential mediates the low energy dynamics of this system. We determine the relative importance of pion exchanges, in particular the tensor force. We find that in general pion exchanges are probably non- ¯ ¯ ¯ ¯ ¯ ¯ perturbative for the ΣQΣQ, ΣQ∗ ΣQ and ΣQ∗ ΣQ∗ systems, while for the ΞQ′ ΞQ′ , ΞQ∗ ΞQ′ and ΞQ∗ ΞQ∗ cases they are perturbative. If we assume that the contact-range couplings of the effective field theory are saturated by the exchange of vector mesons, we can estimate for which quantum numbers it is more probable to find a heavy baryonium state. The most probable candidates to form bound states are ¯ ¯ ¯ ¯ ¯ ¯ the isoscalar ΛQΛQ, ΣQΣQ, ΣQ∗ ΣQ and ΣQ∗ ΣQ∗ and the isovector ΛQΣQ and ΛQΣQ∗ systems, both in the hidden-charm and hidden-bottom sectors. -
PARTICLE DECAYS the First Kaons from the New DAFNE Phi-Meson
PARTICLE DECAYS K for KLi The first kaons from the new DAFNE phi-meson factory at Frascati underline a fascinating chapter in the evolution of particle physics. As reported in the June issue (p7), in mid-April the new DAFNE phi-meson factory at Frascati began operation, with the KLOE detector looking at the physics. The DAFNE electron-positron collider operates at a total collision energy of 1020 MeV, the mass of the phi- meson, which prefers to decay into pairs of kaons.These decays provide a new stage to investigate CP violation, the subtle asymmetry that distinguishes between mat ter and antimatter. More knowledge of CP violation is the key to an increased understanding of both elemen tary particles and Big Bang cosmology. Since the discovery of CP violation in 1964, neutral kaons have been the classic scenario for CP violation, produced as secondary beams from accelerators. This is now changing as new CP violation scenarios open up with B particles, containing the fifth quark - "beauty", "bottom" or simply "b" (June p22). Although still on the neutral kaon beat, DAFNE offers attractive new experimental possibilities. Kaons pro duced via electron-positron annihilation are pure and uncontaminated by background, and having two kaons produced coherently opens up a new sector of preci sion kaon interferometry.The data are eagerly awaited. Strange decay At first sight the fact that the phi prefers to decay into pairs of kaons seems strange. The phi (1020 MeV) is only slightly heavier than a pair of neutral kaons (498 MeV each), and kinematically this decay is very constrained. -
Energy and System Size Dependence of Phi Meson Production in Cu+Cu and Au+Au Collisions
Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Title Energy and system size dependence of phi meson production in Cu+Cu and Au+Au collisions Permalink https://escholarship.org/uc/item/95k857j6 Authors Wissink, S.W. STAR Collaboration Publication Date 2009-08-26 eScholarship.org Powered by the California Digital Library University of California Energy and system size dependence of φ meson production in Cu+Cu and Au+Au collisions B. I. Abelev,1 M. M. Aggarwal,2 Z. Ahammed,3 B. D. Anderson,4 D. Arkhipkin,5 G. S. Averichev,6 Y. Bai,7 J. Balewski,8 O. Barannikova,1 L. S. Barnby,9 J. Baudot,10 S. Baumgart,11 D. R. Beavis,12 R. Bellwied,13 F. Benedosso,7 R. R. Betts,1 S. Bhardwaj,14 A. Bhasin,15 A. K. Bhati,2 H. Bichsel,16 J. Bielcik,17 J. Bielcikova,17 B. Biritz,18 L. C. Bland,12 M. Bombara,9 B. E. Bonner,19 M. Botje,7 J. Bouchet,4 E. Braidot,7 A. V. Brandin,20 S. Bueltmann,12 T. P. Burton,9 M. Bystersky,17 X. Z. Cai,21 H. Caines,11 M. Calder´on de la Barca S´anchez,22 J. Callner,1 O. Catu,11 D. Cebra,22 R. Cendejas,18 M. C. Cervantes,23 Z. Chajecki,24 P. Chaloupka,17 S. Chattopadhyay,3 H. F. Chen,25 J. H. Chen,21 J. Y. Chen,26 J. Cheng,27 M. Cherney,28 A. Chikanian,11 K. E. Choi,29 W. Christie,12 S. U. Chung,12 R. F. Clarke,23 M. J. -
[Phi] Production and the OZI Rule in [Greek Letter Pi Superscript +]D Interactions at 10 Gev/C Joel Stephen Hendrickson Iowa State University
Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1981 [Phi] production and the OZI rule in [Greek letter pi superscript +]d interactions at 10 GeV/c Joel Stephen Hendrickson Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Elementary Particles and Fields and String Theory Commons Recommended Citation Hendrickson, Joel Stephen, "[Phi] production and the OZI rule in [Greek letter pi superscript +]d interactions at 10 GeV/c " (1981). Retrospective Theses and Dissertations. 7428. https://lib.dr.iastate.edu/rtd/7428 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This was produced from a copy of a document sent to us for microfilming. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help you understand markings or notations which may appear on this reproduction. 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure you of complete continuity. -
Space-Time Symmetries
Space-Time Symmetries • Outline – Translation and rotation – Parity – Charge Conjugation – Positronium – T violation J. Brau Physics 661, Space-Time Symmetries 1 Conservation Rules Interaction Conserved quantity strong EM weak energy-momentum charge yes yes yes baryon number lepton number CPT yes yes yes P (parity) yes yes no C (charge conjugation parity) yes yes no CP (or T) yes yes 10-3 violation I (isospin) yes no no J. Brau Physics 661, Space-Time Symmetries 2 Discrete and Continuous Symmtries • Continuous Symmetries – Space-time symmetries – Lorentz transformations – Poincare transformations • combined space-time translation and Lorentz Trans. • Discrete symmetries – cannot be built from succession of infinitesimally small transformations –eg. Time reversal, Spatial Inversion • Other types of symmetries – Dynamical symmetries – of the equations of motion – Internal symmetries – such as spin, charge, color, or isospin J. Brau Physics 661, Space-Time Symmetries 3 Conservation Laws • Continuous symmetries lead to additive conservation laws: – energy, momentum • Discrete symmetries lead to multiplicative conservation laws – parity, charge conjugation J. Brau Physics 661, Space-Time Symmetries 4 Translation and Rotation • Invariance of the energy of an isolated physical system under space translations leads to conservation of linear momentum • Invariance of the energy of an isolated physical system under spatial rotations leads to conservation of angular momentum • Noether’s Theorem (Emmy Noether, 1915) E. Noether, "Invariante Varlationsprobleme",