Copying Nature's Mechanism for the Decarboxylation of Β-Keto Acids

Total Page:16

File Type:pdf, Size:1020Kb

Copying Nature's Mechanism for the Decarboxylation of Β-Keto Acids 11720 J. Am. Chem. Soc. 1996, 118, 11720-11724 Copying Nature’s Mechanism for the Decarboxylation of â-Keto Acids into Catalytic Antibodies by Reactive Immunization Robert Bjo1rnestedt, Guofu Zhong, Richard A. Lerner,* and Carlos F. Barbas III* Contribution from The Skaggs Institute for Chemical Biology and the Department of Molecular Biology, The Scripps Research Institute, 10666 North Torrey Pines Road, La Jolla, California 92037 ReceiVed June 20, 1996X Abstract: Reactive immunization was used to generate catalytic antibodies that use the enamine mechanism common to the natural class I aldolase enzymes. In order to investigate the possibility of exploiting the imine and enamine intermediates programmed into antibody catalysts by reactive immunization and the features which antibody aldolases share with naturally evolved catalysts, we have studied their ability to catalyze the decarboxylation of structurally related â-keto acids. Both aldolase antibodies were shown to efficiently catalyze the decarboxylation of two hapten- related â-keto acids with rate enhancements (kcat/kuncat) between 4959 and 14 774. Inhibition studies support the role of an essential lysine residue in the active site of the antibodies and the formation of a cyanide accessible imine intermediate in the mechanism. Investigation of the decarboxylation reaction of 2-{3′-(4′′-acetamidophenyl)propyl}- acetoacetic acid, 4, to 6-(4′-acetamidophenyl)-2-hexanone, 12, in the presence of 18O-labeled water by electrospray mass spectrometry revealed obligatory incorporation of 18O in the antibody-catalyzed reaction consistent with decarboxylation proceeding via an imine intermediate. These studies demonstrate that reactive immunization may be utilized to program in fine detail the mechanism of catalytic antibodies and our ability to exploit the programmed reaction coordinate for different catalytic tasks. Introduction nism of these aldolase antibodies was programmed using reactive immunization3 with the â-diketone hapten 1 as shown The study of amine-catalyzed decarboxylations of â-keto in Scheme 1. The â-diketone 1 is a chemical trap. Reaction acids occupies a special place in the history of bioorganic of an -amino group of lysine within the active site of the chemistry and enzymology. In a series of elegant studies antibody with a keto group of 1 results in the formation of a Westheimer and colleagues elucidated in detail the mechanism tetrahedral carbinolamine, which is dehydrated to an imine and by which the enzyme acetoacetate decarboxylase catalyzes the subsequently tautomerized to the stable vinylogous amide 3 decarboxylation of acetoacetic acid.1 These studies demon- shown in Scheme 1. The imine and enamine intermediates strated that the reaction proceeds by the formation of a Schiff developed along the reaction coordinate of the reaction between base between the -amino group of a lysine residue in the the antibody and the diketone and the aldol reaction are also enzyme and acetoacetate, followed by decarboxylation to form found along the reaction coordinates of other reactions, for an enamine which is then tautomerized to a Schiff base and example, decarboxylations, racemizations, and alkylation reac- finally hydrolyzed to release acetone and the free enzyme. The tions to name a few. Indeed, it is known that some naturally enzymatic mechanism is analogous to that originally proposed occurring class I aldolases are bifunctional. In addition to by Pederson in 1934 for simple amine-catalyzed decarboxyla- catalyzing the aldol reaction, these bifunctional catalysts also tions.2 Herein we report the programming of the chemical catalyze the decarboxylation of â-keto acids.5 In order to mechanism used by the natural enzyme acetoacetate decarboxy- investigate the possibility of exploiting common intermediates lase into catalytic antibodies by the process of reactive im- programmed into antibody catalysts by reactive immunization munization. and the features which antibody aldolases share with naturally Previously, antibodies capable of catalyzing intermolecular evolved catalysts, we have studied their ability to catalyze the aldol reactions with control of stereochemistry in both Cram decarboxylation of structurally related â-keto acids. and anti-Cram directions were produced.3a These catalytic antibodies were shown to use the enamine mechanism common Results and Discussion to the natural class I aldolase enzymes.4 The reaction mecha- X Abstract published in AdVance ACS Abstracts, November 15, 1996. Two antibody aldolases, 38C2 and 33F12, were available for (1) The following constitutes a partial listing of the most relevant study.3a,6 These antibodies catalyze the retroaldol reaction of references: (a) Hamilton, G. A.; Westheimer, F. H. J. Am. Chem. Soc. 1959, 81, 6332. (b) Fridovich, I.; Westheimer, F. H. J. Am. Chem. Soc. 1962, 84, (3) (a) Wagner, J.; Lerner, R. A.; Barbas, C. F., III Science 1995, 270, 3208. (c) Laursen, R. A.; Westheimer, F. H. J. Am. Chem. Soc. 1966, 88, 1797. (b) Wirshing, P.; Ashley, J. A.; Lo, C. -H. L.; Janda, K. D.; Lerner, 3426. (d) Tagaki, W.; Guthrie, J. P.; Westheimer, F. H. Biochemistry 1968, R. A. Science 1995, 270, 1775. 7, 905. (e) Frey, P. A.; Kokesh, F. C.; Westheimer, F. H. Biochemistry (4) Rutter, W. J. Fed. Proc. Am. Soc. Exp. Biol. 1964, 23, 1248. Morris, 1971, 14, 7266. (f) Kokesh, F. C.; Westheimer, F. H. J. Am. Chem. Soc. A. J.; Tolan, D. R. Biochemistry 1994, 33, 12291. 1971, 93, 7270. (g) Schmidt, Jr., D. E.; Westheimer, F. H. Biochemistry (5) Kobes, R. D.; Dekker, E. E. Biochem. Biophys. Res. Commun. 1967, 1971, 10, 1249. (h) Autor, A. P.; Fridovich, I. J. Biol. Chem. 1970, 245, 27, 607. Nishihara, H.; Dekker, E. E. J. Biol. Chem. 1972, 247, 5079. 5214. (i) Westheimer, F. H. Proceedings of the Robert A. Welch Foundation Vlahos, C. J.; Dekker, E. E. J. Biol. Chem. 1986, 261, 11049. Conferences on Chemical Research; Robert A. Welch Foundation, Houston, (6) Nucleic acid sequencing of the genes coding for these antibodies 1971; Vol. 15, pp 7-50. (j) Westheimer, F. H. Tetrahedron 1995, 51,3. has revealed that they are somatic mutants of one another and differ by 18 (2) Pederson, K. J. J. Phys. Chem. 1934, 38, 559. amino acids in their variable regions. S0002-7863(96)02079-3 CCC: $12.00 © 1996 American Chemical Society Decarboxylation of â-Keto Acids J. Am. Chem. Soc., Vol. 118, No. 47, 1996 11721 Scheme 1 in the aldol reaction. Other antibodies which bound hapten 1 with high affinity albeit in a noncovalent fashion were also studied and were found not to catalyze the decarboxylation reactions. The current study differs from decarboxylations of activated model compounds catalyzed previously10 with antibodies in studies designed to elucidate medium effects in enzyme- catalyzed reactions. Our goal is to create an enzyme that uses a mechanism common to nature’s catalyst, thereby testing the ability of the experimenter to program a detailed catalytic mechanism into antibodies. To test whether this was achieved, the mechanism by which antibodies 38C2 and 33F12 operate was studied further. Inhibition of decarboxylation activity, as well as aldolase activity,3a was complete in the presence of the 4-hydroxy-6-phenyl-2-hexanone but not 2-hydroxy-6-phenyl- hapten 2 or 2,4-pentanedione when spectrophotometric titration 4-hexanone, suggesting preferential attack of the lysine at the indicated the formation of a single vinylogous amide species 2 position. This reactivity and the hapten structure suggested per active site. This is analogous to the inhibition of the enzyme 1d 4 would be a suitable â-keto acid substrate if 38C2 and 33F12 acetoacetate decarboxylase by acetopyruvate. Additionally, could tolerate substitution at the 3 position of the hapten. In incubation of antibody 38C2 and 4 in the presence of 1% v/v order to map the geometry of the active sites of these antibodies, acetone and 50 µM cyanide resulted in 88% inhibition of we studied their reactions with a series of structurally related decarboxylase activity. Activity decreases of 23% and 15% â-diketones. Both antibodies 38C2 and 33F12, shown to be were observed when the study was performed with the addition capable of reacting with the linear diketones 2 and 2,4- of either acetone or cyanide alone. The synergistic effect of pentanedione,3a also reacted with the branched diketones cyanide and acetone suggests that inhibition is due to attack of 3-methyl-2,4-pentanedione, 2-acetylcyclopentanone, and 2-ace- the acetone-antibody imine by cyanide to form a covalent tylcyclohexanone to form stable vinylogous amides which aminonitrile adduct. These data are similar to those reported for acetoacetate decarboxylase and the bifunctional enzyme exhibited intense ultraviolet absorptions, λmax, at 328, 335, and 1h,5 335 nm, respectively, in a spectral region clear of absorption 2-keto-4-hydroxyglutarate aldolase. Cyanide alone inhibits from protein. These experiments suggested an active site the antibody-catalyzed decarboxylation reaction in a concentra- geometry which tolerates considerable substitution at the 3 tion dependent manner, indicating that imine 15 is accessible position of the hapten molecule. On the basis of these to attack by cyanide. These experiments confirm that decar- experiments, the â-keto acids 4 and 5 were synthesized. boxylation and aldol reactions occur at the same site and are The lithium salt 11 of compound 4 was prepared in six steps dependent on an essential -amino group of a lysine residue in from 4-iodoaniline as shown in Scheme 2. Acetylation of the
Recommended publications
  • Decarboxylation What Is Decarboxylation?
    Decarboxylation What is decarboxylation? Decarboxylation is the removal of a carboxyl group when a compound is exposed to light or heat. A carboxyl group is a grouping of carbon, oxygen, and hydrogen atoms in the form of COOH. When a compound is decarboxylated, this group is released in the form of carbon dioxide. Decarboxylation of cannabinoids When considering the decarboxylation of cannabinoids, it is important to note that this reaction is what causes the neutral acidic cannabinoids to turn into the active cannabinoids found in most products on the market. Both the neutral and acidic cannabinoids are naturally found in the cannabis plant. The active cannabinoids that have psychoactive properties are what occur after decarboxylation. Below is the mechanism for the conversion of THCA to THC. https://www.leafscience.com/2017/04/13/what-is-thca/ Heating THCA converts it to THC by kicking off the carboxyl group seen on the right side of the THCA molecule. Once the carboxyl group is released from the THCA it forms carbon dioxide and the THC compound. The THC is now ready for use in different products and will provide the psychoactive effects that popularized this compound. This simple reaction is all it takes to convert the acidic cannabinoids to their active counterparts. Cannabinolic acid (CBDA) and CBD are both another example of this process. Decarboxylation process Light can start the decarboxylation process after a period of time, but heat is the more common element used. There are different methods to decarboxylate cannabis depending on user preference. In the industry, dabs, vapes and joints decarboxylate instantly when heat is applied to the product.
    [Show full text]
  • Optimization of the Decarboxylation Reaction in Cannabis
    APPLICATION NOTE FT-IR Spectroscopy Authors: Dr. Markus Roggen1 Antonio M. Marelli1 Doug Townsend2 Ariel Bohman2 1Outco SanDiego, CA 2PerkinElmer, Inc. Shelton, CT. Optimization of the Decarboxylation Reaction Introduction The production of cannabis in Cannabis Extract extracts and oils for medicinal and recreational products has increased significantly in North America. This growth has been driven by both market demand in newly legalized states and patient demand for a greater diversity in cannabis products.1,2,3 Most cannabis extraction processes, independent of solvent or instrument choice, undergo a decarboxylation step whereby the carboxylic acid functional group is removed from the cannabinoids. The decarboxylation reaction converts the naturally occurring acid forms of the cannabinoids, e.g. tetrahydrocannabinolic acid (THCA) and cannabidiolic acid (CBDA), to their more potent neutral forms, e.g. tetrahydrocannabinol (THC) and cannabidiol (CBD). Because the carboxylic acid group is thermally labile, the industry typically applies a heat source, and at times a catalyst, to decarboxylate the cannabinoids. The heat-promoted decarboxylation reaction has been Decarboxylation Reaction discussed at length within the industry, but an extensive Decarboxylation was achieved by heating the cannabis extract in 4, 5, 6 literature search reveals very few papers on the process. a oil bath with a programmable hot plate. An overhead stirrer The data available represents a large spectrum of reaction was utilized to promote even heat distribution throughout the conditions, including a range in reaction temperature, time experiment. Oil bath and extract temperatures were recorded and instrumental setup. As such, there is a lack of universal every five minutes throughout the 80-minute heating process.
    [Show full text]
  • Citric Acid Cycle
    CHEM464 / Medh, J.D. The Citric Acid Cycle Citric Acid Cycle: Central Role in Catabolism • Stage II of catabolism involves the conversion of carbohydrates, fats and aminoacids into acetylCoA • In aerobic organisms, citric acid cycle makes up the final stage of catabolism when acetyl CoA is completely oxidized to CO2. • Also called Krebs cycle or tricarboxylic acid (TCA) cycle. • It is a central integrative pathway that harvests chemical energy from biological fuel in the form of electrons in NADH and FADH2 (oxidation is loss of electrons). • NADH and FADH2 transfer electrons via the electron transport chain to final electron acceptor, O2, to form H2O. Entry of Pyruvate into the TCA cycle • Pyruvate is formed in the cytosol as a product of glycolysis • For entry into the TCA cycle, it has to be converted to Acetyl CoA. • Oxidation of pyruvate to acetyl CoA is catalyzed by the pyruvate dehydrogenase complex in the mitochondria • Mitochondria consist of inner and outer membranes and the matrix • Enzymes of the PDH complex and the TCA cycle (except succinate dehydrogenase) are in the matrix • Pyruvate translocase is an antiporter present in the inner mitochondrial membrane that allows entry of a molecule of pyruvate in exchange for a hydroxide ion. 1 CHEM464 / Medh, J.D. The Citric Acid Cycle The Pyruvate Dehydrogenase (PDH) complex • The PDH complex consists of 3 enzymes. They are: pyruvate dehydrogenase (E1), Dihydrolipoyl transacetylase (E2) and dihydrolipoyl dehydrogenase (E3). • It has 5 cofactors: CoASH, NAD+, lipoamide, TPP and FAD. CoASH and NAD+ participate stoichiometrically in the reaction, the other 3 cofactors have catalytic functions.
    [Show full text]
  • Lecture: 28 TRANSAMINATION, DEAMINATION and DECARBOXYLATION
    Lecture: 28 TRANSAMINATION, DEAMINATION AND DECARBOXYLATION Protein metabolism is a key physiological process in all forms of life. Proteins are converted to amino acids and then catabolised. The complete hydrolysis of a polypeptide requires mixture of peptidases because individual peptidases do not cleave all peptide bonds. Both exopeptidases and endopeptidases are required for complete conversion of protein to amino acids. Amino acid metabolism The amino acids not only function as energy metabolites but also used as precursors of many physiologically important compounds such as heme, bioactive amines, small peptides, nucleotides and nucleotide coenzymes. In normal human beings about 90% of the energy requirement is met by oxidation of carbohydrates and fats. The remaining 10% comes from oxidation of the carbon skeleton of amino acids. Since the 20 common protein amino acids are distinctive in terms of their carbon skeletons, amino acids require unique degradative pathway. The degradation of the carbon skeletons of 20 amino acids converges to just seven metabolic intermediates namely. i. Pyruvate ii. Acetyl CoA iii. Acetoacetyl CoA iv. -Ketoglutarate v. Succinyl CoA vi. Fumarate vii. Oxaloacetate Pyruvate, -ketoglutarate, succinyl CoA, fumarate and oxaloacetate can serve as precursors for glucose synthesis through gluconeogenesis.Amino acids giving rise to these intermediates are termed as glucogenic. Those amino acids degraded to yield acetyl CoA or acetoacetate are termed ketogenic since these compounds are used to synthesize ketone bodies. Some amino acids are both glucogenic and ketogenic (For example, phenylalanine, tyrosine, tryptophan and threonine. Catabolism of amino acids The important reaction commonly employed in the breakdown of an amino acid is always the removal of its -amino group.
    [Show full text]
  • Dopa Decarboxylase Activity of the Living Human Brain
    Proc. Natl. Acad. Sci. USA Vol. 88, pp. 2721-2725, April 1991 Neurobiology Dopa decarboxylase activity of the living human brain (dopamine/dopamine synthesis/6-['8F]fluoro-L-dopa/Parkinson disease/positron emission tomography) ALBERT GJEDDE, JAKOB REITH, SUZAN DYVE, GABRIEL MGER, MARK GUTTMAN, MiRKo DIKSIC, ALAN EVANS, AND HIROTO KUWABARA Positron Imaging Laboratories, Montreal Neurological Institute, 3801 University Street, Montreal, Quebec H3A 2B4, Canada Communicated by Alfred P. Wolf, December 10, 1990 (received for review July 23, 1990) ABSTRACT Monoamiergic neurons use dopa decarbox- loss of methyl-Fdopa from the circulation, the methylation of ylase (DDC; aromatic-L-amino-acid carboxy-lyase, EC Fdopa in brain tissue, the exchange of Fdopa and methyl- 4.1.1.28) to form dopamine from L-3,4-dihydroxyphenylala- Fdopa between the circulation and brain tissue, and the nine (L-dopa). We measured regional dopa decarboxylase decarboxylation of Fdopa in the tissue. The model has too activity in brains of six healthy volunteers with 6-[18F]fluoro- many compartments to be evaluated by PET. We used known L-dopa and positron emission tomography. We calculated the relationships between the parameters to reduce the number enzyme activity, relative to its K., with a kinetic model that of compartments to three and the number of parameters to yielded the relative rate of conversion of 6['8Flfluoro-L-dopa four: We incorporated into each study (i) the ratio (0.43) to [18Fjfluorodopamine. Regional values of relative dopa de- between the blood-brain barrier transport rates ofFdopa and carboxylase activity ranged from nil in occipital cortex to 1.9 methyl-Fdopa in rat (5), (ii) the rate of conversion of Fdopa h-1 in caudate nucleus and putamen, in agreement with values to methyl-Fdopa and the rate of loss of methyl-Fdopa from obtained in vitro.
    [Show full text]
  • Therapeutic Effect of Agmatine on Neurological Disease: Focus on Ion Channels and Receptors
    Neurochemical Research (2019) 44:735–750 https://doi.org/10.1007/s11064-018-02712-1 REVIEW PAPER Therapeutic Effect of Agmatine on Neurological Disease: Focus on Ion Channels and Receptors Sumit Barua1 · Jong Youl Kim1 · Jae Young Kim1 · Jae Hwan Kim4 · Jong Eun Lee1,2,3 Received: 15 October 2018 / Revised: 19 December 2018 / Accepted: 24 December 2018 / Published online: 4 January 2019 © Springer Science+Business Media, LLC, part of Springer Nature 2019 Abstract The central nervous system (CNS) is the most injury-prone part of the mammalian body. Any acute or chronic, central or peripheral neurological disorder is related to abnormal biochemical and electrical signals in the brain cells. As a result, ion channels and receptors that are abundant in the nervous system and control the electrical and biochemical environment of the CNS play a vital role in neurological disease. The N-methyl-D-aspartate receptor, 2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-yl) propanoic acid receptor, kainate receptor, acetylcholine receptor, serotonin receptor, α2-adrenoreceptor, and acid-sensing ion channels are among the major channels and receptors known to be key components of pathophysiological events in the CNS. The primary amine agmatine, a neuromodulator synthesized in the brain by decarboxylation of L-arginine, can regu- late ion channel cascades and receptors that are related to the major CNS disorders. In our previous studies, we established that agmatine was related to the regulation of cell differentiation, nitric oxide synthesis, and murine brain endothelial cell migration, relief of chronic pain, cerebral edema, and apoptotic cell death in experimental CNS disorders.
    [Show full text]
  • Pyruvate Dehydrogenase Complex Deficiency
    Pavlu‑Pereira et al. Orphanet J Rare Dis (2020) 15:298 https://doi.org/10.1186/s13023‑020‑01586‑3 RESEARCH Open Access Pyruvate dehydrogenase complex defciency: updating the clinical, metabolic and mutational landscapes in a cohort of Portuguese patients Hana Pavlu‑Pereira1, Maria João Silva1,2, Cristina Florindo1, Sílvia Sequeira3, Ana Cristina Ferreira3, Sofa Duarte3, Ana Luísa Rodrigues4, Patrícia Janeiro4, Anabela Oliveira5, Daniel Gomes5, Anabela Bandeira6, Esmeralda Martins6, Roseli Gomes7, Sérgia Soares7, Isabel Tavares de Almeida1,2, João B. Vicente8* and Isabel Rivera1,2* Abstract Background: The pyruvate dehydrogenase complex (PDC) catalyzes the irreversible decarboxylation of pyruvate into acetyl‑CoA. PDC defciency can be caused by alterations in any of the genes encoding its several subunits. The resulting phenotype, though very heterogeneous, mainly afects the central nervous system. The aim of this study is to describe and discuss the clinical, biochemical and genotypic information from thirteen PDC defcient patients, thus seeking to establish possible genotype–phenotype correlations. Results: The mutational spectrum showed that seven patients carry mutations in the PDHA1 gene encoding the E1α subunit, fve patients carry mutations in the PDHX gene encoding the E3 binding protein, and the remaining patient carries mutations in the DLD gene encoding the E3 subunit. These data corroborate earlier reports describing PDHA1 mutations as the predominant cause of PDC defciency but also reveal a notable prevalence of PDHX mutations among Portuguese patients, most of them carrying what seems to be a private mutation (p.R284X). The biochemical analyses revealed high lactate and pyruvate plasma levels whereas the lactate/pyruvate ratio was below 16; enzy‑ matic activities, when compared to control values, indicated to be independent from the genotype and ranged from 8.5% to 30%, the latter being considered a cut‑of value for primary PDC defciency.
    [Show full text]
  • Ontogeny of L-Glutamic Acid Decarboxylase and 7 -Aminobutyric Acid Concentration in Human Kidney
    Pediat. Res. 9: 484-487 (1975) a-Aminobutyric acid human kidney glutamic acid decarboxylase pyridoxal phosphate Ontogeny of L-Glutamic Acid Decarboxylase and 7 -Aminobutyric Acid Concentration in Human Kidney G. A. LANCASTER,'27' F. MOHYUDDIN, AND C. R. SCRIVER LIeBelle Laboratorv for Biochemical Genetics and the Medical Research Council Genetics Group. McGill University-Montreal Children's Hospital Research Institute, Montreal, Quebec. Canada Extract particular importance in man, who extracts glutamine from the plasma to generate ammonia in kidney (10). Under such condi- Mature human renal cortex contains y-aminobutyric acid tions, the net intrarenal burden of glutamate requiring disposal is (GABA) at concentrations on the order of 0.2 pnol/g wet wt and greater than in those species, such as the rat, in which intrarenal about half of that concentration in fetal kidney. glutamate is consumed to synthesize the glutamine used for The pyridoxal-5'-phosphate (PLP)-dependent enzyme, L- ammoniagenesis. Renal GABA is low in rat kidney relative to glutamic acid decarboxylase (GAD), catalyzes the conversion of human kidney (8), a finding we considered to be supportive of our L-glutamate to GABA. The PLP-saturated GAD activity in hypothesis concerning the role of the GABA pathway in kidney. post-term (1 day-9 years) renal cortex homogenate is 0.94 A 0.38 We have examined the ontogeny of L-glutamic acid decarboxyl- pnol CO, formed/g wet wt/hr (Table 1). The corresponding GAD ase, the initial enzyme committing glutamate to the GABA activity in fetal renal cortex, in the midtrimester and early third (P pathway.
    [Show full text]
  • Cooperative Interactions in Glutamic Acid Decarboxylase David Lavern Witte Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1971 Cooperative interactions in glutamic acid decarboxylase David Lavern Witte Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Biochemistry Commons Recommended Citation Witte, David Lavern, "Cooperative interactions in glutamic acid decarboxylase " (1971). Retrospective Theses and Dissertations. 4930. https://lib.dr.iastate.edu/rtd/4930 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. 71-26,904 WITTE, David Lavem, 1943- COOPERATIVE INTERACTIONS IN GLUTAMIC ACID DECARBOXYLASE. Iowa State University, Ph.D., 1971 Biochemistiy University Microfilms, A XEROX Company, Ann Arbor, Michigan THIS DISSERTATION HAS BEQf MICROFILMED EXACTLY AS RECEIVED Cooperative interactions in glutamic acid decarboxylase by David Lavern Witte A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR OF PHILOSOPHY Major Subject: Biochemistry Approved: Signature was redacted for privacy. Signature was redacted for privacy. H tment Signature was redacted for privacy. f Graduée College Iowa State University Of Science and Technology Ames, Iowa 1971 ii TABLE OF CONTENTS Page DEDICATION i i i ABBREVIATIONS iv INTRODUCTION 1 LITERATURE REVIEW 2 EXPERIMENTAL 15 RESULTS AND DISCUSSION 27 LITERATURE CITED 75 ACKNOWLEDGMENTS 78 APPENDIX 79 DEDICATION To iny wife iv ABBREVIATIONS ATCC - American Type Culture Collection CD - circular dichroistn DEAE - diethyl amino ethyl DTT - dithio threitol (CIel and's reagent) E.
    [Show full text]
  • The Involvement of Trace Amine-Associated Receptor 1 and Thyroid Hormone Transporters in Non-Classical Pathways of the Thyroid Gland Auto-Regulation
    The Involvement of Trace Amine-Associated Receptor 1 and Thyroid Hormone Transporters in Non-Classical Pathways of the Thyroid Gland Auto-Regulation by Maria Qatato a Thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Cell Biology Approved Dissertation Committee Prof. Dr. Klaudia Brix Jacobs University Bremen Prof. Sebastian Springer, DPhil Jacobs University Bremen Dr. Georg Homuth Ernst-Moritz-Arndt-Universität Greifswald Date of Defence: 16 January 2018 Department of Life Sciences and Chemistry Statutory Declaration Family Name, Given/First Name Qatato, Maria Matriculation number 20330110 What kind of thesis are you submitting: PhD Thesis English: Declaration of Authorship I hereby declare that the thesis submitted was created and written solely by myself without any external support. Any sources, direct or indirect, are marked as such. I am aware of the fact that the contents of the thesis in digital form may be revised with regard to usage of unauthorized aid as well as whether the whole or parts of it may be identified as plagiarism. I do agree my work to be entered into a database for it to be compared with existing sources, where it will remain in order to enable further comparisons with future theses. This does not grant any rights of reproduction and usage, however. This document was neither presented to any other examination board nor has it been published. German: Erklärung der Autorenschaft (Urheberschaft) Ich erkläre hiermit, dass die vorliegende Arbeit ohne fremde Hilfe ausschließlich von mir erstellt und geschrieben worden ist. Jedwede verwendeten Quellen, direkter oder indirekter Art, sind als solche kenntlich gemacht worden.
    [Show full text]
  • Role of Glycine and Glyoxylate Decarboxylation in Photorespiratory CO2 Release' Received for Publication February 5, 1981 and in Revised Form May 12, 1981
    Plant Physiol. (1981) 68,1031-1034 0032-0889/81/68/103 1/04/$00.50/0 Role of Glycine and Glyoxylate Decarboxylation in Photorespiratory CO2 Release' Received for publication February 5, 1981 and in revised form May 12, 1981 DAVID J. OLIVER Department ofBacteriology and Biochemistry, University ofIdaho, Moscow, Idaho 83843 ABSTRACT anism was shared with added glycine, was sensitive to INH2 (14) and KCN, and therefore involved the mitochondrial glycine de- Mechanicafly isolated soybean leafcells metabolized added glycolate by carboxylation reaction. The second mechanism of CO2 release two mechanisms, the direct oxidation ofglyoxylate and the decarboxylation from glycolate was insensitive to INH and KCN, not inhibited by of glycine. The rate of glyoxylate oxidation was dependent on the cellular added glycine, insensitive to glycidate, an inhibitor of the gluta- glyoxylate concentratn and was linear between 0.58 and 2.66 micromoles mate:glyoxylate amino transferase (9), and inhibited by the gly- glyoxylate per milligam chlorophyll Tbe rate extrapolated to zero at a colate oxidase inhibitor methylhydroxybutynoate (5). It appar- concentration of zero. The concentration and, therefore, the rate of oxi- ently resulted from the direct decarboxylation of glyoxylate. The dation of glyoxylate could be decreased by adding glutamate or serine to rates of CO2 release from these sites were approximately equal. the cells. These substrates were amino donors for the transamination of Recently, Somerville et al. (17) have shown that Arabidopsis glyoxylate to glycine. In the presence of these amino acids more CO1 was thaliana mutants with no measurable leaf mitochondrial serine released from added glycolate via the glycine decarboxylation reaction and hydroxymethyl transferase activity photorespire.
    [Show full text]
  • Tryptophan Catabolism by Lactobacillus Spp. : Biochemistry and Implications on Flavor Development in Reduced-Fat Cheddar Cheese
    Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 5-1998 Tryptophan Catabolism by Lactobacillus spp. : Biochemistry and Implications on Flavor Development in Reduced-Fat Cheddar Cheese Sanjay Gummalla Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Food Chemistry Commons, Food Microbiology Commons, and the Food Processing Commons Recommended Citation Gummalla, Sanjay, "Tryptophan Catabolism by Lactobacillus spp. : Biochemistry and Implications on Flavor Development in Reduced-Fat Cheddar Cheese" (1998). All Graduate Theses and Dissertations. 5454. https://digitalcommons.usu.edu/etd/5454 This Thesis is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. TRYPTOPHAN CATABOLISM BY LACTOBACILLUS SPP.: BIOCHEMISTRY AND IMPLICATIONS ON FLAVOR DEVELOPMENT IN REDUCED-FAT CHEDDAR CHEESE by Sanjay Gummalla A thesis submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE m Nutrition and Food Sciences Approved: UTAH STATE UNIVERSITY Logan, Utah 1998 11 Copyright © Sanjay Gummalla 1998 All Rights Reserved w ABSTRACT Tryptophan Catabolism by Lactobacillus spp. : Biochemistry and Implications on Flavor Development in Reduced-Fat Cheddar Cheese by Sanjay Gummalla, Master of Science Utah State University, 1998 Major Professor: Dr. Jeffery R. Broadbent Department: Nutrition and Food Sciences Amino acids derived from the degradation of casein in cheese serve as precursors for the generation of key flavor compounds. Microbial degradation of tryptophan (Trp) is thought to promote formation of aromatic compounds that impart putrid fecal or unclean flavors in cheese, but pathways for their production have not been established.
    [Show full text]